1
|
Bhat SS, Kulkarni SR, Uttarkar A, Niranjan V. Computational Insights into Papaveroline as an In Silico Drug Candidate for Alzheimer's Disease via Fyn Tyrosine Kinase Inhibition. Mol Biotechnol 2025; 67:2743-2757. [PMID: 39004678 DOI: 10.1007/s12033-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) poses a significant global health challenge, necessitating the exploration of novel therapeutic strategies. Fyn Tyrosine Kinase has emerged as a key player in AD pathogenesis, making it an attractive target for drug development. This study focuses on investigating the potential of Papaveroline as a drug candidate for AD by targeting Fyn Tyrosine Kinase. The research employed high-throughput virtual screening and QSAR analysis were conducted to identify compounds with optimal drug-like properties, emphasizing adherence to ADMET parameters for further evaluation. Molecular dynamics simulations to analyze the binding interactions between Papaveroline and Staurosporine with Fyn Tyrosine Kinase over a 200-ns period. The study revealed detailed insights into the binding mechanisms and stability of the Papaveroline-Fyn complex, showcasing the compound's potential as an inhibitor of Fyn Tyrosine Kinase. Comparative analysis with natural compounds and a reference compound highlighted Papaveroline's unique characteristics and promising therapeutic implications for AD treatment. Overall, the findings underscore Papaveroline's potential as a valuable drug candidate for targeting Fyn Tyrosine Kinase in AD therapy, offering new avenues for drug discovery in neurodegenerative diseases. This study contributes to advancing our understanding of molecular interactions in AD pathogenesis and paves the way for further research and development in this critical area.
Collapse
Affiliation(s)
- Shreya Satyanarayan Bhat
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India
| | - Spoorthi R Kulkarni
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India
| | - Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India.
| |
Collapse
|
2
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Yaghoobi A, Seyedmirzaei H, Ala M. Genome- and Exome-Wide Association Studies Revealed Candidate Genes Associated with DaTscan Imaging Features. PARKINSON'S DISEASE 2023; 2023:2893662. [PMID: 37664790 PMCID: PMC10468272 DOI: 10.1155/2023/2893662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/02/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Introduction Despite remarkable progress in identifying Parkinson's disease (PD) genetic risk loci, the genetic basis of PD remains largely unknown. With the help of the endophenotype approach and using data from dopamine transporter single-photon emission computerized tomography (DaTscan), we identified potentially involved genes in PD. Method We conducted an imaging genetic study by performing exome-wide association study (EWAS) and genome-wide association study (GWAS) on the specific binding ratio (SBR) of six DaTscan anatomical areas between 489 and 559 subjects of Parkinson's progression markers initiative (PPMI) cohort and 83,623 and 36,845 single-nucleotide polymorphisms (SNPs)/insertion-deletion mutations (INDELs). We also investigated the association of cerebrospinal fluid (CSF) protein concentration of our significant genes with PD progression using PPMI CSF proteome data. Results Among 83,623 SNPs/INDELs in EWAS, one SNP (rs201465075) on 1 q32.1 locus was significantly (P value = 4.03 × 10-7) associated with left caudate DaTscan SBR, and 33 SNPs were suggestive. Among 36,845 SNPs in GWAS, one SNP (rs12450112) on 17 p.12 locus was significantly (P value = 1.34 × 10-6) associated with right anterior putamen DaTscan SBR, and 39 SNPs were suggestive among which 8 SNPs were intergenic. We found that rs201465075 and rs12450112 are most likely related to IGFN1 and MAP2K4 genes. The protein level of MAP2K4 in the CSF was significantly associated with PD progression in the PPMI cohort; however, proteomic data were not available for the IGFN1 gene. Conclusion We have shown that particular variants of IGFN1 and MAP2K4 genes may be associated with PD. Since DaTscan imaging could be positive in other Parkinsonian syndromes, caution should be taken when interpreting our results. Future experimental studies are also needed to verify these findings.
Collapse
Affiliation(s)
- Arash Yaghoobi
- Institute for Research in Fundamental Sciences (IPM), School of Biological Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moein Ala
- Experimental Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Shuai W, Bu F, Zhu Y, Wu Y, Xiao H, Pan X, Zhang J, Sun Q, Wang G, Ouyang L. Discovery of Novel Indazole Chemotypes as Isoform-Selective JNK3 Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2023; 66:1273-1300. [PMID: 36649216 DOI: 10.1021/acs.jmedchem.2c01410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the pathogenesis of various diseases. In particular, JNK3 and not JNK1/2 is primarily expressed in the brain and plays a key role in mediating neurodegenerative diseases like Parkinson's disease (PD). Due to the sequence similarity of JNK isoforms, developing isoform-selective JNK3 inhibitors to evaluate their biological functions and therapeutic potential in PD has become a challenge. Herein, docking-based virtual screening and structure-activity relationship studies identified 25c with excellent inhibitory activity against JNK3 (IC50 = 85.21 nM) and exhibited an over 100-fold isoform selectivity for JNK3 over JNK1/2 and remarkable kinase selectivity. 25c showed neuroprotective effects on in vitro and in vivo PD models by selectively inhibiting JNK3. Meanwhile, 25c showed an ideal blood-brain barrier permeability and low toxicity. Overall, this study provided a valuable molecular tool for investigating the role of JNK3 in PD and a solid foundation for developing JNK3-targeted drugs in PD treatment.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Muacevic A, Adler JR. Does Drinking Coffee Reduce the Incidence of Parkinson's Disease? Cureus 2023; 15:e34296. [PMID: 36721713 PMCID: PMC9883660 DOI: 10.7759/cureus.34296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD) is an increasing threat to first-world nations as their population ages, with around one in 100 suffering from it by age 60. Incurable, with treatments that do little to delay disease progression, PD induces severe disability and even death in those afflicted. The search for preventative measures has revealed the widely used psychoactive stimulant caffeine, which competitively inhibits adenosine receptors to induce a wide variety of effects. The inhibition of inflammation and microglial cell activation to reduce reactive oxygen species (ROS)-induced cellular damage and the resultant mitochondrial dysfunction of the dopaminergic neurons appears to be the main pathway, inducing neuronal loss via the activation of the intrinsic pathway to apoptosis. Mouse models and human data reinforce that caffeine delays the onset of PD in a dose-dependent manner. Evidence suggests it is more beneficial in men than women and is not beneficial at all in women undergoing hormone replacement therapy (HRT). Additionally, some studies suggest that although caffeinated drinks such as cola and tea are beneficial, there may be other products in coffee that prevent the effect, though this requires further research. Although there is strong evidence that caffeine is neuroprotective, there is less evidence that it delays the onset of PD. Given the association with cardiovascular disease, it may be disadvantageous overall to the majority of the population to supplement caffeine, though still a beneficial preventative technique for individuals with a genetic predisposition to PD that may otherwise suffer early onset.
Collapse
|
7
|
Das A, Imanishi Y. Drug Discovery Strategies for Inherited Retinal Degenerations. BIOLOGY 2022; 11:1338. [PMID: 36138817 PMCID: PMC9495580 DOI: 10.3390/biology11091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.
Collapse
Affiliation(s)
- Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
9
|
Neuroprotective effect of paeoniflorin in the mouse model of Parkinson's disease through α-synuclein/protein kinase C δ subtype signaling pathway. Neuroreport 2021; 32:1379-1387. [PMID: 34718250 DOI: 10.1097/wnr.0000000000001739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Paeoniflorin, an active component of Radix Paeoniae Alba, has a neuroprotective effect in Parkinson's animal models. However, its mechanism of action remains to be determined. METHODS In this study, we hypothesized that the neuroprotective effect of paeoniflorin occurs through the α-synuclein/protein kinase C δ subtype (PKC-δ) signaling pathway. We tested our hypothesis in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease. We evaluated the effects of paeoniflorin on the expression levels of signal components of the α-synuclein/PKC-δ pathway, cellular apoptosis and motor performance. RESULTS Our results demonstrated that paeoniflorin restored the motor performance impairment caused by MPTP, inhibited apoptosis, and protected the ultrastructure of neurons. Paeoniflorin treatment also resulted in the dose-dependent upregulation of an antiapoptotic protein, B-cell lymphoma-2, at the mRNA and protein levels, similar to the effects of the positive control, selegiline. In contrast, paeoniflorin treatment downregulated the expression of pro-apoptotic proteins BCL2-Associated X2, α-synuclein, and PKC-δ at the mRNA and protein levels, as well as the level of the activated form of nuclear factor kappa B (p-NF-κB p65). CONCLUSIONS Thus, our results showed that paeoniflorin exerts its neuroprotective effect by regulating the α-synuclein/PKC-δ signaling pathway to reduce neuronal apoptosis.
Collapse
|
10
|
Lima IS, Pêgo AC, Barros JT, Prada AR, Gozzelino R. Cell Death-Osis of Dopaminergic Neurons and the Role of Iron in Parkinson's Disease. Antioxid Redox Signal 2021; 35:453-473. [PMID: 33233941 DOI: 10.1089/ars.2020.8229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: There is still no cure for neurodegenerative diseases, such as Parkinson's disease (PD). Current treatments are based on the attempt to reduce dopaminergic neuronal loss, and multidisciplinary approaches have been used to provide only a temporary symptoms' relief. In addition to the difficulties of drugs developed against PD to access the brain, the specificity of those inhibitory compounds could be a concern. This because neurons might degenerate by activating distinct signaling pathways, which are often initiated by the same stimulus. Recent Advances: Apoptosis, necroptosis, and ferroptosis were shown to significantly contribute to PD progression and, so far, are the main death programs described as capable to alter brain homeostasis. Their activation is characterized by different biochemical and morphological features, some of which might even share the same molecular players. Critical Issues: If there is a pathological need to engage, in PD, multiple death programs, sequentially or simultaneously, is not clear yet. Possibly the activation of apoptosis, necroptosis, and/or ferroptosis correlates to different PD stages and symptom severities. This would imply that the efficacy of therapeutic approaches against neuronal death might depend on the death program they target and the relevance of this death pathway on a specific PD phase. Future Directions: In this review, we describe the molecular mechanisms underlying the activation of apoptosis, necroptosis, and ferroptosis in PD. Understanding the interrelationship between different death pathways' activation in PD is of utmost importance for the development of therapeutic approaches against disease progression. Antioxid. Redox Signal. 35, 453-473.
Collapse
Affiliation(s)
- Illyane Sofia Lima
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Catarina Pêgo
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Tomas Barros
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Rita Prada
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Raffaella Gozzelino
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Universidade Técnica do Atlântico (UTA), São Vicente, Cabo Verde
| |
Collapse
|
11
|
Zhao Y, Kuca K, Wu W, Wang X, Nepovimova E, Musilek K, Wu Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement 2021; 18:152-158. [PMID: 34032377 DOI: 10.1002/alz.12370] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The exact signaling leading to neurological dysfunction in neurodegenerative diseases is currently unknown. We hypothesize that the c-Jun N-terminal kinase (JNK) signaling pathway is a potential therapeutic target for neurodegenerative diseases. This postulate rests on extensive data from cell and animal experimental studies, demonstrating that JNK signaling plays a crucial role in the pathogenesis of neurodegenerative diseases. The sustained activation of JNK leads to synaptic dysfunction and even neuronal apoptosis, ultimately resulting in memory deficits and neurodegeneration. JNK phosphorylates the amyloid precursor protein and tau, ultimately resulting in the formation of extraneuronal senile plaques and intraneuronal neurofibrillary tangles. Our hypothesis could be validated by investigating the cerebral cortex of elderly chimpanzees injected with phosphorylated JNK or transgenic pig and chimpanzee models established using gene editing technology including CRISPR. This hypothesis provides clues for further understanding the molecular mechanisms of neurodegenerative diseases and the development of potential target therapeutic drugs.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Zhu M, Gong D. A Mouse Model of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Parkinson Disease Shows that 2-Aminoquinoline Targets JNK Phosphorylation. Med Sci Monit 2020; 26:e920989. [PMID: 32333598 PMCID: PMC7197228 DOI: 10.12659/msm.920989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The pathological features of Parkinson disease (PD) include motor deficits, glial cell activation, and neuroinflammation. The neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has an oxidation product, 1-methyl-4-phenylpyridinium ion (MPP+). This study aimed to investigate the effects of 2-aminoquinoline on motor deficits in a mouse model of MPTP-induced PD and cultured mouse astrocytes treated with MPP+, to determine the effects on astrocyte proliferation and apoptosis. MATERIAL AND METHODS Motor deficits in the mouse model of MPTP-induced PD were investigated using the climbing time, suspension time, and swim time tests. Cultured mouse astrocytes were treated with MPP+, and mice with MPTP-induced PD were treated with increasing doses of 2-aminoquinoline. The MTT assay was used to measure astrocyte viability. Astrocyte apoptosis was assessed by confocal fluorescence microscopy using Annexin‑V and fluorescein isothiocyanate (FITC) staining. Western blot measured the levels of Bax, p‑JNK, Bcl‑2, and caspase‑3. RESULTS In the mouse model of MPTP-induced PD, motor deficit tests showed that 2-aminoquinoline reduced the impaired motor function during the climbing time, the suspension time, and the swim time tests in a dose-dependent manner. Pre-treatment with 2-aminoquinoline significantly reduced the proliferation and apoptosis of astrocytes induced by MPP+ in vitro, in a dose-dependent manner (P<0.05). The levels of p‑JNK and cleaved caspase‑3 levels were significantly reduced in astrocytes treated with MPP+ following pre-treatment with 2-aminoquinoline, which also reversed the increase in the Bax/Bcl‑2 ratio. CONCLUSIONS In the mouse model of MPTP-induced PD, 2-aminoquinoline reduced motor deficiencies, inhibited MPP+ activated astrocyte apoptosis, and regulated the Bax/Bcl-2 ratio by targeting p-JNK.
Collapse
Affiliation(s)
- Meie Zhu
- Department of Neurology, Jingzhou Central Hospital, The Second Affiliated Hospital of Changjiang University, Jingzhou, Hubei, China (mainland)
| | - Daokai Gong
- Department of Neurology, Jingzhou Central Hospital, The Second Affiliated Hospital of Changjiang University, Jingzhou, Hubei, China (mainland)
| |
Collapse
|
13
|
Tamtaji OR, Reiter RJ, Alipoor R, Dadgostar E, Kouchaki E, Asemi Z. Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms. Cell Mol Neurobiol 2020; 40:15-23. [PMID: 31388798 PMCID: PMC11448849 DOI: 10.1007/s10571-019-00720-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Parkinson disease (PD) is a chronic and neurodegenerative disease with motor and nonmotor symptoms. Multiple pathways are involved in the pathophysiology of PD, including apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and changes in the neurotransmitters. Preclinical and clinical studies have shown that melatonin supplementation is an appropriate therapy for PD. Administration of melatonin leads to inhibition of some pathways related to apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and dopamine loss in PD. In addition, melatonin improves some nonmotor symptom in patients with PD. Limited studies, however, have evaluated the role of melatonin on molecular mechanisms and clinical symptoms in PD. This review summarizes what is known regarding the impact of melatonin on PD in preclinical and clinical studies.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Islamic Republic of Iran
| | | | - Ebrahim Kouchaki
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
14
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
15
|
Uenaka T, Satake W, Cha PC, Hayakawa H, Baba K, Jiang S, Kobayashi K, Kanagawa M, Okada Y, Mochizuki H, Toda T. In silico drug screening by using genome-wide association study data repurposed dabrafenib, an anti-melanoma drug, for Parkinson's disease. Hum Mol Genet 2019; 27:3974-3985. [PMID: 30137437 PMCID: PMC6216208 DOI: 10.1093/hmg/ddy279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss. At present, there are no drugs that stop the progression of PD. As with other multifactorial genetic disorders, genome-wide association studies (GWASs) found multiple risk loci for PD, although their clinical significance remains uncertain. Here, we report the identification of candidate drugs for PD by a method using GWAS data and in silico databases. We identified 57 Food and Drug Administration-approved drug families as candidate neuroprotective drugs for PD. Among them, dabrafenib, which is known as a B-Raf kinase inhibitor and is approved for the treatment of malignant melanoma, showed remarkable cytoprotective effects in neurotoxin-treated SH-SY5Y cells and mice. Dabrafenib was found to inhibit apoptosis, and to enhance the phosphorylation of extracellular signal-regulated kinase (ERK), and inhibit the phosphorylation of c-Jun NH2-terminal kinase. Dabrafenib targets B-Raf, and we confirmed a protein-protein interaction between B-Raf and Rit2, which is coded by RIT2, a PD risk gene in Asians and Caucasians. In RIT2-knockout cells, the phosphorylation of ERK was reduced, and dabrafenib treatment improved the ERK phosphorylation. These data indicated that dabrafenib exerts protective effects against neurotoxicity associated with PD. By using animal model, we confirmed the effectiveness of this in silico screening method. Furthermore, our results suggest that this in silico drug screening system is useful in not only neurodegenerative diseases but also other common diseases such as diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Takeshi Uenaka
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Wataru Satake
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Pei-Chieng Cha
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hideki Hayakawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shiying Jiang
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
16
|
Grassi D, Diaz-Perez N, Volpicelli-Daley LA, Lasmézas CI. Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria. Neurobiol Dis 2019; 124:248-262. [DOI: 10.1016/j.nbd.2018.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023] Open
|
17
|
Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP. The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox Res 2019; 35:775-795. [PMID: 30707354 DOI: 10.1007/s12640-019-0003-y] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
Disruption of Akt and Erk-mediated signal transduction significantly contributes in the pathogenesis of various neurodegenerative diseases (NDs), such as Parkinson's disease, Alzheimer's diseases, Huntington's disease, and many others. These regulatory proteins serve as the regulator of cell survival, motility, transcription, metabolism, and progression of the cell cycle. Therefore, targeting Akt and Erk pathway has been proposed as a reasonable approach to suppress ND progression. This review has emphasized on involvement of Akt/Erk cascade in the neurodegeneration. Akt has been reported to regulate neuronal toxicity through its various substrates like FOXos, GSK3β, and caspase-9 etc. Akt is also involved with PI3K in signaling pathway to mediate neuronal survival. ERK is another kinase which also regulates proliferation, differentiation, and survival of the neural cell. There has also been much progress in developing a therapeutic molecule targeting Akt and Erk signaling. Therefore, improved understanding of the molecular mechanism behind the regulatory aspect of Akt and Erk networks can make strong impact on exploration of the neurodegenerative disease pathogenesis.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- BDNF, brain-derived neurotrophic factor
- HD, Huntington disease
- MAPK, mitogen-activated protein-extracellular kinase
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- NDs, neurodegenerative disorders
- Nrf2, nuclear factor erythroid 2 p45-related factor 2
- PD, Parkinson’s disease
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Centre, Columbia University, New York, NY, 10032, USA
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Hu K, Huang Q, Liu C, Li Y, Liu Y, Wang H, Li M, Ma S. c-Jun/Bim Upregulation in Dopaminergic Neurons Promotes Neurodegeneration in the MPTP Mouse Model of Parkinson's Disease. Neuroscience 2018; 399:117-124. [PMID: 30590105 DOI: 10.1016/j.neuroscience.2018.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The proapoptotic BH3-only protein Bim has been reported to be involved in dopaminergic neurodegeneration of experimental PD. However, an in situ expression profile of Bim in PD has not been performed, and the cell types of which Bim accounts for PD pathogenesis is unclear. Here, we report with in situ observations that Bim is transcriptionally induced in the dopaminergic neurons of the SNpc in 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. To investigate the precise role of Bim in the dopaminergic neurons in parkinsonian neuronal death, we obtained dopaminergic neuron-specific Bim null (Bim△Dat) mice. Bim△Dat mice are shown to be resistant to MPTP-induced neurotoxicity, confirming that the induction of Bim in dopaminergic neurons is responsible for parkinsonian neurodegeneration. Furthermore, we demonstrated with dopaminergic neuron-specific c-Jun knockout (c-Jun△Dat) that the transcriptional upregulation of Bim of nigral dopaminergic neurons was c-Jun-dependent and further validated the detrimental role of c-Jun in dopaminergic neurodegeneration. Together, these data specify that c-Jun-mediated Bim upregulation in nigral dopaminergic neurons contributes to parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Chong Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yongyi Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yueyue Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
19
|
Xia L, Guo D, Chen B. Neuroprotective effects of astragaloside IV on Parkinson disease models of mice and primary astrocytes. Exp Ther Med 2017; 14:5569-5575. [PMID: 29285094 DOI: 10.3892/etm.2017.5238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/15/2017] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammation and neural degeneration are implicated in the pathogenesis of PD. Astragaloside IV (AS-IV) has been verified to attenuate inflammation. The current study aimed to investigate the role of AS-IV in PD and the possible molecular mechanisms. Pole, traction and swim tests were performed to examine the effects of AS-IV on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-generated behavioral deficiencies in vivo. Meanwhile, as for in vitro experiments, the influence of AS-IV on cell viability was evaluated using the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, the effects of AS-IV on 1-methyl-4-phenylpyridnium ion (MPP+)-induced cell viability changes were tested using MTT assays, cell apoptosis rates were assessed using an Annexin-V Fluorescein isothiocyanate kit, and the expression levels of phosphorylated-Jun N-terminal kinase (p-JNK), Bcl-2-associated X protein (Bax)/Bcl-2 and caspase-3 activity were assessed using western blot analysis. Behavioral tests showed that pretreatment of AS-IV significantly alleviated MPTP-generated behavioral deficiencies in vivo. Meanwhile, AS-IV remarkably rescued MPP+-induced cell viability reduction, increase in cell apoptosis rate, and upregulation of p-JNK, Bax/Bcl-2 ratio and caspase-3 activity in vitro. In conclusion, AS-IV may be a promising neuroprotective agent for PD.
Collapse
Affiliation(s)
- Lei Xia
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Dianxuan Guo
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Bing Chen
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
20
|
CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1. Sci Rep 2017; 7:12178. [PMID: 28939911 PMCID: PMC5610320 DOI: 10.1038/s41598-017-12379-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Calcium and integrin binding protein 1 (CIB1) is a calcium-binding protein that was initially identified as a binding partner of platelet integrin αIIb. Although CIB1 has been shown to interact with multiple proteins, its biological function in the brain remains unclear. Here, we show that CIB1 negatively regulates degeneration of dopaminergic neurons in a mouse model of Parkinson's disease using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Genetic deficiency of the CIB1 gene enhances MPTP-induced neurotoxicity in dopaminergic neurons in CIB1-/- mice. Furthermore, RNAi-mediated depletion of CIB1 in primary dopaminergic neurons potentiated 1-methyl-4-phenyl pyrinidium (MPP+)-induced neuronal death. CIB1 physically associated with apoptosis signal-regulating kinase 1 (ASK1) and thereby inhibited the MPP+-induced stimulation of the ASK1-mediated signaling cascade. These findings suggest that CIB1 plays a protective role in MPTP/MPP+-induced neurotoxicity by blocking ASK1-mediated signaling.
Collapse
|
21
|
Liu Z, Huang Y, Cao BB, Qiu YH, Peng YP. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease. Mol Neurobiol 2016; 54:7762-7776. [PMID: 27844285 DOI: 10.1007/s12035-016-0249-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023]
Abstract
T helper (Th)17 cells, a subset of CD4+ T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP+)-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP+-treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yan Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
22
|
Choong CJ, Mochizuki H. Gene therapy targeting mitochondrial pathway in Parkinson's disease. J Neural Transm (Vienna) 2016; 124:193-207. [PMID: 27638713 DOI: 10.1007/s00702-016-1616-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) presents a relative selective localization of pathology to substantia nigra and well-defined motor symptoms caused by dopaminergic degeneration that makes it an ideal target for gene therapy. Parallel progress in viral vector systems enables the delivery of therapeutic genes directly into brain with reasonable safety along with sustained transgene expression. To date, gene therapy for PD that has reached clinical trial evaluation is mainly based on symptomatic approach that involves enzyme replacement strategy and restorative approach that depends on the addition of neurotrophic factors. Mitochondrial dysregulation, such as reduced complex I activity, increased mitochondria-derived reactive oxygen species (ROS) production, ROS-mediated mitochondrial DNA damage, bioenergetic failure, and perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Many of mutated genes linked to familial forms of PD affect these mitochondrial features. In this review, we discuss the recent progress that has been made in preclinical development of gene therapy targeting the mitochondrial pathway as disease modifying approach for PD. This review focuses on the potential therapeutic efficacy of candidate genes, including Parkin, PINK1, alpha synuclein, PGC-1 alpha, and anti-apoptotic molecules.
Collapse
Affiliation(s)
- Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
Kovanen L, Donner K, Kaunisto M, Partonen T. CRY1 and CRY2 genetic variants in seasonality: A longitudinal and cross-sectional study. Psychiatry Res 2016; 242:101-110. [PMID: 27267441 DOI: 10.1016/j.psychres.2016.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022]
Abstract
Cryptochromes are key components of the circadian clocks that generate and maintain seasonal variations. The aim of our study was to analyze the associations of CRY1 and CRY2 genetic variants with the problematicity of seasonal variations, and whether the problematicity of seasonal variations changed during the follow-up of 11 years. Altogether 21 CRY1 and 16 CRY2 single-nucleotide polymorphisms (SNPs) were genotyped and analyzed in 5910 individuals from a Finnish nationwide population-based sample who had filled in the self-report on the seasonal variations in mood and behavior in the year 2000. In the year 2011, 3356 of these individuals filled in the same self-report on the seasonal variations in mood and behavior. Regression models were used to test whether any of the SNPs associated with the problematicity of seasonal variations or with a change in the problematicity from 2000 to 2011. In the longitudinal analysis, CRY2 SNP rs61884508 was protective from worsening of problematicity of seasonal variations. In the cross-sectional analysis, CRY2 SNP rs72902437 showed evidence of association with problematicity of seasonal variations, as did SNP rs1554338 (in the MAPK8IP1 and downstream of CRY2).
Collapse
Affiliation(s)
- Leena Kovanen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mari Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
24
|
Oh Y, Jeong K, Kim K, Lee YS, Jeong S, Kim SS, Yoon KS, Ha J, Kang I, Choe W. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway. Biochem Biophys Res Commun 2016; 478:1396-402. [PMID: 27569281 DOI: 10.1016/j.bbrc.2016.08.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death.
Collapse
Affiliation(s)
- Yoojung Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Kwon Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Kiyoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Young-Seok Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Suyun Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea.
| |
Collapse
|
25
|
Yang TC, Wu PC, Chung IF, Jiang JH, Fann MJ, Kao LS. Cell death caused by the synergistic effects of zinc and dopamine is mediated by a stress sensor gene Gadd45b - implication in the pathogenesis of Parkinson's disease. J Neurochem 2016; 139:120-33. [PMID: 27385273 DOI: 10.1111/jnc.13728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 11/30/2022]
Abstract
The pathogenesis of Parkinson's disease (PD) is not completely understood, Zinc (Zn(2+) ) and dopamine (DA) have been shown to involve in the degeneration of dopaminergic cells. By microarray analysis, we identified Gadd45b as a candidate molecule that mediates Zn(2+) and DA-induced cell death; the mRNA and protein levels of Gadd45b are increased by Zn(2+) treatment and raised to an even higher level by Zn(2+) plus DA treatment. Zn(2+) plus DA treatment-induced PC12 cell death was enhanced when there was over-expression of Gadd45b and was decreased by knock down of Gadd45b. MAPK p38 and JNK signaling was able to cross-talk with Gadd45b during Zn(2+) and DA treatment. The synergistic effects of Zn(2+) and DA on PC12 cell death can be accounted for by an activation of the Gadd45b-induced cell death pathway and an inhibition of p38/JNK survival pathway. Furthermore, the in vivo results show that the levels of Gadd45b protein expression and phosphorylation of p38 were increased in the substantia nigra by the infusion of Zn(2+) /DA in the mouse brain and the level of Gadd45b mRNA is significantly higher in the substantia nigra of male PD patients than normal controls. The novel role of Gadd45b and its interactions with JNK and p38 will help our understanding of the pathogenesis of PD and help the development of future treatments for PD. Zinc and dopamine are implicated in the degeneration of dopaminergic neurons. We previously demonstrated that zinc and dopamine induced synergistic effects on PC12 cell death. Results from this study show that these synergistic effects can be accounted for by activation of the Gadd45b-induced cell death pathway and inhibition of the p38/JNK survival pathway. We provide in vitro and in vivo evidence to support a novel role for Gadd45b in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Tien-Chun Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Jhih-Hang Jiang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
26
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Ambhore NS, Yamjala K, Mohire S, Raju KRS, Mulukutla S, Murthy V, Tondhawada M, Elango K. Pharmacokinetic and tissue distribution studies of 1,9-pyrazoloanthrone, a c-Jun-N-terminal kinase inhibitor in Wistar rats by a simple and sensitive HPLC method. J Pharm Biomed Anal 2015; 120:57-64. [PMID: 26704630 DOI: 10.1016/j.jpba.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022]
Abstract
JNK pathway activates c-Jun(s) which are responsible for cell apoptosis; as a result, inhibitors of JNK pathway have the potential to prevent dopaminergic neurons from death and decrease the loss of dopamine in substantia nigra pars compacta (SNpc). Recent in-vitro studies show that 1,9-pyrazoloanthrone (1,9-P) a potent JNK-3 inhibitor prevents the apoptosis of dopaminergic cells of brain. In the present study we formulated liposomes to increase the bioavailability of 1,9-P in the brain and developed a simple, sensitive and selective high performance liquid chromatographic method and validated for the estimation of 1,9-P in Wistar rat plasma and tissue samples. Plasma and tissue samples were extracted by protein precipitation technique using acetonitrile (ACN) and rasagiline as the internal standards. Chromatography was performed on Hibar C18 column with mobile phase of ammonium acetate (10mM, pH 8.0 adjusted with ammonia) and ACN at a flow rate of 1mL/min. The lower limit of quantification of the developed method was found to be 2.0ng/mL and 4.0ng/g in plasma and tissue samples respectively. The liposomes of 1,9-P administered to animals at the dose equivalent to 15mg/kg orally demonstrated remarkable absorption into the systemic circulation with maximum concentration (∼7500ng/mL) within 2.0h. The order of the area under curve was found to be kidney>liver>brain>lungs>spleen>heart. The liposomes of 1,9-P were rapidly taken up into brain and showed a good brain concentration after 2.0h; sustenance up to 4.0h was achieved which is better than 1,9-P solution.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS University, Mysore 643001, India.
| | - Karthik Yamjala
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, Ootacamund, JSS University, Mysore 643001, India
| | - Shubhashri Mohire
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, Ootacamund, JSS University, Mysore 643001, India
| | | | - Shashank Mulukutla
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS University, Mysore 643001, India
| | - Vishakantha Murthy
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahesh Tondhawada
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, Ootacamund, JSS University, Mysore 643001, India
| | - Kannan Elango
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS University, Mysore 643001, India
| |
Collapse
|
28
|
Huang Q, Du X, He X, Yu Q, Hu K, Breitwieser W, Shen Q, Ma S, Li M. JNK-mediated activation of ATF2 contributes to dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease. Exp Neurol 2015; 277:296-304. [PMID: 26515688 DOI: 10.1016/j.expneurol.2015.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/02/2015] [Accepted: 10/24/2015] [Indexed: 12/29/2022]
Abstract
The c-Jun N-terminal kinase (JNK)/c-Jun pathway is a known critical regulator of dopaminergic neuronal death in Parkinson's disease (PD) and is considered a potential target for neuroprotective therapy. However, whether JNK is activated within dopaminergic neurons remains controversial, and whether JNK acts through downstream effectors other than c-Jun to promote dopaminergic neuronal death remains unclear. In this study, we confirm that JNK but not p38 is activated in dopaminergic neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxication. Furthermore, within the dopaminergic neurons of the substantia nigra in MPTP-treated mice, JNK2/3 phosphorylates threonine 69 (Thr69) of Activating transcription factor-2 (ATF2), a transcription factor of the ATF/CREB family, whereas the phosphorylation of Thr71 is constitutive and remains unchanged. The increased phosphorylation of ATF2 on Thr69 by JNK in the MPTP mouse model suggests a functional relationship between the transcriptional activation of ATF2 and dopaminergic neuron death. By using dopaminergic neuron-specific conditional ATF2 mutant mice, we found that either partial or complete deletion of the ATF2 DNA-binding domain in dopaminergic neurons markedly alleviates the MPTP-induced dopaminergic neurodegeneration, indicating that the activation of ATF2 plays a detrimental role in neuropathogenesis in PD. Taken together, our findings demonstrate that JNK-mediated ATF2 activation contributes to dopaminergic neuronal death in an MPTP model of PD.
Collapse
Affiliation(s)
- Qiaoying Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xiaoxiao Du
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xin He
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Qing Yu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Wolfgang Breitwieser
- Cell Regulation Department, CRUK Manchester Institute, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | - Qingyu Shen
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou 510120, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Mingtao Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
29
|
Serum- and Glucocorticoid-Inducible Kinase 1 Confers Protection in Cell-Based and in In Vivo Neurotoxin Models via the c-Jun N-Terminal Kinase Signaling Pathway. Mol Cell Biol 2015; 35:1992-2006. [PMID: 25825522 DOI: 10.1128/mcb.01510-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 12/31/2022] Open
Abstract
Serum glucocorticoid kinase 1 (SGK1) has been shown to be protective in models of Parkinson's disease, but the details by which it confers benefit is unknown. The current study was designed to investigate the details by which SGK1 confers neuroprotection. To do this we employed a cellular neurodegeneration model to investigate c-Jun N-terminal kinase (JNK) signaling and endoplasmic reticulum (ER) stress induced by 6-hydroxydopamine. SGK1-expressing adenovirus was created and used to overexpress SGK1 in SH-SY5Y cells, and dexamethasone was used to increase endogenous expression of SGK1. Oxidative stress, mitochondrial dysfunction, and cell death were monitored to test the protective effect of SGK1. To investigate the effect of SGK1 overexpression in vivo, SGK1-expressing adenovirus was injected into the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and protection of dopaminergic neurons was quantitatively assessed by tyrosine hydroxylase immunohistochemistry. SGK1 overexpression was found to decrease reactive oxygen species generation, alleviate mitochondrial dysfunction, and rescue cell death in vitro and in vivo by inactivating mitogen-activated protein kinase kinase 4 (MKK4), JNK, and glycogen synthase kinase 3β (GSK3β) and thereby decreasing ER and oxidative stress. These results suggest that therapeutic strategies for activation of SGK1 may have the potential to be neuroprotective by deactivating the JNK and GSK3β pathways.
Collapse
|
30
|
Wang T, Liu Y, Yang N, Ji C, Chan P, Zuo P. Anti-parkinsonian effects of octacosanol in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-treated mice. Neural Regen Res 2015; 7:1080-7. [PMID: 25722698 PMCID: PMC4340021 DOI: 10.3969/j.issn.1673-5374.2012.14.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/30/2022] Open
Abstract
Our previous research showed that octacosanol exerted its protective effects in 6-hydroxydopamine-induced Parkinsonian rats. The goal of this study was to investigate whether octacosanol would attenuate neurotoxicity in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated C57BL/6N mice and its potential mechanism. Behavioral tests, tyrosine hydroxylase immunohistochemistry and western blot were used to investigate the effects of octacosanol in a mouse model of Parkinson's disease. Oral administration of octacosanol (100 mg/kg) significantly improved behavioral impairments in mice treated by MPTP and markedly ameliorated morphological appearances of tyrosine hydroxylase-positive neuronal cells in the substantia nigra. Furthermore, octacosanol blocked MPTP-induced phosphorylation of p38MAPK and JNK, but not ERK1/2. These findings implicated that the protective effects afforded by octacosanol might be mediated by blocking the phosphorylation of p38MAPK and JNK on the signal transduction in vivo. Considering its excellent tolerability, octacosanol might be considered as a candidate agent for clinical application in treating Parkinson's disease.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Chao Ji
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Piu Chan
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
31
|
Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Sci Rep 2015; 5:8047. [PMID: 25623238 PMCID: PMC4306959 DOI: 10.1038/srep08047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/31/2014] [Indexed: 12/19/2022] Open
Abstract
Three JNK isoforms, JNK1, JNK2, and JNK3 have been reported and unique biological function has been ascribed to each. It is unknown if selective inhibition of these isoforms would confer therapeutic or safety benefit. To probe JNK isoform function we designed JNK2/3 inhibitors that have >30-fold selectivity over JNK1. Utilizing site-directed mutagenesis and x-ray crystallography we identified L144 in JNK3 as a key residue for selectivity. To test whether JNK2/3 selective inhibitors protect human dopaminergic neurons against neurotoxin-induced mitochondrial dysfunction, we monitored reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP). The results showed that JNK2/3 selective inhibitors protected against 6-hydroxydopamine-induced ROS generation and MMP depolarization. These results suggest that it was possible to develop JNK2/3 selective inhibitors and that residues in hydrophobic pocket I were responsible for selectivity. Moreover, the findings also suggest that inhibition of JNK2/3 likely contributed to protecting mitochondrial function and prevented ultimate cell death.
Collapse
|
32
|
Chintala SK, Putris N, Geno M. Activation of TLR3 promotes the degeneration of retinal ganglion cells by upregulating the protein levels of JNK3. Invest Ophthalmol Vis Sci 2015; 56:505-14. [PMID: 25564448 DOI: 10.1167/iovs.14-15539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To investigate whether activation of Toll-like receptor 3 (TLR3) promotes the degeneration of retinal ganglion cells (RGCs) by upregulating the protein levels of c-jun N-terminal kinase 3 (JNK3). METHODS Toll-like receptor 3-specific activator, Poly(I:C) (polyinosinic-polycytidylic acid), or PBS was injected into the vitreous humor of Thy1-YFP mice. At 24, 48, and 72 hours after treatments, degeneration of RGCs was assessed by using antibodies against brain-specific homeobox/POU domain protein 3a (Brn3a). A TLR3-specific inhibitor was injected into the vitreous humor with or without Poly(I:C). Western blot assays were performed to determine relative levels of TLR3, JNK3, pJNK3, and sterile alpha and HEAT/Armadillo motif-containing 1 (SARM1) proteins in retinal protein extracts, and immunohistochemistry assays were performed to determine their cellular localization in the retina. Mouse eyes were treated with Poly(I:C) or PBS along with MitoTracker Red, and colocalization of MitoTracker Red and JNK3 in the retinas was determined by using antibodies against JNK3. RESULTS Poly(I:C) activated TLR3 and upregulated its downstream target protein JNK3 but not SARM1 in the retina. Poly(I:C) activated TLR3 and upregulated JNK3 specifically in RGCs and promoted a significant degeneration of RGCs over a 72-hour time period. Toll-like receptor 3 upregulated the levels of JNK3 protein in the cytoplasm of RGCs, but not in the mitochondria. Toll-like receptor 3-specific inhibitor downregulated Poly(I:C)-mediated upregulation of JNK3 protein, and, in turn, significantly attenuated TLR3-induced degeneration of RGCs. CONCLUSIONS Results presented in this study show that the activation of TLR3 alone promotes the degeneration of RGCs by upregulating the protein levels of JNK3.
Collapse
Affiliation(s)
- Shravan K Chintala
- Laboratory of Ophthalmic Neurobiology, Eye Research Institute of Oakland University, Rochester, Michigan, United States
| | - Nahrain Putris
- Laboratory of Ophthalmic Neurobiology, Eye Research Institute of Oakland University, Rochester, Michigan, United States
| | - Mason Geno
- Laboratory of Ophthalmic Neurobiology, Eye Research Institute of Oakland University, Rochester, Michigan, United States
| |
Collapse
|
33
|
Neuroprotective Effects of β-Asarone Against 6-Hydroxy Dopamine-Induced Parkinsonism via JNK/Bcl-2/Beclin-1 Pathway. Mol Neurobiol 2014; 53:83-94. [DOI: 10.1007/s12035-014-8950-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
|
34
|
Fujimaki T, Saiki S, Tashiro E, Yamada D, Kitagawa M, Hattori N, Imoto M. Identification of licopyranocoumarin and glycyrurol from herbal medicines as neuroprotective compounds for Parkinson's disease. PLoS One 2014; 9:e100395. [PMID: 24960051 PMCID: PMC4069009 DOI: 10.1371/journal.pone.0100395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
In the course of screening for the anti-Parkinsonian drugs from a library of traditional herbal medicines, we found that the extracts of choi-joki-to and daio-kanzo-to protected cells from MPP+-induced cell death. Because choi-joki-to and daio-kanzo-to commonly contain the genus Glycyrrhiza, we isolated licopyranocoumarin (LPC) and glycyrurol (GCR) as potent neuroprotective principals from Glycyrrhiza. LPC and GCR markedly blocked MPP+-induced neuronal PC12D cell death and disappearance of mitochondrial membrane potential, which were mediated by JNK. LPC and GCR inhibited MPP+-induced JNK activation through the suppression of reactive oxygen species (ROS) generation, thereby inhibiting MPP+-induced neuronal PC12D cell death. These results indicated that LPC and GCR derived from choi-joki-to and daio-kanzo-to would be promising drug leads for PD treatment in the future.
Collapse
Affiliation(s)
- Takahiro Fujimaki
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Daisuke Yamada
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
| | - Mitsuhiro Kitagawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
- * E-mail: (NH); (MI)
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- * E-mail: (NH); (MI)
| |
Collapse
|
35
|
Parish CL, Thompson LH. Modulating Wnt signaling to improve cell replacement therapy for Parkinson's disease. J Mol Cell Biol 2013; 6:54-63. [DOI: 10.1093/jmcb/mjt045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
36
|
Design and synthesis of 1-aryl-5-anilinoindazoles as c-Jun N-terminal kinase inhibitors. Bioorg Med Chem Lett 2013; 23:2683-7. [DOI: 10.1016/j.bmcl.2013.02.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 01/05/2023]
|
37
|
3D-QSAR studies of 1,2-diaryl-1H-benzimidazole derivatives as JNK3 inhibitors with protective effects in neuronal cells. Bioorg Med Chem Lett 2013; 23:1639-42. [DOI: 10.1016/j.bmcl.2013.01.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/07/2013] [Accepted: 01/18/2013] [Indexed: 11/21/2022]
|
38
|
Zhao YY, Zhang L, Feng YL, Chen DQ, Xi ZH, Du X, Bai X, Lin RC. Pharmacokinetics of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside in rat using ultra-performance LC-quadrupole TOF-MS. J Sep Sci 2013; 36:863-871. [PMID: 23371758 DOI: 10.1002/jssc.201200668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 08/29/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) from Polygoni multiflori has been demonstrated to possess a variety of pharmacological activities, including antioxidant, anti-inflammatory and hepatoprotective activities. Ultra-performance LC-quadrupole TOF-MS with MS Elevated Energy data collection technique and rapid resolution LC with diode array detection and ESI multistage MS(n) methods were developed for the pharmacokinetics, tissue distribution, metabolism, and excretion studies of THSG in rats following a single intravenous or oral dose. The three metabolites were identified by rapid resolution LC-MS(n). The concentrations of the THSG in rat plasma, bile, urine, feces, or tissue samples were determined by ultra-performance LC-MS. The results showed that THSG was rapidly distributed and eliminated from rat plasma. After the intravenous administration, THSG was mainly distributing in the liver, heart, and lung. For the rat, the major distribution tissues after oral administration were heart, kidney, liver, and lung. There was no long-term storage of THSG in rat tissues. Total recoveries of THSG within 24 h were low (0.1% in bile, 0.007% in urine, and 0.063% in feces) and THSG was excreted mainly in the forms of metabolites, which may resulted from biotransformation in the liver.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi'an, Shaanxi, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao YY, Cheng XL, Wei F, Han XQ, Xiao XY, Lin RC. PHARMACOKINETICS, BIOAVAILABILITY, AND METABOLISM OF 2,3,5,4′-TETRAHYDROXYSTILBENE-2-O- β-D-GLUCOSIDE IN RATS BY ULTRA-PERFORMANCE LIQUID CHROMATOGRAPHY–QUADRUPOLE TIME-OF-FLIGHT MASS SPECTROMETRY AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-ULTRAVIOLET DETECTION. J LIQ CHROMATOGR R T 2013; 36:717-730. [DOI: 10.1080/10826076.2012.673209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ying-Yong Zhao
- a Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education, the College of Life Sciences, Northwest University , Shaanxi , China
| | - Xian-Long Cheng
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| | - Feng Wei
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| | - Xiao-Qiang Han
- c State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing , China
| | - Xin-Yue Xiao
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| | - Rui-Chao Lin
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| |
Collapse
|
40
|
Bi F, Li F, Huang C, Zhou H. Pathogenic mutation in VPS35 impairs its protection against MPP(+) cytotoxicity. Int J Biol Sci 2013; 9:149-55. [PMID: 23411763 PMCID: PMC3572397 DOI: 10.7150/ijbs.5617] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/18/2013] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease primarily results from progressive degeneration of dopaminergic neurons in the substantia nigra. Both neuronal toxicants and genetic factors are suggested to be involved in the disease pathogenesis. The mitochondrial toxicant 1-methyl-4-phenylpyridinium (MPP(+)) shows a highly selective toxicity to dopaminergic neurons. Recent studies indicate that mutation in the vacuolar protein sorting 35 (vps35) gene segregates with Parkinson's disease in some families, but how mutation in the vps35 gene causes dopaminergic cell death is not known. Here, we report that enhanced VPS35 expression protected dopaminergic cells against MPP(+) toxicity and that this neuroprotection was compromised by pathogenic mutation in the gene. A loss of neuroprotective functions contributes to the pathogenesis of VPS35 mutation in Parkinson's disease.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Neurology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
41
|
Sul JW, Park MY, Shin J, Kim YR, Yoo SE, Kong YY, Kwon KS, Lee YH, Kim E. Accumulation of the parkin substrate, FAF1, plays a key role in the dopaminergic neurodegeneration. Hum Mol Genet 2013; 22:1558-73. [PMID: 23307929 DOI: 10.1093/hmg/ddt006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study reports the physical and functional interplay between Fas-associated factor 1 (FAF1), a death-promoting protein, and parkin, a key susceptibility protein for Parkinson's disease (PD). We found that parkin acts as an E3 ubiquitin ligase to ubiquitinate FAF1 both in vitro and at cellular level, identifying FAF1 as a direct substrate of parkin. The loss of parkin function due to PD-linked mutations was found to disrupt the ubiquitination and degradation of FAF1, resulting in elevated FAF1 expression in SH-SY5Y cells. Moreover, FAF1-mediated cell death was abolished by wild-type parkin, but not by PD-linked parkin mutants, implying that parkin antagonizes the death potential of FAF1. This led us to investigate whether FAF1 participates in the pathogenesis of PD. To address this, we used a gene trap mutagenesis approach to generate mutant mice with diminished levels of FAF1 (Faf1(gt/gt)). Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model of PD, we found that FAF1 accumulated in the substantia nigra pars compacta (SNc) of MPTP-treated PD mice, and that MPTP-induced dopaminergic cell loss in the SNc was significantly attenuated in Faf1(gt/gt) mice versus Faf1(+/+) mice. MPTP-induced reduction of locomotor activity was also lessened in Faf1(gt/gt) mice versus Faf1(+/+) mice. Furthermore, we found that FAF1 deficiency blocked PD-linked biochemical events, including caspase activation, ROS generation, JNK activation and cell death. Taken together, these results suggest a new role for FAF1: that of a positive modulator for PD.
Collapse
Affiliation(s)
- Jee-Won Sul
- College of Biological Sciences and Biotechnology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chambers JW, Howard S, LoGrasso PV. Blocking c-Jun N-terminal kinase (JNK) translocation to the mitochondria prevents 6-hydroxydopamine-induced toxicity in vitro and in vivo. J Biol Chem 2012. [PMID: 23184940 DOI: 10.1074/jbc.m112.421354] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because oxidative stress and mitochondrial dysfunction are well known contributors to Parkinson disease (PD), we set out to investigate the role mitochondrial JNK plays in the etiology of 6-hydroxydopamine-induced (6-OHDA) oxidative stress, mitochondrial dysfunction, and neurotoxicity in SHSY5Y cells and neuroprotection and motor behavioral protection in vivo. To do this, we utilized a cell-permeable peptide of the outer mitochondrial membrane protein, Sab (SH3BP5), as an inhibitor of JNK mitochondrial translocation. In vitro studies showed that 6-OHDA induced JNK translocation to the mitochondria and that inhibition of mitochondrial JNK signaling by Tat-Sab(KIM1) protected against 6-OHDA-induced oxidative stress, mitochondrial dysfunction, and neurotoxicity. Administration of Tat-Sab(KIM1) via an intracerebral injection into the mid-forebrain bundle increased the number of tyrosine hydroxylase immunoreactive neurons in the substantia nigra pars compacta by 2-fold (p < 0.05) in animals lesioned with 6-OHDA, compared with animals treated only with 6-OHDA into the nigrostriatal pathway. In addition, Tat-Sab(KIM1) decreased the d-amphetamine-induced unilateral rotations associated with the lesion by 30% (p < 0.05). Steady-state brain levels of Tat-Sab(KIM1) at day 7 were 750 nm, which was ∼3.4-fold higher than the IC(50) for this peptide versus Sab protein. Collectively, these data suggest that 6-OHDA induced JNK translocation to the mitochondria and that blocking this translocation reduced oxidative stress, mitochondrial dysfunction, and neurotoxicity both in vitro and in vivo. Moreover, the data suggest that inhibitors that block association of JNKs with the mitochondria may be useful neuroprotective agents for the treatment of Parkinson disease.
Collapse
Affiliation(s)
- Jeremy W Chambers
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | |
Collapse
|
43
|
Parizek P, Kummer L, Rube P, Prinz A, Herberg FW, Plückthun A. Designed ankyrin repeat proteins (DARPins) as novel isoform-specific intracellular inhibitors of c-Jun N-terminal kinases. ACS Chem Biol 2012; 7:1356-66. [PMID: 22568706 DOI: 10.1021/cb3001167] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The c-Jun N-terminal kinases (JNKs) are involved in many biological processes such as proliferation, differentiation, apoptosis, and inflammation and occur in highly similar isoforms in eukaryotic cells. Isoform-specific functions and diseases have been reported for individual JNK isoforms mainly from gene-knockout studies in mice. There is, however, a high demand for intracellular inhibitors with high selectivity to improve the understanding of isoform-specific mechanisms and for use as therapeutic tools. The commonly used JNK inhibitors are based on small molecules or peptides that often target the conserved ATP binding site or docking sites and thus show only moderate selectivity. To target novel binding epitopes, we used designed ankyrin repeat proteins (DARPins) to generate alternative intracellular JNK inhibitors that discriminate two very similar isoforms, JNK1 and JNK2. DARPins are small binding proteins that are well expressed, stable, and cysteine-free, which makes them ideal candidates for applications in the reducing intracellular environment. We performed ribosome display selections against JNK1α1 and JNK2α1 using highly diverse combinatorial libraries of DARPins. The selected binders specifically recognize either JNK1 or JNK2 or both isoforms in vitro and in mammalian cells. All analyzed DARPins show affinities in the low nanomolar range and isoform-specific inhibition of JNK activation in vitro at physiological ATP concentrations. Importantly, DARPins that selectively inhibit JNK activation in human cells were also identified. These results emphasize the great potential of DARPins as a novel class of highly specific intracellular inhibitors of distinct enzyme isoforms for use in biological studies and as possible therapeutic leads.
Collapse
Affiliation(s)
- Petra Parizek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lutz Kummer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter Rube
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Anke Prinz
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
44
|
Abstract
Parkinson's disease is a debilitating disorder characterized by a progressive loss of dopaminergic neurons caused by programmed cell death. The aim of this review is to provide an up-to-date summary of the major programmed cell death pathways as they relate to PD. For a long time, programmed cell death has been synonymous with apoptosis but there now is evidence that other types of programmed cell death exist, such as autophagic cell death or programmed necrosis, and that these types of cell death are relevant to PD. The pathways and signals covered here include namely the death receptors, BCL-2 family, caspases, calpains, cdk5, p53, PARP-1, autophagy, mitophagy, mitochondrial fragmentation, and parthanatos. The review will present evidence from postmortem PD studies, toxin-induced models (especially MPTP/MPP+, 6-hydroxydopamine and rotenone), and from α-synuclein, LRRK2, Parkin, DJ-1, and PINK1 genetic models of PD, both in vitro and in vivo.
Collapse
Affiliation(s)
- Katerina Venderova
- University of the Pacific, Thomas J. Long School of Pharmacy, Department of Physiology and Pharmacology, Stockton, CA 95211, USA.
| | | |
Collapse
|
45
|
Martin B, Chadwick W, Cong WN, Pantaleo N, Daimon CM, Golden EJ, Becker KG, Wood WH, Carlson OD, Egan JM, Maudsley S. Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington disease is related to their physiological efficacy. J Biol Chem 2012; 287:31766-82. [PMID: 22822065 DOI: 10.1074/jbc.m112.387316] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Our aim was to employ novel analytical methods to investigate the therapeutic treatment of the energy regulation dysfunction occurring in a Huntington disease (HD) mouse model. HD is a neurodegenerative disorder that is characterized by progressive motor impairment and cognitive alterations. Changes in neuroendocrine function, body weight, energy metabolism, euglycemia, appetite function, and gut function can also occur. It is likely that the locus of these alterations is the hypothalamus. We determined the effects of three different euglycemic agents on HD progression using standard physiological and transcriptomic signature analyses. N171-82Q HD mice were treated with insulin, Exendin-4, and the newly developed GLP-1-Tf to determine whether these agents could improve energy regulation and delay disease progression. Blood glucose, insulin, metabolic hormone levels, and pancreatic morphology were assessed. Hypothalamic gene transcription, motor coordination, and life span were also determined. The N171-82Q mice exhibited significant alterations in hypothalamic gene transcription signatures and energy metabolism that were ameliorated, to varying degrees, by the different euglycemic agents. Exendin-4 or GLP-1-Tf (but not insulin) treatment also improved pancreatic morphology, motor coordination, and increased life span. Using hypothalamic transcription signature analyses, we found that the physiological efficacy variation of the drugs was evident in the degree of reversal of the hypothalamic HD pathological signature. Euglycemic agents targeting hypothalamic and energy regulation dysfunction in HD could potentially alter disease progression and improve quality of life in HD.
Collapse
Affiliation(s)
- Bronwen Martin
- Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang LJ, Xue YQ, Yang C, Yang WH, Chen L, Zhang QJ, Qu TY, Huang S, Zhao LR, Wang XM, Duan WM. Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo. PLoS One 2012; 7:e41226. [PMID: 22815976 PMCID: PMC3398951 DOI: 10.1371/journal.pone.0041226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Department of Anatomy, Capital Medical University, Beijing, China
- Department of Physiology, Capital Medical University, Beijing, China
| | - Yue-Qiang Xue
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Chun Yang
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Wei-Hua Yang
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Long Chen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Qian-Jin Zhang
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Ting-Yu Qu
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Li-Ru Zhao
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
- * E-mail: (WMD); (XMW)
| | - Wei-Ming Duan
- Department of Anatomy, Capital Medical University, Beijing, China
- * E-mail: (WMD); (XMW)
| |
Collapse
|
47
|
Perier C, Bové J, Vila M. Mitochondria and programmed cell death in Parkinson's disease: apoptosis and beyond. Antioxid Redox Signal 2012; 16:883-95. [PMID: 21619488 DOI: 10.1089/ars.2011.4074] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
UNLABELLED Abstract Significance: Activation of mitochondrion-dependent programmed cell death (PCD) pathways is instrumental to the demise of substantia nigra pars compacta dopaminergic neurons in experimental mouse models of Parkinson's disease (PD). Supporting the relevance of these findings for PD, key molecular elements of this pathogenic cascade have also been demonstrated in postmortem brain samples of PD patients. Recent Advances and Critical Issues: Mounting evidence indicates that different morphological types of cell death co-exist in the brain of PD patients, all of which may result from the activation of common upstream PCD pathways. Indeed, contrary to initial views, it is now established that the deleterious effects of PCD pathways are not limited to mitochondrion-mediated caspase-dependent apoptosis but also involve caspase-independent nonapoptotic cell death, including necrosis. This notion may help reconcile the observation of both apoptotic and nonapoptotic dopaminergic cell death in postmortem PD samples. FUTURE DIRECTIONS Potential neuroprotective strategies for PD should be aimed at targeting both apoptotic and nonapoptotic pathways, all of which may simultaneously occur in PD patients through activation of common upstream PCD pathways involving the mitochondria. Antioxid. Redox Signal. 16, 883-895.
Collapse
Affiliation(s)
- Celine Perier
- Vall d'Hebron Research Institute-CIBERNED, Barcelona, Spain
| | | | | |
Collapse
|
48
|
JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiol Dis 2012; 46:393-401. [PMID: 22353563 DOI: 10.1016/j.nbd.2012.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 01/21/2023] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by the apoptotic death of retinal ganglion cells (RGCs). The primary insult to RGCs in glaucoma is thought to occur to their axons as they exit the eye in the optic nerve head. However, pathological signaling pathways that exert central roles in triggering RGC death following axonal injury remain unidentified. It is likely that the first changes to occur following axonal injury are signal relay events that transduce the injury signal from the axon to the cell body. Here we focus on the c-Jun N-terminal kinase (JNK1-3) family, a signaling pathway implicated in axonal injury signaling and neurodegenerative apoptosis, and likely to function as a central node in axonal injury-induced RGC death. We show that JNK signaling is activated immediately after axonal injury in RGC axons at the site of injury. Following its early activation, sustained JNK signaling is observed in axonally-injured RGCs in the form of JUN phosphorylation and upregulation. Using mice lacking specific Jnk isoforms, we show that Jnk2 and Jnk3 are the isoforms activated in injured axons. Combined deficiency of Jnk2 and Jnk3 provides robust long-term protection against axonal injury-induced RGC death and prevents downregulation of the RGC marker, BRN3B, and phosphorylation of JUN. Finally, using Jun deficient mice, we show that JUN-dependent pathways are important for axonal injury-induced RGC death. Together these data demonstrate that JNK signaling is the major early pathway triggering RGC death after axonal injury and may directly link axon injury to transcriptional activity that controls RGC death.
Collapse
|
49
|
Astragaloside IV prevents MPP⁺-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol Cell Biochem 2012; 364:209-16. [PMID: 22278385 DOI: 10.1007/s11010-011-1219-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/21/2011] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of PD. Previous studies have revealed that Astragaloside IV (AS-IV) can reduce inflammation and oxidation, making it a potential therapeutic agent for neurodegenerative disease. In this study, we investigated whether AS-IV protect against 1-methyl-4-phenylpyridnium ion (MPP(+))-induced dopaminergic neurotoxicity in SH-SY5Y cells and determined the mechanism of AS-IV neuroprotection. We found that pretreatment with AS-IV significantly reversed the loss of cell viability, nuclear condensation, the generation of intracellular reactive oxygen species (ROS), and the increase in Bax/Bcl-2 ratio and the activity of caspase-3 induced by MPP(+). Our study suggests that the neuroprotective effect of AS-IV is related to mechanisms including ROS production and the inhibition of Bax-mediated pathway. The present study supports the notion that AS-IV may be a promising neuroprotective agent for the treatment of neurodegenerative disorders such as PD.
Collapse
|
50
|
Dissociation of progressive dopaminergic neuronal death and behavioral impairments by Bax deletion in a mouse model of Parkinson's diseases. PLoS One 2011; 6:e25346. [PMID: 22043283 PMCID: PMC3197195 DOI: 10.1371/journal.pone.0025346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a common, late-onset movement disorder with selective degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Although the neurotoxin 6-hydroxydopamine (6-OHDA) has been used to induce progressive degeneration of DA neurons in various animal models of PD, the precise molecular pathway and the impact of anti-apoptotic treatment on this neurodegeneration are less understood. Following a striatal injection of 6-OHDA, we observed atrophy and progressive death of DA neurons in wild-type mice. These degenerating DA neurons never exhibited signs of apoptosis (i.e., caspase-3 activation and cytoplasmic release of cytochrome C), but rather show nuclear translocation of apoptosis-inducing factor (AIF), a hallmark of regulated necrosis. However, mice with genetic deletion of the proapoptotic gene Bax (Bax-KO) exhibited a complete absence of 6-OHDA-induced DA neuron death and nuclear translocation of AIF, indicating that 6-OHDA-induced DA neuronal death is mediated by Bax-dependent AIF activation. On the other hand, DA neurons that survived in Bax-KO mice exhibited marked neuronal atrophy, without significant improvement of PD-related behavioral deficits. These findings suggest that anti-apoptotic therapy may not be sufficient for PD treatment, and the prevention of Bax-independent neuronal atrophy may be an important therapeutic target.
Collapse
|