1
|
Dingle AO, Adelman ZN. Evaluating the specificity of flavivirus proteases in Aedes aegypti cells for dengue virus 2-derived cleavage sites. PLoS One 2024; 19:e0309095. [PMID: 39625906 PMCID: PMC11614287 DOI: 10.1371/journal.pone.0309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Flaviviruses are a diverse group of RNA viruses known for their significant impact on human health worldwide. We generated a series of reporters that included cleavage sequences from the dengue virus type 2 polyprotein and co-transfected with plasmids encoding various flavivirus proteases into Aedes aegypti cells, followed by fluorescent imaging and western blot analysis for the determination of proteolytic cleavage. Recombinant flavivirus NS2B3 proteases from medically significant and insect-specific flaviviruses were able to process reporters encoding cleavage sequences from the dengue virus type 2 polyprotein in vitro including proteases from dengue virus types 1-4, Zika virus, yellow fever virus, Aedes flavivirus, and cell-fusing agent virus. Reporters were not cleaved when transfected cells were infected with dengue virus type 2. Endoplasmic reticulum tethered reporters were also cleaved by protease alone but not by infectious virus. These results shed light on the ability of multiple flavivirus proteases to cleave sequences derived from outside of their genome and raise new questions concerning the requirements for effective cleavage by flavivirus proteases in trans.
Collapse
Affiliation(s)
- Alexius O. Dingle
- Department of Entomology, Texas A&M AgriLife, Texas A&M University, College Station, TX, United States of America
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M AgriLife, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
2
|
Butler CD, Lloyd AL. How population control of pests is modulated by density dependence: The perspective of genetic biocontrol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622719. [PMID: 39605380 PMCID: PMC11601221 DOI: 10.1101/2024.11.08.622719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Managing pest species relies critically on mechanisms that regulate population dynamics, particularly those factors that change with population size. These density-dependent factors can help or hinder control efforts and are especially relevant considering recent advances in genetic techniques that allow for precise manipulation of the timing and sex-specificity of a control. Despite this importance, density dependence is often poorly characterized owing to limited data and an incomplete understanding of developmental ecology. To address this issue, we construct and analyze a mathematical model of a pest population with a general control under a wide range of density dependence scenarios. Using this model, we investigate how control performance is affected by the strength of density dependence. By modifying the timing and sex-specificity of the control, we tailor our analysis to simulate different pest control strategies, including conventional and genetic biocontrol methods. We pay particular attention to the latter as case studies by extending the baseline model to include genetic dynamics. Finally, we clarify past work on the dynamics of mechanistic models with density dependence. As expected, we find substantial differences in control performance for differing strengths of density dependence, with populations exhibiting strong density dependence being most resilient to suppression. However, these results change with the size and timing of the control load, as well as the target sex. Interestingly, we also find that population invasion by certain genetic biocontrol strategies is affected by the strength of density dependence. While the model is parameterized using the life history traits of the yellow fever mosquito, Aedes aegypti, the principles developed here apply to many pest species. We conclude by discussing what this means for pest population suppression moving forward.
Collapse
Affiliation(s)
- C D Butler
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27606
| | - A L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
3
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Janzen A, Pothula R, Sychla A, Feltman NR, Smanski MJ. Predicting thresholds for population replacement gene drives. BMC Biol 2024; 22:40. [PMID: 38369493 PMCID: PMC10875781 DOI: 10.1186/s12915-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Threshold-dependent gene drives (TDGDs) could be used to spread desirable traits through a population, and are likely to be less invasive and easier to control than threshold-independent gene drives. Engineered Genetic Incompatibility (EGI) is an extreme underdominance system previously demonstrated in Drosophila melanogaster that can function as a TDGD when EGI agents of both sexes are released into a wild-type population. RESULTS Here we use a single generation fitness assay to compare the fecundity, mating preferences, and temperature-dependent relative fitness to wild-type of two distinct genotypes of EGI agents. We find significant differences in the behavior/performance of these EGI agents that would not be predicted a priori based on their genetic design. We report a surprising temperature-dependent change in the predicted threshold for population replacement in an EGI agent that drives ectopic expression of the developmental morphogen pyramus. CONCLUSIONS The single-generation fitness assay presented here could reduce the amount of time required to estimate the threshold for TDGD strategies for which hybrid genotypes are inviable. Additionally, this work underscores the importance of empirical characterization of multiple engineered lines, as behavioral differences can arise in unique genotypes for unknown reasons.
Collapse
Affiliation(s)
- Anna Janzen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Ratnasri Pothula
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nathan R Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA.
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA.
| |
Collapse
|
5
|
Weng SC, Masri RA, Akbari OS. Advances and challenges in synthetic biology for mosquito control. Trends Parasitol 2024; 40:75-88. [PMID: 38000957 PMCID: PMC11064511 DOI: 10.1016/j.pt.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Mosquito-borne illnesses represent a significant global health peril, resulting in approximately one million fatalities annually. West Nile, dengue, Zika, and malaria are continuously expanding their global reach, driven by factors that escalate mosquito populations and pathogen transmission. Innovative control measures are imperative to combat these catastrophic ailments. Conventional approaches, such as eliminating breeding sites and using insecticides, have been helpful, but they face challenges such as insecticide resistance and environmental harm. Given the mounting severity of mosquito-borne diseases, there is promise in exploring innovative approaches using synthetic biology to bolster mosquitoes' resistance to pathogens, or even eliminate the mosquito vectors, as a means of control. This review outlines current strategies, future goals, and the importance of gene editing for global health defenses against mosquito-borne diseases.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reem A Masri
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Mishra P, Balaraman V, Fraser MJ. Maxizyme-mediated suppression of chikungunya virus replication and transmission in transgenic Aedes aegypti mosquitoes. Front Microbiol 2023; 14:1286519. [PMID: 38188571 PMCID: PMC10766806 DOI: 10.3389/fmicb.2023.1286519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne pathogen of significant public health importance. There are currently no prophylactic vaccines or therapeutics available to control CHIKV. One approach to arbovirus control that has been proposed is the replacement of transmission-competent mosquitoes with those that are refractory to virus infection. Several transgene effectors are being examined as potentially useful for this population replacement approach. We previously demonstrated the successful use of hammerhead ribozymes (hRzs) as an antiviral effector transgene to control CHIKV infection of, and transmission by, Aedes mosquitoes. In this report we examine a maxizyme approach to enhance the catalytic activity and prevent virus mutants from escaping these ribozymes. We designed a maxizyme containing minimized (monomer) versions of two hRzs we previously demonstrated to be the most effective in CHIKV suppression. Three versions of CHIKV maxizyme were designed: Active (Mz), inactive (ΔMz), and a connected CHIKV maxizyme (cMz). The maxizymes with their expression units (Ae-tRNA val promoter and its termination signal) were incorporated into lentivirus vectors with selection and visualization markers. Following transformation, selection, and single-cell sorting of Vero cells, clonal cell populations were infected with CHIKV at 0.05 and 0.5 MOI, and virus suppression was assessed using TCID50-IFA, RT-qPCR, and caspase-3 assays. Five transgenic mosquito lines expressing cMz were generated and transgene insertion sites were confirmed by splinkerette PCR. Our results demonstrate that Vero cell clones expressing Mz exhibited complete inhibition of CHIKV replication compared to their respective inactive control version or the two parent hRzs. Upon oral challenge of transgenic mosquitoes with CHIKV, three out of the five lines were completely refractory to CHIKV infection, and all five lines tested negative for salivary transmission. Altogether, this study demonstrates that maxizymes can provide a higher catalytic activity and viral suppression than hRzs.
Collapse
Affiliation(s)
| | | | - Malcolm J. Fraser
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
7
|
Dalla Benetta E, López-Denman AJ, Li HH, Masri RA, Brogan DJ, Bui M, Yang T, Li M, Dunn M, Klein MJ, Jackson S, Catalan K, Blasdell KR, Tng P, Antoshechkin I, Alphey LS, Paradkar PN, Akbari OS. Engineered Antiviral Sensor Targets Infected Mosquitoes. CRISPR J 2023; 6:543-556. [PMID: 38108518 PMCID: PMC11085028 DOI: 10.1089/crispr.2023.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. Although considerable efforts have focused on utilizing class II type II CRISPR-Cas9 systems for DNA targeting, these modalities are unable to target RNA molecules, limiting their utility against RNA viruses. Recently, the Cas13 family has emerged as an efficient tool for RNA targeting; however, the application of this technique in mosquitoes, particularly Aedes aegypti, has yet to be fully realized. In this study, we engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 and its potent collateral activity. REAPER remains concealed within the mosquito until an infectious blood meal is uptaken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13-mediated RNA targeting significantly reduces viral replication and viral prevalence of infection, and its promiscuous collateral activity can even kill infected mosquitoes within a few days. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Adam J. López-Denman
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Hsing-Han Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Reem A. Masri
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Daniel J. Brogan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Michelle Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ting Yang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ming Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Michael Dunn
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Melissa J. Klein
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Sarah Jackson
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Kyle Catalan
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Kim R. Blasdell
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Priscilla Tng
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Luke S. Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
9
|
Maringer K. Re-evaluating the mosquito RNAi pathway's influence on arbovirus transmission. Trends Parasitol 2023; 39:898-899. [PMID: 37758630 DOI: 10.1016/j.pt.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
With new RNA interference (RNAi) pathway-deficient mosquitoes, Merkling et al. invite a shift in our view of this pathway's role in regulating arthropod-borne virus (arbovirus) transmission. While loss of RNAi function enhanced early viral replication, little impact on transmission was observed, inviting renewed exploration of molecular barriers to arbovirus transmission.
Collapse
Affiliation(s)
- Kevin Maringer
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| |
Collapse
|
10
|
Spadar A, Phelan JE, Clark TG, Campino S. Large-scale reference-free analysis of flavivirus sequences in Aedes aegypti whole genome DNA sequencing data. Parasit Vectors 2023; 16:265. [PMID: 37543604 PMCID: PMC10403824 DOI: 10.1186/s13071-023-05898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Flaviviruses are a diverse group of RNA viruses, which include the etiological agents of Zika, dengue and yellow fever that are transmitted by mosquitoes. Flaviviruses do not encode reverse transcriptase and cannot reverse transcribe into DNA, yet DNA sequences of flaviviruses are found both integrated in the chromosomes of Aedes aegypti mosquitoes and as extrachromosomal sequences. We have previously examined the Ae. aegypti reference genome to identify flavivirus integrations and analyzed conservation of these sequences among whole-genome data of 464 Ae. aegypti collected across 10 countries globally. Here, we extended this analysis by identifying flavivirus sequences in these samples independently of the Ae. aegypti reference assembly. Our aim was to identify the complete set of viral sequences, including those absent in the reference genome, and their geographical distribution. We compared the identified sequences using BLASTn and applied machine learning methods to identify clusters of similar sequences. Apart from clusters of sequences that correspond to the four viral integration events that we had previously described, we identified 19 smaller clusters. The only cluster with a strong geographic association consisted of Cell-fusing agent virus-like sequences specific to Thailand. The remaining clusters did not have a geographic association and mostly consisted of near identical short sequences without strong similarity to any known flaviviral genomes. The short read sequencing data did not permit us to determine whether identified sequences were extrachromosomal or integrated into Ae. aegypti chromosomes. Our results suggest that Liverpool strain and field Ae. aegypti mosquitoes have a similar variety of conserved flaviviral DNA, whose functional role should be investigated in follow-up studies.
Collapse
Affiliation(s)
- Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
11
|
Webb EM, Compton A, Rai P, Chuong C, Paulson SL, Tu Z, Weger-Lucarelli J. Expression of anti-chikungunya single-domain antibodies in transgenic Aedes aegypti reduces vector competence for chikungunya virus and Mayaro virus. Front Microbiol 2023; 14:1189176. [PMID: 37378291 PMCID: PMC10291133 DOI: 10.3389/fmicb.2023.1189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.
Collapse
Affiliation(s)
- Emily M. Webb
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Austin Compton
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christina Chuong
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sally L. Paulson
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Zhijian Tu
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
12
|
Carvalho DO, Costa-da-Silva AL, Petersen V, de Souza MS, Ioshino RS, Marques ICS, Franz AWE, Olson KE, James AA, Capurro ML. Transgene-induced cell death following dengue-2 virus infection in Aedes aegypti. Sci Rep 2023; 13:5958. [PMID: 37045866 PMCID: PMC10097671 DOI: 10.1038/s41598-023-32895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Dengue viruses (DENVs) are mosquito-borne flaviviruses causing millions of human infections each year and pose a challenge for public health systems worldwide. Aedes aegypti is the principal vector species transmitting DENVs to humans. Controlling Ae. aegypti is difficult due to the abundance of breeding sites and increasing insecticide resistance in the vector populations. Developing new vector control strategies is critical for decreasing the disease burden. One potential approach is genetically replacing Ae. aegypti populations with vector populations highly resistant to DENV transmission. Here, we focus on an alternative strategy for generating dengue 2 virus (DENV-2) resistance in genetically-modified Ae. aegypti in which the mosquitoes express an inactive form of Michelob_x (Mx), an antagonist of the Inhibitor of Apoptosis (IAP), to induce apoptosis in those cells in which actively replicating DENV-2 is present. The inactive form of Mx was flanked by the RRRRSAG cleavage motif, which was recognized by the NS2B/NS3 protease of the infecting DENV-2 thereby releasing and activating Mx which then induced apoptosis. Our transgenic strain exhibited a significantly higher mortality rate than the non-transgenic control when infected with DENV-2. We also transfected a DNA construct containing inactive Mx fused to eGFP into C6/36 mosquito cells and indirectly observed Mx activation on days 3 and 6 post-DENV-2 infections. There were clear signs that the viral NS2B/NS3 protease cleaved the transgene, thereby releasing Mx protein into the cytoplasm, as was confirmed by the detection of eGFP expression in infected cells. The present study represents proof of the concept that virus infection can be used to induce apoptosis in infected mosquito cells.
Collapse
Affiliation(s)
- Danilo O Carvalho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Andre L Costa-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Petersen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Micael Santana de Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaella S Ioshino
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel C S Marques
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Ken E Olson
- Center for Vector-Borne Infectious Diseases (CVID), Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1685, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Margareth L Capurro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Wang HW, Li HH, Wu SC, Tang CK, Yu HY, Chang YC, Sung PS, Liu WL, Su MP, Yu GY, Huang LR, Chen CH, Hsieh SL. CLEC5A mediates Zika virus-induced testicular damage. J Biomed Sci 2023; 30:12. [PMID: 36803804 PMCID: PMC9936774 DOI: 10.1186/s12929-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection is clinically known to induce testicular swelling, termed orchitis, and potentially impact male sterility, but the underlying mechanisms remain unclear. Previous reports suggested that C-type lectins play important roles in mediating virus-induced inflammatory reactions and pathogenesis. We thus investigated whether C-type lectins modulate ZIKV-induced testicular damage. METHODS C-type lectin domain family 5 member A (CLEC5A) knockout mice were generated in a STAT1-deficient immunocompromised background (denoted clec5a-/-stat1-/-) to enable testing of the role played by CLEC5A after ZIKV infection in a mosquito-to-mouse disease model. Following ZIKV infection, mice were subjected to an array of analyses to evaluate testicular damage, including ZIKV infectivity and neutrophil infiltration estimation via quantitative RT-PCR or histology and immunohistochemistry, inflammatory cytokine and testosterone detection, and spermatozoon counting. Furthermore, DNAX-activating proteins for 12 kDa (DAP12) knockout mice (dap12-/-stat1-/-) were generated and used to evaluate ZIKV infectivity, inflammation, and spermatozoa function in order to investigate the potential mechanisms engaged by CLEC5A. RESULTS Compared to experiments conducted in ZIKV-infected stat1-/- mice, infected clec5a-/-stat1-/- mice showed reductions in testicular ZIKV titer, local inflammation and apoptosis in testis and epididymis, neutrophil invasion, and sperm count and motility. CLEC5A, a myeloid pattern recognition receptor, therefore appears involved in the pathogenesis of ZIKV-induced orchitis and oligospermia. Furthermore, DAP12 expression was found to be decreased in the testis and epididymis tissues of clec5a-/-stat1-/- mice. As for CLEC5A deficient mice, ZIKV-infected DAP12-deficient mice also showed reductions in testicular ZIKV titer and local inflammation, as well as improved spermatozoa function, as compared to controls. CLEC5A-associated DAP12 signaling appears to in part regulate ZIKV-induced testicular damage. CONCLUSIONS Our analyses reveal a critical role for CLEC5A in ZIKV-induced proinflammatory responses, as CLEC5A enables leukocytes to infiltrate past the blood-testis barrier and induce testicular and epididymal tissue damage. CLEC5A is thus a potential therapeutic target for the prevention of injuries to male reproductive organs in ZIKV patients.
Collapse
Affiliation(s)
- Hsin-Wei Wang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Hsing-Han Li
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.266100.30000 0001 2107 4242Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Shih-Cheng Wu
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.19188.390000 0004 0546 0241Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048 Taiwan ,grid.412094.a0000 0004 0572 7815Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10021 Taiwan
| | - Cheng-Kang Tang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.260542.70000 0004 0532 3749Program of Plant Protection and Health, Academy of Circular Economy, National Chung Hsing University, Taichung, 402202 Taiwan
| | - Hui-Ying Yu
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617 Taiwan
| | - Ya-Chen Chang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Pei-Shan Sung
- grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Wei-Liang Liu
- grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Matthew P. Su
- grid.27476.300000 0001 0943 978XDepartment of Biological Science, Nagoya University, Nagoya, 464-8602 Japan ,grid.27476.300000 0001 0943 978XInstitute for Advanced Research, Nagoya University, Nagoya, 464-8601 Japan
| | - Guann-Yi Yu
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Li-Rung Huang
- grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Chun-Hong Chen
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
14
|
Developing Wolbachia-based disease interventions for an extreme environment. PLoS Pathog 2023; 19:e1011117. [PMID: 36719928 PMCID: PMC9917306 DOI: 10.1371/journal.ppat.1011117] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/10/2023] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.
Collapse
|
15
|
Benetta ED, López-Denman AJ, Li HH, Masri RA, Brogan DJ, Bui M, Yang T, Li M, Dunn M, Klein MJ, Jackson S, Catalan K, Blasdell KR, Tng P, Antoshechkin I, Alphey LS, Paradkar PN, Akbari OS. Engineered Antiviral Sensor Targets Infected Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525922. [PMID: 36747634 PMCID: PMC9900881 DOI: 10.1101/2023.01.27.525922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Escalating vector disease burdens pose significant global health risks, so innovative tools for targeting mosquitoes are critical. We engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR Cas13 and its potent collateral activity. Akin to a stealthy Trojan Horse hiding in stealth awaiting the presence of its enemy, REAPER remains concealed within the mosquito until an infectious blood meal is up taken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13 mediated RNA targeting significantly reduces viral replication and its promiscuous collateral activity can even kill infected mosquitoes. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adam J. López-Denman
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, AU
| | - Hsing-Han Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Reem A. Masri
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Daniel J. Brogan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michelle Bui
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ting Yang
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Dunn
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, AU
| | - Melissa J. Klein
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, AU
| | - Sarah Jackson
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, AU
| | - Kyle Catalan
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, AU
| | - Kim R. Blasdell
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, AU
| | - Priscilla Tng
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Luke S. Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, AU
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Bui M, Dalla Benetta E, Dong Y, Zhao Y, Yang T, Li M, Antoshechkin IA, Buchman A, Bottino-Rojas V, James AA, Perry MW, Dimopoulos G, Akbari OS. CRISPR mediated transactivation in the human disease vector Aedes aegypti. PLoS Pathog 2023; 19:e1010842. [PMID: 36656895 PMCID: PMC9888728 DOI: 10.1371/journal.ppat.1010842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
As a major insect vector of multiple arboviruses, Aedes aegypti poses a significant global health and economic burden. A number of genetic engineering tools have been exploited to understand its biology with the goal of reducing its impact. For example, current tools have focused on knocking-down RNA transcripts, inducing loss-of-function mutations, or expressing exogenous DNA. However, methods for transactivating endogenous genes have not been developed. To fill this void, here we developed a CRISPR activation (CRISPRa) system in Ae. aegypti to transactivate target gene expression. Gene expression is activated through pairing a catalytically-inactive ('dead') Cas9 (dCas9) with a highly-active tripartite activator, VP64-p65-Rta (VPR) and synthetic guide RNA (sgRNA) complementary to a user defined target-gene promoter region. As a proof of concept, we demonstrate that engineered Ae. aegypti mosquitoes harboring a binary CRISPRa system can be used to effectively overexpress two developmental genes, even-skipped (eve) and hedgehog (hh), resulting in observable morphological phenotypes. We also used this system to overexpress the positive transcriptional regulator of the Toll immune pathway known as AaRel1, which resulted in a significant suppression of dengue virus serotype 2 (DENV2) titers in the mosquito. This system provides a versatile tool for research pathways not previously possible in Ae. aegypti, such as programmed overexpression of endogenous genes, and may aid in gene characterization studies and the development of innovative vector control tools.
Collapse
Affiliation(s)
- Michelle Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Elena Dalla Benetta
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yunchong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Ting Yang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Ming Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Igor A. Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Anna Buchman
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Vanessa Bottino-Rojas
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Michael W. Perry
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
17
|
Reid W, Williams AE, Sanchez-Vargas I, Lin J, Juncu R, Olson KE, Franz AWE. Assessing single-locus CRISPR/Cas9-based gene drive variants in the mosquito Aedes aegypti via single-generation crosses and modeling. G3 (BETHESDA, MD.) 2022; 12:jkac280. [PMID: 36250791 PMCID: PMC9713460 DOI: 10.1093/g3journal/jkac280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 07/29/2023]
Abstract
The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika viruses. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such an approach requires a mechanism to spread these antiviral effectors through a population, for example, by using CRISPR/Cas9-based gene drive systems. Critical to the design of a single-locus autonomous gene drive is that the selected genomic locus is amenable to both gene drive and appropriate expression of the antiviral effector. In our study, we used reverse engineering to target 2 intergenic genomic loci, which had previously shown to be highly permissive for antiviral effector gene expression, and we further investigated the use of 3 promoters (nanos, β2-tubulin, or zpg) for Cas9 expression. We then quantified the accrual of insertions or deletions (indels) after single-generation crossings, measured maternal effects, and assessed fitness costs associated with various transgenic lines to model the rate of gene drive fixation. Overall, MGDrivE modeling suggested that when an autonomous gene drive is placed into an intergenic locus, the gene drive system will eventually be blocked by the accrual of gene drive blocking resistance alleles and ultimately be lost in the population. Moreover, while genomic locus and promoter selection were critically important for the initial establishment of the autonomous gene drive, it was the fitness of the gene drive line that most strongly influenced the persistence of the gene drive in the simulated population. As such, we propose that when autonomous CRISPR/Cas9-based gene drive systems are anchored in an intergenic locus, they temporarily result in a strong population replacement effect, but as gene drive-blocking indels accrue, the gene drive becomes exhausted due to the fixation of CRISPR resistance alleles.
Collapse
Affiliation(s)
- William Reid
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Adeline E Williams
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Irma Sanchez-Vargas
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jingyi Lin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Rucsanda Juncu
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Ken E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Raban R, Gendron WAC, Akbari OS. A perspective on the expansion of the genetic technologies to support the control of neglected vector-borne diseases and conservation. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.999273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genetic-based technologies are emerging as promising tools to support vector population control. Vectors of human malaria and dengue have been the main focus of these development efforts, but in recent years these technologies have become more flexible and adaptable and may therefore have more wide-ranging applications. Culex quinquefasciatus, for example, is the primary vector of avian malaria in Hawaii and other tropical islands. Avian malaria has led to the extinction of numerous native bird species and many native bird species continue to be threatened as climate change is expanding the range of this mosquito. Genetic-based technologies would be ideal to support avian malaria control as they would offer alternatives to interventions that are difficult to implement in natural areas, such as larval source reduction, and limit the need for chemical insecticides, which can harm beneficial species in these natural areas. This mosquito is also an important vector of human diseases, such as West Nile and Saint Louis encephalitis viruses, so genetic-based control efforts for this species could also have a direct impact on human health. This commentary will discuss the current state of development and future needs for genetic-based technologies in lesser studied, but important disease vectors, such as C. quinquefasciatus, and make comparisons to technologies available in more studied vectors. While most current genetic control focuses on human disease, we will address the impact that these technologies could have on both disease and conservation focused vector control efforts and what is needed to prepare these technologies for evaluation in the field. The versatility of genetic-based technologies may result in the development of many important tools to control a variety of vectors that impact human, animal, and ecosystem health.
Collapse
|
19
|
Tng PYL, Carabajal Paladino LZ, Anderson MAE, Adelman ZN, Fragkoudis R, Noad R, Alphey L. Intron-derived small RNAs for silencing viral RNAs in mosquito cells. PLoS Negl Trop Dis 2022; 16:e0010548. [PMID: 35737714 PMCID: PMC9258879 DOI: 10.1371/journal.pntd.0010548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/06/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti and Ae. albopictus are the main vectors of mosquito-borne viruses of medical and veterinary significance. Many of these viruses have RNA genomes. Exogenously provided, e.g. transgene encoded, small RNAs could be used to inhibit virus replication, breaking the transmission cycle. We tested, in Ae. aegypti and Ae. albopictus cell lines, reporter-based strategies for assessing the ability of two types of small RNAs to inhibit a chikungunya virus (CHIKV) derived target. Both types of small RNAs use a Drosophila melanogaster pre-miRNA-1 based hairpin for their expression, either with perfect base-pairing in the stem region (shRNA-like) or containing two mismatches (miRNA-like). The pre-miRNA-1 stem loop structure was encoded within an intron; this allows co-expression of one or more proteins, e.g. a fluorescent protein marker tracking the temporal and spatial expression of the small RNAs in vivo. Three reporter-based systems were used to assess the relative silencing efficiency of ten shRNA-like siRNAs and corresponding miRNA-like designs. Two systems used a luciferase reporter RNA with CHIKV RNA inserted either in the coding sequence or within the 3’ UTR. A third reporter used a CHIKV derived split replication system. All three reporters demonstrated that while silencing could be achieved with both miRNA-like and shRNA-like designs, the latter were substantially more effective. Dcr-2 was required for the shRNA-like siRNAs as demonstrated by loss of inhibition of the reporters in Dcr-2 deficient cell lines. These positive results in cell culture are encouraging for the potential use of this pre-miRNA-1-based system in transgenic mosquitoes. Mosquitoes are important globally, spreading viral diseases worldwide. Chikungunya virus causes epidemics of disease in people. Here we have investigated using two types of small RNAs and pathways inherent in Aedes aegypti mosquitoes to target a piece of the chikungunya virus’s genome, potentially preventing viral replication. We express these small RNAs using a pre-miRNA-1 based system, inserted into the intron within a commonly used promoter. We have used reporter systems in cell lines which can give preliminary indications of how these systems might work in mosquitoes. Our results indicate that short-hairpin-like designs are more effective than micro-RNA-like designs at knocking down expression of their targets. This knock-down requires Dcr-2 indicating that the short-hairpin-like RNAs are likely using the endo-siRNA pathway to degrade mRNA which contains their complementary RNA.
Collapse
Affiliation(s)
- Priscilla Y. L. Tng
- Arthropod Genetics Group, The Pirbright Institute, Pirbright, United Kingdom
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | | | | | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Rennos Fragkoudis
- Arbovirus Pathogenesis Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Rob Noad
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Pirbright, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Antiviral RNAi Mechanisms to Arboviruses in Mosquitoes: microRNA Profile of Aedes aegypti and Culex quinquefasciatus from Grenada, West Indies. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mosquito-borne arboviruses, such as dengue virus, West Nile virus, Zika virus and yellow fever virus, impose a tremendous cost on the health of populations around the world. As a result, much effort has gone into the study of the impact of these viruses on human infections. Comparatively less effort, however, has been made to study the way these viruses interact with mosquitoes themselves. As ingested arboviruses infect their midgut and subsequently other tissue, the mosquito mounts a multifaceted innate immune response. RNA interference, the central intracellular antiviral defense mechanism in mosquitoes and other invertebrates can be induced and modulated through outside triggers (small RNAs) and treatments (transgenesis or viral-vector delivery). Accordingly, modulation of this facet of the mosquito’s immune system would thereby suggest a practical strategy for vector control. However, this requires a detailed understanding of mosquitoes’ endogenous small RNAs and their effects on the mosquito and viral proliferation. This paper provides an up-to-date overview of the mosquito’s immune system along with novel data describing miRNA profiles for Aedes aegypti and Culex quinquefasiatus in Grenada, West Indies.
Collapse
|
21
|
Dong Y, Dong S, Dizaji NB, Rutkowski N, Pohlenz T, Myles K, Dimopoulos G. The Aedes aegypti siRNA pathway mediates broad-spectrum defense against human pathogenic viruses and modulates antibacterial and antifungal defenses. PLoS Biol 2022; 20:e3001668. [PMID: 35679279 PMCID: PMC9182253 DOI: 10.1371/journal.pbio.3001668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
The mosquito's innate immune system defends against a variety of pathogens, and the conserved siRNA pathway plays a central role in the control of viral infections. Here, we show that transgenic overexpression of Dicer2 (Dcr2) or R2d2 resulted in an accumulation of 21-nucleotide viral sequences that was accompanied by a significant suppression of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) replication, thus indicating the broad-spectrum antiviral response mediated by the siRNA pathway that can be applied for the development of novel arbovirus control strategies. Interestingly, overexpression of Dcr2 or R2d2 regulated the mRNA abundance of a variety of antimicrobial immune genes, pointing to additional functions of DCR2 and R2D2 as well as cross-talk between the siRNA pathway and other immune pathways. Accordingly, transgenic overexpression of Dcr2 or R2d2 resulted in a lesser proliferation of the midgut microbiota and increased resistance to bacterial and fungal infections.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nahid Borhani Dizaji
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tyler Pohlenz
- Texas A & M University, Department of Entomology, TAMU College Station, Texas, United States of America
| | - Kevin Myles
- Texas A & M University, Department of Entomology, TAMU College Station, Texas, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Propagation of seminal toxins through binary expression gene drives could suppress populations. Sci Rep 2022; 12:6332. [PMID: 35428855 PMCID: PMC9012762 DOI: 10.1038/s41598-022-10327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Gene drives can be highly effective in controlling a target population by disrupting a female fertility gene. To spread across a population, these drives require that disrupted alleles be largely recessive so as not to impose too high of a fitness penalty. We argue that this restriction may be relaxed by using a double gene drive design to spread a split binary expression system. One drive carries a dominant lethal/toxic effector alone and the other a transactivator factor, without which the effector will not act. Only after the drives reach sufficiently high frequencies would individuals have the chance to inherit both system components and the effector be expressed. We explore through mathematical modeling the potential of this design to spread dominant lethal/toxic alleles and suppress populations. We show that this system could be implemented to spread engineered seminal proteins designed to kill females, making it highly effective against polyandrous populations.
Collapse
|
23
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
24
|
Weng SC, Zhou YX, Shiao SH. A flavivirus-inducible gene expression system that modulates broad-spectrum antiviral activity against dengue and Zika viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103723. [PMID: 35074522 DOI: 10.1016/j.ibmb.2022.103723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/26/2023]
Abstract
Incidence of dengue virus (DENV) and Zika virus (ZIKV), two mosquito-borne flaviviruses, is increasing in large parts of the world. Vaccination and medication for these diseases are unsatisfactory. Here, we developed a novel antiviral approach, using a virus-inducible gene expression system, to block virus replication and transmission. Constructs containing the smallest replication units of dengue virus serotype 2 (DENV2) with negative-stranded DENV2 artificial genomes and genes of interest were established in an Aedes aegypti cell line, resulting in expression of target genes after DENV2 infection. Green fluorescent protein (GFP) assays confirmed the system was virus-inducible. When we used one of two apoptosis-related genes, A. aegypti michelob_x (AaMx) and inhibitor of apoptosis (IAP)-antagonist michelob_x-like protein (AaIMP) instead of GFP, the production of viral RNA and proteins were inhibited for all five viruses tested (DENV1-4 and ZIKV), and effector caspase activity was induced. The system thus inhibited the production of infectious virus particles in vitro, and in mosquitoes it did so after DENV2 infection. This is a novel broad-spectrum antiviral approach using a flavivirus-inducible gene-expression system, which could lead to new avenues for mosquito-borne disease control.
Collapse
Affiliation(s)
- Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Xian Zhou
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Lab-scale characterization and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain. PLoS Negl Trop Dis 2022; 16:e0010084. [PMID: 35015769 PMCID: PMC8752028 DOI: 10.1371/journal.pntd.0010084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue fever is one of the most severe viral diseases transmitted by Aedes mosquitoes, with traditional approaches of disease control proving insufficient to prevent significant disease burden. Release of Wolbachia-transinfected mosquitoes offers a promising alternative control methodologies; Wolbachia-transinfected female Aedes aegypti demonstrate reduced dengue virus transmission, whilst Wolbachia-transinfected males cause zygotic lethality when crossed with uninfected females, providing a method for suppressing mosquito populations. Although highly promising, the delicate nature of population control strategies and differences between local species populations means that controlled releases of Wolbachia-transinfected mosquitoes cannot be performed without extensive testing on specific local Ae. aegypti populations. In order to investigate the potential for using Wolbachia to suppress local Ae. aegypti populations in Taiwan, we performed lab-based and semi-field fitness trials. We first transinfected the Wolbachia strain wAlbB into a local Ae. aegypti population (wAlbB-Tw) and found no significant changes in lifespan, fecundity and fertility when compared to controls. In the laboratory, we found that as the proportion of released male mosquitoes carrying Wolbachia was increased, population suppression could reach up to 100%. Equivalent experiments in semi-field experiments found suppression rates of up to 70%. The release of different ratios of wAlbB-Tw males in the semi-field system provided an estimate of the optimal size of male releases. Our results indicate that wAlbB-Tw has significant potential for use in vector control strategies aimed at Ae. aegypti population suppression in Taiwan. Open field release trials are now necessary to confirm that wAlbB-Tw mediated suppression is feasible in natural environments.
Collapse
|
26
|
Abstract
Gene drives are an emerging technology with tremendous potential to impact public health, agriculture, and conservation. While gene drives can be described simply as selfish genetic elements (natural or engineered) that are inherited at non-Mendelian rates, upon closer inspection, engineered gene drive technology is a complex class of biotechnology that uses a diverse number of genetic features to bias rates of inheritance. As a complex technology, gene drives can be difficult to comprehend, not only for the public and stakeholders, but also to risk assessors, risk managers, and decisionmakers not familiar with gene drive literature. To address this difficulty, we describe a gene drive classification system based on 5 functional characteristics. These characteristics include a gene drive's objective, mechanism, release threshold, range, and persistence. The aggregate of the gene drive's characteristics can be described as the gene drive's architecture. Establishing a classification system to define different gene drive technologies should make them more comprehensible to the public and provide a framework to guide regulatory evaluation and decisionmaking.
Collapse
Affiliation(s)
- Justin Overcash
- Justin Overcash, PhD, is an Animal and Plant Health Inspection Service (APHIS) Science Fellow, Biotechnology Regulatory Services, Riverdale, MD
| | - Andrew Golnar
- Andrew Golnar, PhD, is an APHIS Science Fellow, Wildlife Services, Fort Collins, CO
| |
Collapse
|
27
|
Transgenic refractory Aedes aegypti lines are resistant to multiple serotypes of dengue virus. Sci Rep 2021; 11:23865. [PMID: 34903766 PMCID: PMC8668939 DOI: 10.1038/s41598-021-03229-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The areas where dengue virus (DENV) is endemic have expanded rapidly, driven in part by the global spread of Aedes species, which act as disease vectors. DENV replicates in the mosquito midgut and is disseminated to the mosquito’s salivary glands for amplification. Thus, blocking virus infection or replication in the tissues of the mosquito may be a viable strategy for reducing the incidence of DENV transmission to humans. Here we used the mariner Mos1 transposase to create an Aedes aegypti line that expresses virus-specific miRNA hairpins capable of blocking DENV replication. These microRNA are driven by the blood-meal-inducible carboxypeptidase A promoter or by the polyubiquitin promoter. The transgenic mosquitoes exhibited significantly lower infection rates and viral titers for most DENV serotypes 7 days after receiving an infectious blood meal. The treatment was also effective at day 14 post infection after a second blood meal had been administered. In viral transmission assay, we found there was significantly reduced transmission in these lines. These transgenic mosquitoes were effective in silencing most of the DENV genome; such an approach may be employed to control a dengue fever epidemic.
Collapse
|
28
|
Paradkar PN, Sahasrabudhe PR, Ghag Sawant M, Mukherjee S, Blasdell KR. Towards Integrated Management of Dengue in Mumbai. Viruses 2021; 13:2436. [PMID: 34960705 PMCID: PMC8703503 DOI: 10.3390/v13122436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
With increasing urbanisation, the dengue disease burden is on the rise in India, especially in large cities such as Mumbai. Current dengue surveillance in Mumbai includes municipal corporation carrying out specific activities to reduce mosquito breeding sites and the use of insecticides to suppress the adult mosquito populations. Clinical cases remain either underreported or misreported due to the restriction to government clinics, missing the large private health care sector. There is a need for an integrated approach to manage dengue outbreaks in Mumbai. There are various novel strategies available for use that can be utilised to improve disease detection, mosquito surveillance, and control of mosquito-borne diseases. These novel technologies are discussed in this manuscript. Given the complex ecosystem of mosquito-borne diseases in Mumbai, integrating data obtained from these technologies would support the ongoing mosquito control measures in Mumbai.
Collapse
Affiliation(s)
- Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong 3220, Australia;
| | | | - Mrunal Ghag Sawant
- Department of Zoonosis, Haffkine Institute for Training Research and Testing, Parel, Mumbai 400012, India;
| | - Sandeepan Mukherjee
- Department of Virology, Haffkine Institute for Training Research and Testing, Parel, Mumbai 400012, India;
| | - Kim R. Blasdell
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong 3220, Australia;
| |
Collapse
|
29
|
Webster SH, Scott MJ. The Aedes aegypti (Diptera: Culicidae) hsp83 Gene Promoter Drives Strong Ubiquitous DsRed and ZsGreen Marker Expression in Transgenic Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2533-2537. [PMID: 34302473 DOI: 10.1093/jme/tjab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 06/13/2023]
Abstract
Transgenic strains of the mosquito disease vector Aedes aegypti (L.) are being developed for population suppression or modification. Transgenic mosquitoes are identified using fluorescent protein genes. Here we describe DsRed and ZsGreen marker genes driven by the constitutive Ae. aegypti heat shock protein 83 (hsp83) promoter in transgenic mosquitoes. Transgenic larvae and pupae show strong full body expression of the red and green fluorescent proteins. This greatly assists in screening for transgenic individuals while making new or maintaining already established lines. Transient marker gene expression after embryo microinjection was readily visible in developing larvae allowing the separation of individuals that are more likely to produce transgenic offspring. The strongly expressed marker genes developed in this study should facilitate the detection of transgenic Ae. aegypti larvae or pupae in the field.
Collapse
Affiliation(s)
- Sophia H Webster
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
30
|
Reid WR, Olson KE, Franz AWE. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1987-1996. [PMID: 33704462 PMCID: PMC8421695 DOI: 10.1093/jme/tjab030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Arthropod-borne viruses (arboviruses) such as dengue, Zika, and chikungunya viruses cause morbidity and mortality among human populations living in the tropical regions of the world. Conventional mosquito control efforts based on insecticide treatments and/or the use of bednets and window curtains are currently insufficient to reduce arbovirus prevalence in affected regions. Novel, genetic strategies that are being developed involve the genetic manipulation of mosquitoes for population reduction and population replacement purposes. Population replacement aims at replacing arbovirus-susceptible wild-type mosquitoes in a target region with those that carry a laboratory-engineered antiviral effector to interrupt arboviral transmission in the field. The strategy has been primarily developed for Aedes aegypti (L.), the most important urban arbovirus vector. Antiviral effectors based on long dsRNAs, miRNAs, or ribozymes destroy viral RNA genomes and need to be linked to a robust gene drive to ensure their fixation in the target population. Synthetic gene-drive concepts are based on toxin/antidote, genetic incompatibility, and selfish genetic element principles. The CRISPR/Cas9 gene editing system can be configurated as a homing endonuclease gene (HEG) and HEG-based drives became the preferred choice for mosquitoes. HEGs are highly allele and nucleotide sequence-specific and therefore sensitive to single-nucleotide polymorphisms/resistant allele formation. Current research efforts test new HEG-based gene-drive designs that promise to be less sensitive to resistant allele formation. Safety aspects in conjunction with gene drives are being addressed by developing procedures that would allow a recall or overwriting of gene-drive transgenes once they have been released.
Collapse
Affiliation(s)
- William R Reid
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Ken E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
- Corresponding author, e-mail:
| |
Collapse
|
31
|
Parry R, James ME, Asgari S. Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms 2021; 9:1653. [PMID: 34442732 PMCID: PMC8398489 DOI: 10.3390/microorganisms9081653] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the Asian tiger mosquito, are the most significant vectors of dengue, Zika, and Chikungunya viruses globally. Studies examining host factors that control arbovirus transmission demonstrate that insect-specific viruses (ISVs) can modulate mosquitoes' susceptibility to arbovirus infection in both in vivo and in vitro co-infection models. While research is ongoing to implicate individual ISVs as proviral or antiviral factors, we have a limited understanding of the composition and diversity of the Aedes virome. To address this gap, we used a meta-analysis approach to uncover virome diversity by analysing ~3000 available RNA sequencing libraries representing a worldwide geographic range for both mosquitoes. We identified ten novel viruses and previously characterised viruses, including mononegaviruses, orthomyxoviruses, negeviruses, and a novel bi-segmented negev-like group. Phylogenetic analysis suggests close relatedness to mosquito viruses implying likely insect host range except for one arbovirus, the multi-segmented Jingmen tick virus (Flaviviridae) in an Italian colony of Ae. albopictus. Individual mosquito transcriptomes revealed remarkable inter-host variation of ISVs within individuals from the same colony and heterogeneity between different laboratory strains. Additionally, we identified striking virus diversity in Wolbachia infected Aedes cell lines. This study expands our understanding of the virome of these important vectors. It provides a resource for further assessing the ecology, evolution, and interaction of ISVs with their mosquito hosts and the arboviruses they transmit.
Collapse
Affiliation(s)
- Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maddie E James
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| |
Collapse
|
32
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
33
|
Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, Rasgon JL, Akbari OS. Combating mosquito-borne diseases using genetic control technologies. Nat Commun 2021; 12:4388. [PMID: 34282149 PMCID: PMC8290041 DOI: 10.1038/s41467-021-24654-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based solutions are sought to reduce the transmission risk of these diseases. Pathogen-blocking Wolbachia bacteria, or genome engineering-based mosquito control strategies including gene drives have been developed to address these problems, both requiring the release of modified mosquitoes into the environment. Here, we review the latest developments, notable similarities, and critical distinctions between these promising technologies and discuss their future applications for mosquito-borne disease control.
Collapse
Affiliation(s)
- Guan-Hong Wang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Robyn R Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA.
| |
Collapse
|
34
|
Abstract
Zika virus (ZIKV; Flaviviridae) is a devastating virus transmitted to humans by the mosquito Aedes aegypti. The interaction of the virus with the mosquito vector is poorly known. The double-stranded RNA (dsRNA)-mediated interruption or activation of immunity-related genes in the Toll, IMD, JAK-STAT, and short interfering RNA (siRNA) pathways did not affect ZIKV infection in A. aegypti. Transcriptome-based analysis indicated that most immunity-related genes were upregulated in response to ZIKV infection, including leucine-rich immune protein (LRIM) genes. Further, there was a significant increment in the ZIKV load in LRIM9-, LRIM10A-, and LIRM10B-silenced A. aegypti, suggesting their function in modulating viral infection. Further, gene function enrichment analysis revealed that viral infection increased global ribosomal activity. Silencing of RpL23 and RpL27, two ribosomal large subunit genes, increased mosquito resistance to ZIKV infection. In vitro fat body culture assay revealed that the expression of RpL23 and RpL27 was responsive to the Juvenile hormone (JH) signaling pathway. These two genes were transcriptionally regulated by JH and its receptor methoprene-tolerant (Met) complex. Silencing of Met also inhibited ZIKV infection in A. aegypti. This suggests that ZIKV enhances ribosomal activity through JH regulation to promote infection in mosquitoes. Together, these data reveal A. aegypti immune responses to ZIKV and suggest a control strategy that reduces ZIKV transmission by modulating host factors. IMPORTANCE Most flaviviruses are transmitted between hosts by arthropod vectors such as mosquitoes. Since therapeutics or vaccines are lacking for most mosquito-borne diseases, reducing the mosquito vector competence is an effective way to decrease disease burden. We used high-throughput sequencing technology to study the interaction between mosquito Aedes aegypti and ZIKV. Leucine-rich immune protein (LRIM) genes were involved in the defense in response to viral infection. In addition, RNA interference (RNAi) silencing of RpL23 and RpL27, two JH-regulated ribosomal large subunit genes, suppressed ZIKV infection in A. aegypti. These results suggest a novel control strategy that could block the transmission of ZIKV.
Collapse
|
35
|
Cheng L, Liu WL, Tsou YT, Li JC, Chien CH, Su MP, Liu KL, Huang YL, Wu SC, Tsai JJ, Hsieh SL, Chen CH. Transgenic Expression of Human C-Type Lectin Protein CLEC18A Reduces Dengue Virus Type 2 Infectivity in Aedes aegypti. Front Immunol 2021; 12:640367. [PMID: 33767710 PMCID: PMC7985527 DOI: 10.3389/fimmu.2021.640367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 01/15/2023] Open
Abstract
The C-type lectins, one family of lectins featuring carbohydrate binding domains which participate in a variety of bioprocesses in both humans and mosquitoes, including immune response, are known to target DENV. A human C-type lectin protein CLEC18A in particular shows extensive glycan binding abilities and correlates with type-I interferon expression, making CLEC18A a potential player in innate immune responses to DENV infection; this potential may provide additional regulatory point in improving mosquito immunity. Here, we established for the first time a transgenic Aedes aegypti line that expresses human CLEC18A. This expression enhanced the Toll immune pathway responses to DENV infection. Furthermore, viral genome and virus titers were reduced by 70% in the midgut of transgenic mosquitoes. We found significant changes in the composition of the midgut microbiome in CLEC18A expressing mosquitoes, which may result from the Toll pathway enhancement and contribute to DENV inhibition. Transgenic mosquito lines offer a compelling option for studying DENV pathogenesis, and our analyses indicate that modifying the mosquito immune system via expression of a human immune gene can significantly reduce DENV infection.
Collapse
Affiliation(s)
- Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yun-Ting Tsou
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Hao Chien
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Matthew P Su
- Department of Biological Science, Nagoya University, Nagoya, Japan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Lang Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
36
|
Terradas G, Buchman AB, Bennett JB, Shriner I, Marshall JM, Akbari OS, Bier E. Inherently confinable split-drive systems in Drosophila. Nat Commun 2021; 12:1480. [PMID: 33674604 PMCID: PMC7935863 DOI: 10.1038/s41467-021-21771-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR-based gene-drive systems, which copy themselves via gene conversion mediated by the homology-directed repair (HDR) pathway, have the potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway, resistant to Cas9 cleavage, can interrupt the spread of gene-drive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences that restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles combined with recessive Mendelian culling processes. Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that are inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). In single generation crosses, sGDs copy with variable efficiencies and display sex-biased transmission. In multigenerational cage trials, sGDs follow distinct drive trajectories reflecting their differential tendencies to induce target chromosome damage and/or lethal/sterile mosaic Cas9-dependent phenotypes, leading to inherently confinable drive outcomes. NHEJ alleles and Cas9 remnants after a gene drive introduction are scientific and public concerns. Here, the authors use split drives with recoded rescue elements to target essential genes and minimize the appearance of NHEJ alleles while also leaving no trace of Cas9.
Collapse
Affiliation(s)
- Gerard Terradas
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Anna B Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, USA
| | - Isaiah Shriner
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, Berkeley, CA, USA
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA. .,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Kandul NP, Liu J, Bennett JB, Marshall JM, Akbari OS. A confinable home-and-rescue gene drive for population modification. eLife 2021; 10:e65939. [PMID: 33666174 PMCID: PMC7968924 DOI: 10.7554/elife.65939] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Homing-based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes throughout populations. However, invasion of such drives can be hindered by the accumulation of resistant alleles. To limit this obstacle, we engineer a confinable population modification home-and-rescue (HomeR) drive in Drosophila targeting an essential gene. In our experiments, resistant alleles that disrupt the target gene function were recessive lethal and therefore disadvantaged. We demonstrate that HomeR can achieve an increase in frequency in population cage experiments, but that fitness costs due to the Cas9 insertion limit drive efficacy. Finally, we conduct mathematical modeling comparing HomeR to contemporary gene drive architectures for population modification over wide ranges of fitness costs, transmission rates, and release regimens. HomeR could potentially be adapted to other species, as a means for safe, confinable, modification of wild populations.
Collapse
Affiliation(s)
- Nikolay P Kandul
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| | - Junru Liu
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
38
|
Tikhe CV, Dimopoulos G. Mosquito antiviral immune pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103964. [PMID: 33301792 DOI: 10.1016/j.dci.2020.103964] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are vectors of a large number of viral pathogens. In recent years, increased urbanization and climate change has expanded the range of many vector mosquitoes. The lack of effective medical interventions has made the control of mosquito-borne viral diseases very difficult. Understanding the interactions between the mosquito immune system and viruses is critical if we are to develop effective control strategies against these diseases. Mosquitoes harbor multiple conserved immune pathways that curb invading viral pathogens. Despite the conservation of these pathways, the activation and intensity of the mosquito immune response varies with the mosquito species, tissue, and the infecting virus. This article reviews major conserved antiviral immune pathways in vector mosquitoes, their interactions with invading viral pathogens, and how these interactions restrict or promote infection of these medically important viruses.
Collapse
Affiliation(s)
- Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Johns Hopkins Malaria Research Institute, United States.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Johns Hopkins Malaria Research Institute, United States.
| |
Collapse
|
39
|
Sun R, Brogan D, Buchman A, Yang T, Akbari OS. Ubiquitous and Tissue-specific RNA Targeting in Drosophila Melanogaster using CRISPR/CasRx. J Vis Exp 2021:10.3791/62154. [PMID: 33616113 PMCID: PMC10564239 DOI: 10.3791/62154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
CasRx, a member of the RNA-targeting Cas13 family, is a promising new addition of the CRISPR/Cas technologies in efficient gene transcript reduction with an attractive off-target profile at both cellular and organismal levels. It is recently reported that the CRISPR/CasRx system can be used to achieve ubiquitous and tissue-specific gene transcript reduction in Drosophila melanogaster. This paper details the methods from the recent work, consisting of three parts: 1) ubiquitous in vivo endogenous RNA targeting using a two-component CasRx system; 2) ubiquitous in vivo exogenous RNA targeting using a three-component CasRx system; and 3) tissue-specific in vivo RNA targeting using a three-component CasRx system. The effects of RNA targeting observed include targeted gene specific phenotypic changes, targeted RNA transcript reduction, and occasional lethality phenotypes associated with high expression of CasRx protein and collateral activity. Overall, these results showed that the CasRx system is capable of target RNA transcript reduction at the organismal level in a programmable and efficient manner, demonstrating that in vivo transcriptome targeting, and engineering is feasible and lays the foundation for future in vivo CRISPR-based RNA targeting technologies.
Collapse
Affiliation(s)
- Ruichen Sun
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Daniel Brogan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California;
| |
Collapse
|
40
|
Sakuma C, Kanuka H. A simple and affordable method for estimating the fluid volume a mosquito sucks using food dyes. Trop Med Health 2021; 49:13. [PMID: 33536084 PMCID: PMC7856782 DOI: 10.1186/s41182-021-00302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Blood-sucking by mosquitoes is an inevitable behavior when pathogens are transmitted among humans. Adenine nucleotides such as ATP are known as phagostimulants for mosquitoes and are widely used to induce and enhance the blood-sucking activity in an artificial manner. Although using ATP solution is convenient to introduce a variety of substances (for example chemicals and pathogens) into the mosquito body via sucking, establishing an easy and cost-effective method to quantify the amount of solution ingested has yet to be reported. RESULTS A set of commercial food dyes (green, blue, yellow, and red) was employed in this study. Each dye was added to ATP solution used to colorize the abdomen of Ae. aegypti female mosquitoes after ingestion. The intake of food dyes did not show any toxicity to the mosquitoes, affecting neither ATP-sucking behavior nor survival of the mosquitoes. We observed that quantifying the color intensity of green dye in the mosquito abdomen by spectral analysis, as well as distinguishing the size of the colored abdomen using the naked eye, allowed the estimation of the amount of ingested solution. Using this method, capsaicin, a pungent component of chili peppers, was identified as an aversive tastant that can discourage mosquitoes from sucking the ATP solution. CONCLUSIONS Employing commercially available, non-toxic food dyes converted ATP-driven membrane feeding into an easy-to-use method to estimate the amount of solution ingested by mosquitoes. This method can be further applied for a variety of experiments such as introducing a certain quantity of chemical compounds or microbes into the mosquito body.
Collapse
Affiliation(s)
- Chisako Sakuma
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
41
|
Dong S, Dimopoulos G. Antiviral Compounds for Blocking Arboviral Transmission in Mosquitoes. Viruses 2021; 13:v13010108. [PMID: 33466915 PMCID: PMC7830659 DOI: 10.3390/v13010108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Mosquito-borne arthropod-borne viruses (arboviruses) such as the dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are important human pathogens that are responsible for significant global morbidity and mortality. The recent emergence and re-emergence of mosquito-borne viral diseases (MBVDs) highlight the urgent need for safe and effective vaccines, therapeutics, and vector-control approaches to prevent MBVD outbreaks. In nature, arboviruses circulate between vertebrate hosts and arthropod vectors; therefore, disrupting the virus lifecycle in mosquitoes is a major approach for combating MBVDs. Several strategies were proposed to render mosquitoes that are refractory to arboviral infection, for example, those involving the generation of genetically modified mosquitoes or infection with the symbiotic bacterium Wolbachia. Due to the recent development of high-throughput screening methods, an increasing number of drugs with inhibitory effects on mosquito-borne arboviruses in mammalian cells were identified. These antivirals are useful resources that can impede the circulation of arboviruses between arthropods and humans by either rendering viruses more vulnerable in humans or suppressing viral infection by reducing the expression of host factors in mosquitoes. In this review, we summarize recent advances in small-molecule antiarboviral drugs in mammalian and mosquito cells, and discuss how to use these antivirals to block the transmission of MBVDs.
Collapse
|
42
|
O’Leary S, Adelman ZN. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008971. [PMID: 33338046 PMCID: PMC7781531 DOI: 10.1371/journal.pntd.0008971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/04/2021] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Aedes aegypti is a vector of dengue, chikungunya, and Zika viruses. Current vector control strategies such as community engagement, source reduction, and insecticides have not been sufficient to prevent viral outbreaks. Thus, interest in novel strategies involving genetic engineering is growing. Female mosquitoes rely on flight to mate with males and obtain a bloodmeal from a host. We hypothesized that knockout of genes specifically expressed in female mosquitoes associated with the indirect flight muscles would result in a flightless female mosquito. Using CRISPR-Cas9 we generated loss-of-function mutations in several genes hypothesized to control flight in mosquitoes, including actin (AeAct-4) and myosin (myo-fem) genes expressed specifically in the female flight muscle. Genetic knockout of these genes resulted in 100% flightless females, with homozygous males able to fly, mate, and produce offspring, albeit at a reduced rate when compared to wild type males. Interestingly, we found that while AeAct-4 was haplosufficient, with most heterozygous individuals capable of flight, this was not the case for myo-fem, where about half of individuals carrying only one intact copy could not fly. These findings lay the groundwork for developing novel mechanisms of controlling Ae. aegypti populations, and our results suggest that this mechanism could be applicable to other vector species of mosquito.
Collapse
Affiliation(s)
- Sarah O’Leary
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
43
|
Edgington MP, Harvey-Samuel T, Alphey L. Split drive killer-rescue provides a novel threshold-dependent gene drive. Sci Rep 2020; 10:20520. [PMID: 33239631 PMCID: PMC7689494 DOI: 10.1038/s41598-020-77544-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
A wide range of gene drive mechanisms have been proposed that are predicted to increase in frequency within a population even when they are deleterious to individuals carrying them. This also allows associated desirable genetic material ("cargo genes") to increase in frequency. Gene drives have garnered much attention for their potential use against a range of globally important problems including vector borne disease, crop pests and invasive species. Here we propose a novel gene drive mechanism that could be engineered using a combination of toxin-antidote and CRISPR components, each of which are already being developed for other purposes. Population genetics mathematical models are developed here to demonstrate the threshold-dependent nature of the proposed system and its robustness to imperfect homing, incomplete penetrance of toxins and transgene fitness costs, each of which are of practical significance given that real-world components inevitably have such imperfections. We show that although end-joining repair mechanisms may cause the system to break down, under certain conditions, it should persist over time scales relevant for genetic control programs. The potential of such a system to provide localised population suppression via sex ratio distortion or female-specific lethality is also explored. Additionally, we investigate the effect on introduction thresholds of adding an extra CRISPR base element, showing that this may either increase or decrease dependent on parameter context.
Collapse
Affiliation(s)
| | - Tim Harvey-Samuel
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| |
Collapse
|
44
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
45
|
The Antiviral Small-Interfering RNA Pathway Induces Zika Virus Resistance in Transgenic Aedes aegypti. Viruses 2020; 12:v12111231. [PMID: 33142991 PMCID: PMC7692394 DOI: 10.3390/v12111231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/21/2023] Open
Abstract
The resurgence of arbovirus outbreaks across the globe, including the recent Zika virus (ZIKV) epidemic in 2015–2016, emphasizes the need for innovative vector control methods. In this study, we investigated ZIKV susceptibility to transgenic Aedes aegypti engineered to target the virus by means of the antiviral small-interfering RNA (siRNA) pathway. The robustness of antiviral effector expression in transgenic mosquitoes is strongly influenced by the genomic insertion locus and transgene copy number; we therefore used CRISPR/Cas9 to re-target a previously characterized locus (Chr2:321382225) and engineered mosquitoes expressing an inverted repeat (IR) dsRNA against the NS3/4A region of the ZIKV genome. Small RNA analysis revealed that the IR effector triggered the mosquito’s siRNA antiviral pathway in bloodfed females. Nearly complete (90%) inhibition of ZIKV replication was found in vivo in both midguts and carcasses at 7 or 14 days post-infection (dpi). Furthermore, significantly fewer transgenic mosquitoes contained ZIKV in their salivary glands (p = 0.001), which led to a reduction in the number of ZIKV-containing saliva samples as measured by transmission assay. Our work shows that Ae. aegypti innate immunity can be co-opted to engineer mosquitoes resistant to ZIKV.
Collapse
|
46
|
Gamez S, Srivastav S, Akbari OS, Lau NC. Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 2020; 9:E2180. [PMID: 32992598 PMCID: PMC7601171 DOI: 10.3390/cells9102180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Animals face the dual threat of virus infections hijacking cellular function and transposons proliferating in germline genomes. For insects, the deeply conserved RNA interference (RNAi) pathways and other chromatin regulators provide an important line of defense against both viruses and transposons. For example, this innate immune system displays adaptiveness to new invasions by generating cognate small RNAs for targeting gene silencing measures against the viral and genomic intruders. However, within the Dipteran clade of insects, Drosophilid fruit flies and Culicids mosquitoes have evolved several unique mechanistic aspects of their RNAi defenses to combat invading transposons and viruses, with the Piwi-piRNA arm of the RNAi pathways showing the greatest degree of novel evolution. Whereas central features of Piwi-piRNA pathways are conserved between Drosophilids and Culicids, multiple lineage-specific innovations have arisen that may reflect distinct genome composition differences and specific ecological and physiological features dividing these two branches of Dipterans. This perspective review focuses on the most recent findings illuminating the Piwi/piRNA pathway distinctions between fruit flies and mosquitoes, and raises open questions that need to be addressed in order to ameliorate human diseases caused by pathogenic viruses that mosquitoes transmit as vectors.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA;
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Nelson C. Lau
- Department of Biochemistry and Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
47
|
Smith RC. Highlights in Medical Entomology, 2019: Familiar Foes and New Frontiers. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1349-1353. [PMID: 32667035 PMCID: PMC7716807 DOI: 10.1093/jme/tjaa120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The 2019 Entomological Society of America annual meeting was held in St. Louis, Missouri, just blocks away from the iconic Gateway Arch. Representing a 'gateway to the West', this inspired the theme of the Highlights in Medical Entomology to reflect on the accomplishments of the past year as we move into a 'new frontier' of vector biology research. Papers were selected broadly across arthropods that influence public health, focusing on topics ranging from West Nile virus transmission, ticks and tick-borne disease, to advances in genetics and 'big data' studies. This included current perspectives on West Nile virus ecology and epidemiology, which has now been endemic in the United States for 20 yr. Additional topics such as the advantages of citizen science and the importance of scientific communication were also discussed. Together, these papers demonstrate the achievements of the vector community while emphasizing the challenges that we collectively face to reduce the burden of vector-borne disease.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA
| |
Collapse
|
48
|
Li HH, Cai Y, Li JC, Su MP, Liu WL, Cheng L, Chou SJ, Yu GY, Wang HD, Chen CH. C-Type Lectins Link Immunological and Reproductive Processes in Aedes aegypti. iScience 2020; 23:101486. [PMID: 32891883 PMCID: PMC7481239 DOI: 10.1016/j.isci.2020.101486] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/14/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Physiological trade-offs between mosquito immune response and reproductive capability can arise due to insufficient resource availability. C-type lectin family members may be involved in these processes. We established a GCTL-3-/- mutant Aedes aegypti using CRISPR/Cas9 to investigate the role of GCTL-3 in balancing the costs associated with immune responses to arboviral infection and reproduction. GCTL-3-/- mutants showed significantly reduced DENV-2 infection rate and gut commensal microbiota populations, as well as upregulated JAK/STAT, IMD, Toll, and AMPs immunological pathways. Mutants also had significantly shorter lifespans than controls and laid fewer eggs due to defective germ line development. dsRNA knock-down of Attacin and Gambicin, two targets of the AMPs pathway, partially rescued this reduction in reproductive capabilities. Upregulation of immune response following GCTL-3 knock-out therefore comes at a cost to reproductive fitness. Knock-out of other lectins may further improve our knowledge of the molecular and genetic mechanisms underlying reproduction-immunity trade-offs in mosquitoes.
Collapse
Affiliation(s)
- Hsing-Han Li
- Institution of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Matthew P Su
- Department of Biological Science, Nagoya University, Nagoya 464-8602, Japan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Horng-Dar Wang
- Institution of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan.
| |
Collapse
|
49
|
A day in the life of a mosquito insectary team: pushing for solutions to mosquito-borne diseases. Lab Anim (NY) 2020; 49:241-243. [PMID: 32807984 DOI: 10.1038/s41684-020-0617-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Tng PYL, Carabajal Paladino L, Verkuijl SAN, Purcell J, Merits A, Leftwich PT, Fragkoudis R, Noad R, Alphey L. Cas13b-dependent and Cas13b-independent RNA knockdown of viral sequences in mosquito cells following guide RNA expression. Commun Biol 2020; 3:413. [PMID: 32737398 PMCID: PMC7395101 DOI: 10.1038/s42003-020-01142-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
Aedes aegypti and Aedes albopictus mosquitoes are vectors of the RNA viruses chikungunya (CHIKV) and dengue that currently have no specific therapeutic treatments. The development of new methods to generate virus-refractory mosquitoes would be beneficial. Cas13b is an enzyme that uses RNA guides to target and cleave RNA molecules and has been reported to suppress RNA viruses in mammalian and plant cells. We investigated the potential use of the Prevotella sp. P5-125 Cas13b system to provide viral refractoriness in mosquito cells, using a virus-derived reporter and a CHIKV split replication system. Cas13b in combination with suitable guide RNAs could induce strong suppression of virus-derived reporter RNAs in insect cells. Surprisingly, the RNA guides alone (without Cas13b) also gave substantial suppression. Our study provides support for the potential use of Cas13b in mosquitoes, but also caution in interpreting CRISPR/Cas data as we show that guide RNAs can have Cas-independent effects.
Collapse
Affiliation(s)
- Priscilla Ying Lei Tng
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| | | | - Sebald Alexander Nkosana Verkuijl
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Jessica Purcell
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Philip Thomas Leftwich
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Rennos Fragkoudis
- Arbovirus Pathogenesis, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Rob Noad
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| |
Collapse
|