1
|
Zheng Q, Lin R, Zheng C. Transcriptomics in the Study of Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:83-91. [PMID: 39192121 DOI: 10.1007/978-1-0716-4108-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Transcriptomics is an extremely important area of molecular biology and is a powerful tool for studying all RNA molecules in an organism. Conventional transcriptomic technologies include microarrays and RNA sequencing, and the rapid development of single-cell sequencing and spatial transcriptomics in recent years has provided an enormous scope for research in this field. This chapter describes the application, significance, and experimental procedures of a variety of transcriptomic technologies in antiviral natural immunity.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Yi L, Guo X, Liu Y, Jirimutu, Wang Z. Single-cell 5' RNA sequencing of camelid peripheral B cells provides insights into cellular basis of heavy-chain antibody production. Comput Struct Biotechnol J 2024; 23:1705-1714. [PMID: 38689719 PMCID: PMC11059136 DOI: 10.1016/j.csbj.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Camelids produce both conventional tetrameric antibodies (Abs) and dimeric heavy-chain antibodies (HCAbs). Although B cells that generate these two types of Abs exhibit distinct B cell receptors (BCRs), whether these two B cell populations differ in their phenotypes and developmental processes remains unclear. Here, we performed single-cell 5' RNA profiling of peripheral blood mononuclear cell samples from Bactrian camels before and after immunization. We characterized the functional subtypes and differentiation trajectories of circulating B cells in camels, and reconstructed single-cell BCR sequences. We found that in contrast to humans, the proportion of T-bet+ B cells was high among camelid peripheral B cells. Several marker genes of human B cell subtypes, including CD27 and IGHD, were expressed at low levels in the corresponding camel B cell subtypes. Camelid B cells expressing variable genes of HACbs (VHH) were widely present in various functional subtypes and showed highly overlapping differentiation trajectories with B cells expressing variable genes of conventional Abs (VH). After immunization, the transcriptional changes in VHH+ and VH+ B cells were largely consistent. Through structure modeling, we identified a variety of scaffold types among the reconstructed VHH sequences. Our study provides insights into the cellular context of HCAb production in camels and lays the foundation for developing single-B cell-based camelid single-domain Ab screening.
Collapse
Affiliation(s)
- Li Yi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Xin Guo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuexing Liu
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Inner Mongolia China-Kazakhstan Camel Research Institute, Alxa 750306, China
| | - Zhen Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Gebo C, Hardy CSC, McElvany BD, Graham NR, Lu JQ, Moradpour S, Currier JR, Friberg H, Gromowski GD, Thomas SJ, Chan GC, Diehl SA, Waickman AT. B cell receptor dependent enhancement of dengue virus infection. PLoS Pathog 2024; 20:e1012683. [PMID: 39480886 DOI: 10.1371/journal.ppat.1012683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue, a mosquito-borne disease that represents a significant and growing public health burden around the world. A unique pathophysiological feature of dengue is immune-mediated enhancement, wherein preexisting immunity elicited by a primary infection can enhance the severity of a subsequent infection by a heterologous DENV serotype. A leading mechanistic explanation for this phenomenon is antibody dependent enhancement (ADE), where sub-neutralizing concentrations of DENV-specific IgG antibodies facilitate entry of DENV into FcγR expressing cells such as monocytes, macrophages, and dendritic cells. Accordingly, this model posits that phagocytic mononuclear cells are the primary reservoir of DENV. However, analysis of samples from individuals experiencing acute DENV infection reveals that B cells are the largest reservoir of infected circulating cells, representing a disconnect in our understanding of immune-mediated DENV tropism. In this study, we demonstrate that the expression of a DENV-specific B cell receptor (BCR) renders cells highly susceptible to DENV infection, with the infection-enhancing activity of the membrane-restricted BCR correlating with the ADE potential of the IgG version of the antibody. In addition, we observed that the frequency of DENV-infectible B cells increases in previously flavivirus-naïve volunteers after a primary DENV infection. These findings suggest that BCR-dependent infection of B cells is a novel mechanism immune-mediated enhancement of DENV-infection.
Collapse
Affiliation(s)
- Chad Gebo
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Céline S C Hardy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Benjamin D McElvany
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, United States of America
| | - Nancy R Graham
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, United States of America
| | - Joseph Q Lu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Shima Moradpour
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Gary C Chan
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, United States of America
| | - Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
4
|
Hofmann N, Bartkuhn M, Becker S, Biedenkopf N, Böttcher-Friebertshäuser E, Brinkrolf K, Dietzel E, Fehling SK, Goesmann A, Heindl MR, Hoffmann S, Karl N, Maisner A, Mostafa A, Kornecki L, Müller-Kräuter H, Müller-Ruttloff C, Nist A, Pleschka S, Sauerhering L, Stiewe T, Strecker T, Wilhelm J, Wuerth JD, Ziebuhr J, Weber F, Schmitz ML. Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network. J Virol 2024; 98:e0093524. [PMID: 39283124 PMCID: PMC11494938 DOI: 10.1128/jvi.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.
Collapse
Affiliation(s)
- Nina Hofmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Simone Hoffmann
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Kornecki
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Jennifer D. Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. J Virol 2024:e0158224. [PMID: 39377586 DOI: 10.1128/jvi.01582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Under some conditions, dengue virus (DENV) can hijack IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR)-a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this unusual IgG-mediated infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout (KO) screens in an in vitro system poorly permissive to infection in the absence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates the binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired the binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that promote efficient ADE of DENV infection. Our findings represent a first step toward advancing fundamental knowledge behind the biology of a non-canonical infection route implicated in disease.IMPORTANCEAntibodies can paradoxically enhance rather than inhibit dengue virus (DENV) infection in some cases. To advance knowledge of the functional requirements of antibody-dependent enhancement (ADE) of infection beyond existing descriptive studies, we performed a genome-scale CRISPR knockout (KO) screen in an optimized in vitro system permissive to efficient DENV infection only in the presence of IgG. In addition to FcgRIIa, a known receptor that facilitates IgG-mediated uptake of IgG-bound, but not naked DENV particles, our screens identified TBC1D24 and SV2B, cellular factors with no known role in DENV infection. We validated a functional role for TBC1D24 and SV2B in mediating ADE of all four DENV serotypes in different cell lines and using various antibodies. Thus, we identify cellular factors beyond Fc gamma receptors that promote ADE mechanisms. This study represents a first step toward advancing fundamental knowledge beyond a poorly understood non-canonical viral entry mechanism.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
6
|
Gioacchino E, Vandelannoote K, Ruberto AA, Popovici J, Cantaert T. Unraveling the intricacies of host-pathogen interaction through single-cell genomics. Microbes Infect 2024; 26:105313. [PMID: 38369008 DOI: 10.1016/j.micinf.2024.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Single-cell genomics provide researchers with tools to assess host-pathogen interactions at a resolution previously inaccessible. Transcriptome analysis, epigenome analysis, and immune profiling techniques allow for a better comprehension of the heterogeneity underlying both the host response and infectious agents. Here, we highlight technological advancements and data analysis workflows that increase our understanding of host-pathogen interactions at the single-cell level. We review various studies that have used these tools to better understand host-pathogen dynamics in a variety of infectious disease contexts, including viral, bacterial, and parasitic diseases. We conclude by discussing how single-cell genomics can advance our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Emanuele Gioacchino
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Koen Vandelannoote
- Bacterial Phylogenomics Group, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Anthony A Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia; Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, France
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia.
| |
Collapse
|
7
|
Bost P, Drayman N. Dissecting viral infections, one cell at a time, by single-cell technologies. Microbes Infect 2024; 26:105268. [PMID: 38008398 PMCID: PMC11161131 DOI: 10.1016/j.micinf.2023.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The meteoric rise of single-cell genomic technologies, especially of single-cell RNA-sequencing (scRNA-seq), has revolutionized several fields of cellular biology, especially immunology, oncology, neuroscience and developmental biology. While the field of virology has been relatively slow to adopt these technological advances, many works have shed new light on the fascinating interactions of viruses with their hosts using single cell technologies. One clear example is the multitude of studies dissecting viral infections by single-cell sequencing technologies during the recent COVID-19 pandemic. In this review we will detail the advantages of studying viral infections at a single-cell level, how scRNA-seq technologies can be used to achieve this goal and the associated technical limitations, challenges and solutions. We will highlight recent biological discoveries and breakthroughs in virology enabled by single-cell analyses and will end by discussing possible future directions of the field. Given the rate of publications in this exciting new frontier of virology, we have likely missed some important works and we apologize in advance to the researchers whose work we have failed to cite.
Collapse
Affiliation(s)
- Pierre Bost
- University of Zurich, Department of Quantitative Biomedicine, Zurich, 8057, Switzerland; ETH Zurich, Institute for Molecular Health Sciences, Zurich, 8093 Switzerland.
| | - Nir Drayman
- The Department of Molecular Biology and Biochemistry, The Center for Virus Research and The Center for Complex Biological Systems, The University of California, Irvine, CA, 92697, USA
| |
Collapse
|
8
|
Kim D, Jeong S, Park SM. Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:403-411. [PMID: 39198221 PMCID: PMC11362000 DOI: 10.4196/kjpp.2024.28.5.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 09/01/2024]
Abstract
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools. RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
Collapse
Affiliation(s)
- Doyeong Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Seonghun Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
9
|
Cherie TJJ, Choong CSH, Abid MB, Weber MW, Yap ES, Seneviratne SL, Abeysuriya V, de Mel S. Immuno-Haematologic Aspects of Dengue Infection: Biologic Insights and Clinical Implications. Viruses 2024; 16:1090. [PMID: 39066252 PMCID: PMC11281699 DOI: 10.3390/v16071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Dengue infection is caused by the dengue virus (DENV) and is transmitted to humans by infected female Aedes aegypti and Aedes albopictus mosquitoes. There are nearly 100 million new dengue cases yearly in more than 120 countries, with a five-fold increase in incidence over the past four decades. While many patients experience a mild illness, a subset suffer from severe disease, which can be fatal. Dysregulated immune responses are central to the pathogenesis of dengue, and haematologic manifestations are a prominent feature of severe disease. While thrombocytopaenia and coagulopathy are major causes of bleeding in severe dengue, leucocyte abnormalities are emerging as important markers of prognosis. In this review, we provide our perspective on the clinical aspects and pathophysiology of haematologic manifestations in dengue. We also discuss the key gaps in our current practice and areas to be addressed by future research.
Collapse
Affiliation(s)
- Tan Jiao Jie Cherie
- Department of Medicine, National University Health System, Singapore 119228, Singapore;
| | - Clarice Shi Hui Choong
- Department of Haematology Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore;
| | - Muhammad Bilal Abid
- Division of Haematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.B.A.); (M.W.W.)
| | - Matthew W. Weber
- Division of Haematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.B.A.); (M.W.W.)
| | - Eng Soo Yap
- Department of Laboratory Medicine, National University Health System, Singapore 119228, Singapore;
| | - Suranjith L. Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London NW3 2PP, UK
- Nawaloka Hospital Research and Educational Foundation, Nawaloka Hospitals PLC, Colombo 00200, Sri Lanka
| | - Visula Abeysuriya
- Department of Immunology, Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sanjay de Mel
- Department of Haematology Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore;
| |
Collapse
|
10
|
Perdiguero P, Jiménez-Barrios P, Morel E, Abós B, Tafalla C. Single-cell atlas of rainbow trout peripheral blood leukocytes and profiling of their early response to infectious pancreatic necrosis virus. Front Immunol 2024; 15:1404209. [PMID: 39035000 PMCID: PMC11258392 DOI: 10.3389/fimmu.2024.1404209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
The recent development of single cell sequencing technologies has revolutionized the state-of-art of cell biology, allowing the simultaneous measurement of thousands of genes in single cells. This technology has been applied to study the transcriptome of single cells in homeostasis and also in response to pathogenic exposure, greatly increasing our knowledge of the immune response to infectious agents. Yet the number of these studies performed in aquacultured fish species is still very limited. Thus, in the current study, we have used the 10x Genomics single cell RNA sequencing technology to study the response of rainbow trout (Oncorhynchus mykiss) peripheral blood leukocytes (PBLs) to infectious pancreatic necrosis virus (IPNV), an important trout pathogen. The study allowed us to obtain a transcriptomic profile of 12 transcriptionally distinct leukocyte cell subpopulations that included four different subsets of B cells, T cells, monocytes, two populations of dendritic-like cells (DCs), hematopoietic progenitor cells, non-specific cytotoxic cells (NCC), neutrophils and thrombocytes. The transcriptional pattern of these leukocyte subpopulations was compared in PBL cultures that had been exposed in vitro to IPNV for 24 h and mock-infected cultures. Our results revealed that monocytes and neutrophils showed the highest number of upregulated protein-coding genes in response to IPNV. Interestingly, IgM+IgD+ and IgT+ B cells also upregulated an important number of genes to the virus, but a much fainter response was observed in ccl4 + or plasma-like cells (irf4 + cells). A substantial number of protein-coding genes and genes coding for ribosomal proteins were also transcriptionally upregulated in response to IPNV in T cells and thrombocytes. Interestingly, although genes coding for ribosomal proteins were regulated in all affected PBL subpopulations, the number of such genes transcriptionally regulated was higher in IgM+IgD+ and IgT+ B cells. A further analysis dissected which of the regulated genes were common and which were specific to the different cell clusters, identifying eight genes that were transcriptionally upregulated in all the affected groups. The data provided constitutes a comprehensive transcriptional perspective of how the different leukocyte populations present in blood respond to an early viral encounter in fish.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Pablo Jiménez-Barrios
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Beatriz Abós
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
11
|
Dábilla N, Dolan PT. Structure and dynamics of enterovirus genotype networks. SCIENCE ADVANCES 2024; 10:eado1693. [PMID: 38896609 PMCID: PMC11186490 DOI: 10.1126/sciadv.ado1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Like all biological populations, viral populations exist as networks of genotypes connected through mutation. Mapping the topology of these networks and quantifying population dynamics across them is crucial to understanding how populations adapt to changes in their selective environment. The influence of mutational networks is especially profound in viral populations that rapidly explore their mutational neighborhoods via high mutation rates. Using a single-cell sequencing method, scRNA-seq-enabled acquisition of mRNA and consensus haplotypes linking individual genotypes and host transcriptomes (SEARCHLIGHT), we captured and assembled viral haplotypes from hundreds of individual infected cells, revealing the complexity of viral population structures. We obtained these genotypes in parallel with host cell transcriptome information, enabling us to link host cell transcriptional phenotypes to the genetic structures underlying virus adaptation. Our examination of these structures reveals the common evolutionary dynamics of enterovirus populations and illustrates how viral populations reach through mutational "tunnels" to span evolutionary landscapes and maintain connection with multiple adaptive genotypes simultaneously.
Collapse
|
12
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
13
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Arora JK, Matangkasombut P, Charoensawan V, Opasawatchai A. Single-cell RNA sequencing reveals the expansion of circulating tissue-homing B cell subsets in secondary acute dengue viral infection. Heliyon 2024; 10:e30314. [PMID: 38818157 PMCID: PMC11137366 DOI: 10.1016/j.heliyon.2024.e30314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
The roles of antibodies secreted by subsets of B cells in dengue virus (DENV) infection have been extensively studied, yet, the contribution of tissue-homing B cells to antiviral immunity remains unclear. In this study, we performed a comprehensive analysis of B cell subpopulations in peripheral blood samples from DENV-infected patients using single-cell RNA-sequencing (scRNA-seq) datasets and flow cytometry. We showed that plasma cells (PCs) and plasmablasts (PBs) were the predominant B cell populations during the acute phase of secondary natural DENV infection, but not in convalescent phase nor in healthy controls. Interestingly, these cells expressed proliferation, adhesion, and tissue-homing genes, including SELPLG, a homing marker of the skin, the initial infected site of DENV. Flow cytometry analysis confirmed a significant upregulation of cell surface expression of a cutaneous lymphocyte-associated antigen (CLA) encoded by SELPLG in PCs and PBs, compared to naive and memory B cells from the same patients. The analysis of an independent single-cell B-cell receptor sequencing (scBCR-seq) dataset of DENV-infected patients revealed that the peripheral blood PCs and PBs exhibited the highest clonal expansion in secondary DENV infection compared to other B cell subsets. These clonally expanded cells also expressed the highest levels of tissue-homing genes, including SELPLG. In addition, by utilizing a public scRNA-seq dataset of SARS-CoV2 infection, we demonstrated the upregulation of several tissue-homing genes in PCs and PBs. Our study provides evidence for the potential roles of tissue-homing B cell subsets in the context of immune responses against viral infections in humans.
Collapse
Affiliation(s)
- Jantarika Kumar Arora
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Anunya Opasawatchai
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
15
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single-cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. J Virol 2024; 98:e0019424. [PMID: 38567950 PMCID: PMC11092337 DOI: 10.1128/jvi.00194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
Affiliation(s)
- Kathryn M. Moore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | | | - Stacey Lapp
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Amanda Metz
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Gregory K. Tharp
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Michelle Lee
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Swati Sharma Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Rafick-Pierre Sékaly
- Emory Vaccine Center, Atlanta, Georgia, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591029. [PMID: 38712102 PMCID: PMC11071485 DOI: 10.1101/2024.04.26.591029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dengue virus (DENV) can hijack non-neutralizing IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR) - a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this non-canonical infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout screens in an in vitro system permissive to infection only in the presence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, both of which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that are required for ADE of DENV infection. Our findings represent a first step towards advancing fundamental knowledge behind the biology of ADE that can ultimately be exploited to inform vaccination and therapeutic approaches.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
17
|
Jogi HR, Smaraki N, Nayak SS, Rajawat D, Kamothi DJ, Panigrahi M. Single cell RNA-seq: a novel tool to unravel virus-host interplay. Virusdisease 2024; 35:41-54. [PMID: 38817399 PMCID: PMC11133279 DOI: 10.1007/s13337-024-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 06/01/2024] Open
Abstract
Over the last decade, single cell RNA sequencing (scRNA-seq) technology has caught the momentum of being a vital revolutionary tool to unfold cellular heterogeneity by high resolution assessment. It evades the inadequacies of conventional sequencing technology which was able to detect only average expression level among cell populations. In the era of twenty-first century, several epidemic and pandemic viruses have emerged. Being an intracellular entity, viruses totally rely on host. Complex virus-host dynamics result when the virus tend to obtain factors from host cell required for its replication and establishment of infection. As a prevailing tool, scRNA-seq is able to understand virus-host interplay by comprehensive transcriptome profiling. Because of technological and methodological advancement, this technology is capable to recognize viral genome and host cell response heterogeneity. Further development in analytical methods with multiomics approach and increased availability of accessible scRNA-seq datasets will improve the understanding of viral pathogenesis that can be helpful for development of novel antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Harsh Rajeshbhai Jogi
- Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Nabaneeta Smaraki
- Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Dhaval J. Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
18
|
Espada CE, da Rocha EL, Ricciardi-Jorge T, dos Santos AA, Soares ZG, Malaquias G, Patrício DO, Gonzalez Kozlova E, dos Santos PF, Bordignon J, Sanford TJ, Fajardo T, Sweeney TR, Báfica A, Mansur DS. ISG15/USP18/STAT2 is a molecular hub regulating IFN I-mediated control of Dengue and Zika virus replication. Front Immunol 2024; 15:1331731. [PMID: 38384473 PMCID: PMC10879325 DOI: 10.3389/fimmu.2024.1331731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.
Collapse
Affiliation(s)
- Constanza Eleonora Espada
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz da Rocha
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Taissa Ricciardi-Jorge
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Adara Aurea dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Zamira Guerra Soares
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Malaquias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Oliveira Patrício
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edgar Gonzalez Kozlova
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paula Fernandes dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Instituto Carlos Chagas (ICC)/Fiocruz-PR, Curitiba, Brazil
| | - Thomas J. Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Trevor R. Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Viral Gene Expression Group, The Pirbright Institute, Guildford, United Kingdom
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
19
|
Chang JT, Liu LB, Wang PG, An J. Single-cell RNA sequencing to understand host-virus interactions. Virol Sin 2024; 39:1-8. [PMID: 38008383 PMCID: PMC10877424 DOI: 10.1016/j.virs.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has allowed for the profiling of host and virus transcripts and host-virus interactions at single-cell resolution. This review summarizes the existing scRNA-seq technologies together with their strengths and weaknesses. The applications of scRNA-seq in various virological studies are discussed in depth, which broaden the understanding of the immune atlas, host-virus interactions, and immune repertoire. scRNA-seq can be widely used for virology in the near future to better understand the pathogenic mechanisms and discover more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Li-Bo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
20
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576293. [PMID: 38293140 PMCID: PMC10827181 DOI: 10.1101/2024.01.19.576293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10x Genomics Chromium single cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human moDCs infected with ZIKV at the single cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN dependent and independent genes (antiviral module). We modeled the ZIKV specific antiviral state at the protein level leveraging experimentally derived protein-interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per cell basis with experimental protein interaction data. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool to gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
|
21
|
Natali EN, Horst A, Meier P, Greiff V, Nuvolone M, Babrak LM, Fink K, Miho E. The dengue-specific immune response and antibody identification with machine learning. NPJ Vaccines 2024; 9:16. [PMID: 38245547 PMCID: PMC10799860 DOI: 10.1038/s41541-023-00788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Dengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.
Collapse
Affiliation(s)
- Eriberto Noel Natali
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Alexander Horst
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Patrick Meier
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lmar Marie Babrak
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | | | - Enkelejda Miho
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- aiNET GmbH, Basel, Switzerland.
| |
Collapse
|
22
|
Chen J, Yin D, Wong HYH, Duan X, Yu KHO, Ho JWK. Vulture: cloud-enabled scalable mining of microbial reads in public scRNA-seq data. Gigascience 2024; 13:giad117. [PMID: 38195165 PMCID: PMC10776309 DOI: 10.1093/gigascience/giad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
The rapidly growing collection of public single-cell sequencing data has become a valuable resource for molecular, cellular, and microbial discovery. Previous studies mostly overlooked detecting pathogens in human single-cell sequencing data. Moreover, existing bioinformatics tools lack the scalability to deal with big public data. We introduce Vulture, a scalable cloud-based pipeline that performs microbial calling for single-cell RNA sequencing (scRNA-seq) data, enabling meta-analysis of host-microbial studies from the public domain. In our benchmarking experiments, Vulture is 66% to 88% faster than local tools (PathogenTrack and Venus) and 41% faster than the state-of-the-art cloud-based tool Cumulus, while achieving comparable microbial read identification. In terms of the cost on cloud computing systems, Vulture also shows a cost reduction of 83% ($12 vs. ${\$}$70). We applied Vulture to 2 coronavirus disease 2019, 3 hepatocellular carcinoma (HCC), and 2 gastric cancer human patient cohorts with public sequencing reads data from scRNA-seq experiments and discovered cell type-specific enrichment of severe acute respiratory syndrome coronavirus 2, hepatitis B virus (HBV), and Helicobacter pylori-positive cells, respectively. In the HCC analysis, all cohorts showed hepatocyte-only enrichment of HBV, with cell subtype-associated HBV enrichment based on inferred copy number variations. In summary, Vulture presents a scalable and economical framework to mine unknown host-microbial interactions from large-scale public scRNA-seq data. Vulture is available via an open-source license at https://github.com/holab-hku/Vulture.
Collapse
Affiliation(s)
- Junyi Chen
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Harris Y H Wong
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xin Duan
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Ken H O Yu
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joshua W K Ho
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
23
|
Swaminath S, Russell AB. The use of single-cell RNA-seq to study heterogeneity at varying levels of virus-host interactions. PLoS Pathog 2024; 20:e1011898. [PMID: 38236826 PMCID: PMC10796064 DOI: 10.1371/journal.ppat.1011898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The outcome of viral infection depends on the diversity of the infecting viral population and the heterogeneity of the cell population that is infected. Until almost a decade ago, the study of these dynamic processes during viral infection was challenging and limited to certain targeted measurements. Presently, with the use of single-cell sequencing technology, the complex interface defined by the interactions of cells with infecting virus can now be studied across the breadth of the transcriptome in thousands of individual cells simultaneously. In this review, we will describe the use of single-cell RNA sequencing (scRNA-seq) to study the heterogeneity of viral infections, ranging from individual virions to the immune response between infected individuals. In addition, we highlight certain key experimental limitations and methodological decisions that are critical to analyzing scRNA-seq data at each scale.
Collapse
Affiliation(s)
- Sharmada Swaminath
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alistair B. Russell
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
24
|
Odio CD, Aogo RA, Lowman KE, Katzelnick LC. Severe dengue progression beyond enhancement. Nat Immunol 2023; 24:1967-1969. [PMID: 38012410 DOI: 10.1038/s41590-023-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Affiliation(s)
- Camila D Odio
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Rosemary A Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelsey E Lowman
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Song S, Zhang JY, Liu FY, Zhang HY, Li XF, Zhang SX. B cell subsets-related biomarkers and molecular pathways for systemic lupus erythematosus by transcriptomics analyses. Int Immunopharmacol 2023; 124:110968. [PMID: 37741131 DOI: 10.1016/j.intimp.2023.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE), an autoimmune disease, is characterised by B-cell abnormalities and a loss of tolerance that can produce autoantibody. However, the imperative genes and molecular pathways involved in the change of B cell populations remain unclear. METHODS The expression of B cell subsets between SLE and healthy controls (HCs) was detected based on micro-array transcriptome data. The Weighted Gene Co-Expression Network Analysis (WGCNA) further revealed the co-expression modules of naïve and memory B cells. Whereafter, we performed the functional enrichment analysis, Protein-protein interaction (PPI) networks construction and feature selection to screen hub genes. Ultimately, we recruited SLE patients and HCs from the Second Hospital of Shanxi Medical University and further verified these genes in transcriptome sequencing samples. RESULTS Total of 1087 SLE patients and 86 HCs constituted in the study. Compared to HCs, the levels of peripheral naïve B cells of SLE patients decreased, while memory B cells increased. WGCNA identified two modules with the highest correlation for the subsequent analysis. The purple module was primarily in connection with naïve B cells, and the GO analysis indicated that these genes were mainly abundant in B cell activation. The blue module relevant to memory B cells was most significantly enriched in the "defence response to virus" correlation pathway. Then we screened six hub genes by PPI and feature selection. Finally, four biomarkers (IFI27, IFITM1, MX2, IRF7) were identified by transcriptome sequencing verification. CONCLUSION Our study identified hub genes and key pathways associated with the naïve and memory B cells respectively, which may offer novel insights into the behaviours of B cells and the pathogenesis of SLE.
Collapse
Affiliation(s)
- Shan Song
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing-Yuan Zhang
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Fang-Yue Liu
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - He-Yi Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
26
|
Ricciardi-Jorge T, da Rocha EL, Gonzalez-Kozlova E, Rodrigues-Luiz GF, Ferguson BJ, Sweeney T, Irigoyen N, Mansur DS. PKR-mediated stress response enhances dengue and Zika virus replication. mBio 2023; 14:e0093423. [PMID: 37732809 PMCID: PMC10653888 DOI: 10.1128/mbio.00934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.
Collapse
Affiliation(s)
- Taissa Ricciardi-Jorge
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- The Pirbright Institute, Woking, United Kingdom
| | - Edroaldo Lummertz da Rocha
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Edgar Gonzalez-Kozlova
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Icahn School of Medicine, New York, USA
| | - Gabriela Flavia Rodrigues-Luiz
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
27
|
Sunshine S, Puschnik AS, Replogle JM, Laurie MT, Liu J, Zha BS, Nuñez JK, Byrum JR, McMorrow AH, Frieman MB, Winkler J, Qiu X, Rosenberg OS, Leonetti MD, Ye CJ, Weissman JS, DeRisi JL, Hein MY. Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq. Nat Commun 2023; 14:6245. [PMID: 37803001 PMCID: PMC10558542 DOI: 10.1038/s41467-023-41788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.
Collapse
Affiliation(s)
- Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- University of California, Berkeley-UCSF Joint Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James K Nuñez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Janie R Byrum
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliane Winkler
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oren S Rosenberg
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| | - Marco Y Hein
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria.
| |
Collapse
|
28
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Duran V, Rebellon-Sanchez DE, Sanz AM, Rosso F, Doranz BJ, Einav S, Matsen IV FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. PLoS Pathog 2023; 19:e1011722. [PMID: 37812640 PMCID: PMC10586629 DOI: 10.1371/journal.ppat.1011722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhancement of infection associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following repeated DENV infections. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Catiana H. Cartwright-Acar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caroline Kikawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Shruthi Kannan
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | | | - Ana M. Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Frederick A. Matsen IV
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Wu H, Huang XY, Sun MX, Wang Y, Zhou HY, Tian Y, He B, Li K, Li DY, Wu AP, Wang H, Qin CF. Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids. Nat Commun 2023; 14:5541. [PMID: 37684223 PMCID: PMC10491779 DOI: 10.1038/s41467-023-41158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy threatens pregnancy and fetal health. However, the infectivity and pathological effects of ZIKV on placental trophoblast progenitor cells in early human embryos remain largely unknown. Here, using human trophoblast stem cells (hTSCs), we demonstrated that hTSCs were permissive to ZIKV infection, and resistance to ZIKV increased with hTSC differentiation. Combining gene knockout and transcriptome analysis, we demonstrated that the intrinsic expression of AXL and TIM-1, and the absence of potent interferon (IFN)-stimulated genes (ISGs) and IFNs contributed to the high sensitivity of hTSCs to ZIKV. Furthermore, using our newly developed hTSC-derived trophoblast organoid (hTSC-organoid), we demonstrated that ZIKV infection disrupted the structure of mature hTSC-organoids and inhibited syncytialization. Single-cell RNA sequencing (scRNA-seq) further demonstrated that ZIKV infection of hTSC-organoids disrupted the stemness of hTSCs and the proliferation of cytotrophoblast cells (CTBs) and probably led to a preeclampsia (PE) phenotype. Overall, our results clearly demonstrate that hTSCs represent the major target cells of ZIKV, and a reduced syncytialization may result from ZIKV infection of early developing placenta. These findings deepen our understanding of the characteristics and consequences of ZIKV infection of hTSCs in early human embryos.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yu Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Ying Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Beijia He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - De-Yu Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ai-Ping Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
30
|
Mehta P, Chattopadhyay P, Ravi V, Tarai B, Budhiraja S, Pandey R. SARS-CoV-2 infection severity and mortality is modulated by repeat-mediated regulation of alternative splicing. Microbiol Spectr 2023; 11:e0135123. [PMID: 37604131 PMCID: PMC10580830 DOI: 10.1128/spectrum.01351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Like single-stranded RNA viruses, SARS-CoV-2 hijacks the host transcriptional machinery for its own replication. Numerous traditional differential gene expression-based investigations have examined the diverse clinical symptoms caused by SARS-CoV-2 infection. The virus, on the other hand, also affects the host splicing machinery, causing host transcriptional dysregulation, which can lead to diverse clinical outcomes. Hence, in this study, we performed host transcriptome sequencing of 125 hospital-admitted COVID-19 patients to understand the transcriptomic differences between the severity sub-phenotypes of mild, moderate, severe, and mortality. We performed transcript-level differential expression analysis, investigated differential isoform usage, looked at the splicing patterns within the differentially expressed transcripts (DET), and elucidated the possible genome regulatory features. Our DTE analysis showed evidence of diminished transcript length and diversity as well as altered promoter site usage in the differentially expressed protein-coding transcripts in the COVID-19 mortality patients. We also investigated the potential mechanisms driving the alternate splicing and discovered a compelling differential enrichment of repeats in the promoter region and a specific enrichment of SINE (Alu) near the splicing sites of differentially expressed transcripts. These findings suggested a repeat-mediated plausible regulation of alternative splicing as a potential modulator of COVID-19 disease severity. In this work, we emphasize the role of scarcely elucidated functional role of alternative splicing in influencing COVID-19 disease severity sub-phenotypes, clinical outcomes, and its putative mechanism. IMPORTANCE The wide range of clinical symptoms reported during the COVID-19 pandemic inherently highlights the numerous factors that influence the progression and prognosis of SARS-CoV-2 infection. While several studies have investigated the host response and discovered immunological dysregulation during severe infection, most of them have the common theme of focusing only up to the gene level. Viruses, especially RNA viruses, are renowned for hijacking the host splicing machinery for their own proliferation, which inadvertently puts pressure on the host transcriptome, exposing another side of the host response to the pathogen challenge. Therefore, in this study, we examine host response at the transcript-level to discover a transcriptional difference that culminates in differential gene-level expression. Importantly, this study highlights diminished transcript diversity and possible regulation of transcription by differentially abundant repeat elements near the promoter region and splicing sites in COVID-19 mortality patients, which together with differentially expressed isoforms hold the potential to elaborate disease severity and outcome.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Nayak P, Mukund K, Subramaniam S. The Janus face of proliferating plasmablasts in dengue and COVID-19 infections. Front Immunol 2023; 14:1068424. [PMID: 37638019 PMCID: PMC10450630 DOI: 10.3389/fimmu.2023.1068424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction B cells play an integral role in the immune response to both dengue fever and COVID-19. Prior scRNAseq analyses of peripheral plasmablasts in COVID-19 have revealed a heterogeneous population with distinct cell subsets associated with proliferation; prior studies in patients with dengue fever have likewise shown the presence of proliferative pre-plasmablasts in the circulation. These findings may have implications for disease severity. In this study, we sought to gain a mechanistic understanding of the intracellular processes in naive and memory B cells that are associated with and may lead to an expanded proliferative plasmablast population in the circulation. Methods We analyzed age-controlled (pediatric and adult), peripheral blood mononuclear cell scRNAseq datasets from patients infected with either dengue (primary or secondary) or COVID-19 (non-severe or severe) from previously published studies. Our preliminary analysis showed that pediatric patients with dengue and adults with COVID-19 had an expanded proliferative plasmablast (p-PB) population. By contrast, neither the adults with dengue nor the children with COVID-19 in our dataset had p-PBs. We used this distinctive preliminary signature to guide our analyses design and expanded our analyses to naive and memory B cells. Results In age/disease conditions with and without p-PBs, we found differences in cell sensing and activation, including via the B cell receptor and downstream signal transduction. Likewise, inflammation was mediated differently: relative to groups without p-PBs, those with p-PBs had increased expression of interferon response and S100 genes (particularly severe COVID-19). Furthermore, several transcription factors at the nexus of activation, inflammation, and cell fate decisions were expressed differently in groups with and without p-PBs. Discussion We used dengue and COVID-19 infections in adult and pediatric patients (focusing on naive B, memory B, and plasmablast cells) as a model to better understand the mechanisms that may give rise to p-PB populations in the circulation. Our results indicate that a more pro-inflammatory state in naive and memory B cells correlated with - and could influence the generation of- proliferating plasmablasts. Further exploration of these mechanisms will have implications for immune memory, vaccine development, and post-viral autoimmune syndromes.
Collapse
Affiliation(s)
- Priya Nayak
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
32
|
Usuda JN, Plaça DR, Fonseca DLM, Marques AHC, Filgueiras IS, Chaves VGB, Adri AS, Torrentes-Carvalho A, Hirata MH, Freire PP, Catar R, Cabral-Miranda G, Schimke LF, Moll G, Cabral-Marques O. Interferome signature dynamics during the anti-dengue immune response: a systems biology characterization. Front Immunol 2023; 14:1243516. [PMID: 37638052 PMCID: PMC10449254 DOI: 10.3389/fimmu.2023.1243516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Dengue virus (DENV) infection manifests as a febrile illness with three distinct phases: early acute, late acute, and convalescent. Dengue can result in clinical manifestations with different degrees of severity, dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Interferons (IFNs) are antiviral cytokines central to the anti-DENV immune response. Notably, the distinct global signature of type I, II, and III interferon-regulated genes (the interferome) remains uncharacterized in dengue patients to date. Therefore, we performed an in-depth cross-study for the integrative analysis of transcriptome data related to DENV infection. Our systems biology analysis shows that the anti-dengue immune response is characterized by the modulation of numerous interferon-regulated genes (IRGs) enriching, for instance, cytokine-mediated signaling (e.g., type I and II IFNs) and chemotaxis, which is then followed by a transcriptional wave of genes associated with cell cycle, also regulated by the IFN cascade. The adjunct analysis of disease stratification potential, followed by a transcriptional meta-analysis of the interferome, indicated genes such as IFI27, ISG15, and CYBRD1 as potential suitable biomarkers of disease severity. Thus, this study characterizes the landscape of the interferome signature in DENV infection, indicating that interferome dynamics are a crucial and central part of the anti-dengue immune response.
Collapse
Affiliation(s)
- Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit PostGraduate Program on Bioinformatics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Alexandre H. C. Marques
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Salerno Filgueiras
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Gabriel Bastos Chaves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anny Silva Adri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rusan Catar
- Departament of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Gustavo Cabral-Miranda
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F. Schimke
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Guido Moll
- Departament of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Interunit PostGraduate Program on Bioinformatics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| |
Collapse
|
33
|
Pietilä MK, Bachmann JJ, Ravantti J, Pelkmans L, Fraefel C. Cellular state landscape and herpes simplex virus type 1 infection progression are connected. Nat Commun 2023; 14:4515. [PMID: 37500668 PMCID: PMC10374626 DOI: 10.1038/s41467-023-40148-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Prediction, prevention and treatment of virus infections require understanding of cell-to-cell variability that leads to heterogenous disease outcomes, but the source of this heterogeneity has yet to be clarified. To study the multimodal response of single human cells to herpes simplex virus type 1 (HSV-1) infection, we mapped high-dimensional viral and cellular state spaces throughout the infection using multiplexed imaging and quantitative single-cell measurements of viral and cellular mRNAs and proteins. Here we show that the high-dimensional cellular state scape can predict heterogenous infections, and cells move through the cellular state landscape according to infection progression. Spatial information reveals that infection changes the cellular state of both infected cells and of their neighbors. The multiplexed imaging of HSV-1-induced cellular modifications links infection progression to changes in signaling responses, transcriptional activity, and processing bodies. Our data show that multiplexed quantification of responses at the single-cell level, across thousands of cells helps predict infections and identify new targets for antivirals.
Collapse
Affiliation(s)
- Maija K Pietilä
- Institute of Virology, University of Zurich, Zurich, Switzerland.
| | - Jana J Bachmann
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janne Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Reffsin S, Miller J, Ayyanathan K, Dunagin MC, Jain N, Schultz DC, Cherry S, Raj A. Single cell susceptibility to SARS-CoV-2 infection is driven by variable cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547955. [PMID: 37461472 PMCID: PMC10350037 DOI: 10.1101/2023.07.06.547955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C. Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Talmi-Frank D, Byas AD, Murrieta R, Weger-Lucarelli J, Rückert C, Gallichotte EN, Yoshimoto JA, Allen C, Bosco-Lauth AM, Graham B, Felix TA, Brault AC, Ebel GD. Intracellular Diversity of WNV within Circulating Avian Peripheral Blood Mononuclear Cells Reveals Host-Dependent Patterns of Polyinfection. Pathogens 2023; 12:767. [PMID: 37375457 DOI: 10.3390/pathogens12060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Arthropod-borne virus (arbovirus) populations exist as mutant swarms that are maintained between arthropods and vertebrates. West Nile virus (WNV) population dynamics are host-dependent. In American crows, purifying selection is weak and population diversity is high compared to American robins, which have 100- to 1000-fold lower viremia. WNV passed in robins leads to fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows for higher genetic diversity within individual avian peripheral blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a molecularly barcoded WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes in each. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to the maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation.
Collapse
Affiliation(s)
- Dalit Talmi-Frank
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alex D Byas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Reyes Murrieta
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - James Weger-Lucarelli
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Emily N Gallichotte
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Janna A Yoshimoto
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Chris Allen
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Angela M Bosco-Lauth
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara Graham
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd A Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Lakewood, CO 80228, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Gregory D Ebel
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
36
|
Ioannidis LJ, Studniberg SI, Eriksson EM, Suwarto S, Denis D, Liao Y, Shi W, Garnham AL, Sasmono RT, Hansen DS. Integrated systems immunology approach identifies impaired effector T cell memory responses as a feature of progression to severe dengue fever. J Biomed Sci 2023; 30:24. [PMID: 37055751 PMCID: PMC10103532 DOI: 10.1186/s12929-023-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. METHODS To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. RESULTS After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease. CONCLUSIONS Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.
Collapse
Affiliation(s)
- Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Suhendro Suwarto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital (RSCM), Jakarta, Indonesia
| | - Dionisius Denis
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Diana S Hansen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
37
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Doranz BJ, Duran V, Sanchez DE, Sanz AM, Rosso F, Einav S, Matsen FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536175. [PMID: 37090561 PMCID: PMC10120628 DOI: 10.1101/2023.04.09.536175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasure strategies that avoid infection enhancement associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following secondary DENV infection. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
|
38
|
Robinson ML, Glass DR, Duran V, Agudelo Rojas OL, Sanz AM, Consuegra M, Sahoo MK, Hartmann FJ, Bosse M, Gelvez RM, Bueno N, Pinsky BA, Montoya JG, Maecker H, Estupiñan Cardenas MI, Villar Centeno LA, Garrido EMR, Rosso F, Bendall SC, Einav S. Magnitude and kinetics of the human immune cell response associated with severe dengue progression by single-cell proteomics. SCIENCE ADVANCES 2023; 9:eade7702. [PMID: 36961888 PMCID: PMC10038348 DOI: 10.1126/sciadv.ade7702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 06/17/2023]
Abstract
Approximately 5 million dengue virus-infected patients progress to a potentially life-threatening severe dengue (SD) infection annually. To identify the immune features and temporal dynamics underlying SD progression, we performed deep immune profiling by mass cytometry of PBMCs collected longitudinally from SD progressors (SDp) and uncomplicated dengue (D) patients. While D is characterized by early activation of innate immune responses, in SDp there is rapid expansion and activation of IgG-secreting plasma cells and memory and regulatory T cells. Concurrently, SDp, particularly children, demonstrate increased proinflammatory NK cells, inadequate expansion of CD16+ monocytes, and high expression of the FcγR CD64 on myeloid cells, yet a signature of diminished antigen presentation. Syndrome-specific determinants include suppressed dendritic cell abundance in shock/hemorrhage versus enriched plasma cell expansion in organ impairment. This study reveals uncoordinated immune responses in SDp and provides insights into SD pathogenesis in humans with potential implications for prediction and treatment.
Collapse
Affiliation(s)
- Makeda L. Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David R. Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
| | | | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Monika Consuegra
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Felix J. Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Margarita Gelvez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Benjamin A. Pinsky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Dr. Jack S. Remington Laboratory for Specialty Diagnostics, Palo Alto, CA, USA
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Luis Angel Villar Centeno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Elsa Marina Rojas Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Sean C. Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Zanini F, Che X, Knutsen C, Liu M, Suresh NE, Domingo-Gonzalez R, Dou SH, Zhang D, Pryhuber GS, Jones RC, Quake SR, Cornfield DN, Alvira CM. Developmental diversity and unique sensitivity to injury of lung endothelial subtypes during postnatal growth. iScience 2023; 26:106097. [PMID: 36879800 PMCID: PMC9984561 DOI: 10.1016/j.isci.2023.106097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2) contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury that impairs angiogenesis induced both common and unique endothelial gene signatures, dysregulated capillary EC crosstalk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.
Collapse
Affiliation(s)
- Fabio Zanini
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Kensington, NSW 2052, Australia
| | - Xibing Che
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carsten Knutsen
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Min Liu
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina E. Suresh
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Racquel Domingo-Gonzalez
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steve H. Dou
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daoqin Zhang
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert C. Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David N. Cornfield
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Zargari Marandi R, Leung P, Sigera C, Murray DD, Weeratunga P, Fernando D, Rodrigo C, Rajapakse S, MacPherson CR. Development of a machine learning model for early prediction of plasma leakage in suspected dengue patients. PLoS Negl Trop Dis 2023; 17:e0010758. [PMID: 36913411 PMCID: PMC10035900 DOI: 10.1371/journal.pntd.0010758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/23/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND At least a third of dengue patients develop plasma leakage with increased risk of life-threatening complications. Predicting plasma leakage using laboratory parameters obtained in early infection as means of triaging patients for hospital admission is important for resource-limited settings. METHODS A Sri Lankan cohort including 4,768 instances of clinical data from N = 877 patients (60.3% patients with confirmed dengue infection) recorded in the first 96 hours of fever was considered. After excluding incomplete instances, the dataset was randomly split into a development and a test set with 374 (70%) and 172 (30%) patients, respectively. From the development set, five most informative features were selected using the minimum description length (MDL) algorithm. Random forest and light gradient boosting machine (LightGBM) were used to develop a classification model using the development set based on nested cross validation. An ensemble of the learners via average stacking was used as the final model to predict plasma leakage. RESULTS Lymphocyte count, haemoglobin, haematocrit, age, and aspartate aminotransferase were the most informative features to predict plasma leakage. The final model achieved the area under the receiver operating characteristics curve, AUC = 0.80 with positive predictive value, PPV = 76.9%, negative predictive value, NPV = 72.5%, specificity = 87.9%, and sensitivity = 54.8% on the test set. CONCLUSION The early predictors of plasma leakage identified in this study are similar to those identified in several prior studies that used non-machine learning based methods. However, our observations strengthen the evidence base for these predictors by showing their relevance even when individual data points, missing data and non-linear associations were considered. Testing the model on different populations using these low-cost observations would identify further strengths and limitations of the presented model.
Collapse
Affiliation(s)
- Ramtin Zargari Marandi
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Preston Leung
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Daniel Dawson Murray
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Chaturaka Rodrigo
- Viral Immunology Systems Program (VISP), Kirby Institute, UNSW Sydney, Sydney, Australia
| | | | - Cameron Ross MacPherson
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
41
|
Yap YJ, Wong PF, AbuBakar S, Sam SS, Shunmugarajoo A, Soh YH, Misbah S, Ab Rahman AK. The clinical utility of CD163 in viral diseases. Clin Chim Acta 2023; 541:117243. [PMID: 36740088 DOI: 10.1016/j.cca.2023.117243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.
Collapse
Affiliation(s)
- Yi-Jing Yap
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603 Kuala Lumpur, Malaysia; World Health Organization Collaborating Centre for Arbovirus Reference and Research (Dengue and Severe Dengue) MAA-12, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anusha Shunmugarajoo
- Medical Department, Tengku Ampuan Rahimah Hospital, 41200 Klang, Selangor, Malaysia
| | - Yih-Harng Soh
- Centers for Disease Control and Prevention Unit, Central Melaka District Health Office, Jalan Bukit Baru, 75150 Melaka, Malaysia
| | - Suzana Misbah
- Biological Security and Sustainability Research Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Kashfi Ab Rahman
- Department of Medicine (Infectious Disease Unit), Sultanah Nur Zahirah Hospital, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
42
|
Khariton M, McClune CJ, Brower KK, Klemm S, Sattely ES, Fordyce PM, Wang B. Alleviating Cell Lysate-Induced Inhibition to Enable RT-PCR from Single Cells in Picoliter-Volume Double Emulsion Droplets. Anal Chem 2023; 95:935-945. [PMID: 36598332 DOI: 10.1021/acs.analchem.2c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microfluidic droplet assays enable single-cell polymerase chain reaction (PCR) and sequencing analyses at unprecedented scales, with most methods encapsulating cells within nanoliter-sized single emulsion droplets (water-in-oil). Encapsulating cells within picoliter double emulsion (DE) (water-in-oil-in-water) allows sorting droplets with commercially available fluorescence-activated cell sorter (FACS) machines, making it possible to isolate single cells based on phenotypes of interest for downstream analyses. However, sorting DE droplets with standard cytometers requires small droplets that can pass FACS nozzles. This poses challenges for molecular biology, as prior reports suggest that reverse transcription (RT) and PCR amplification cannot proceed efficiently at volumes below 1 nL due to cell lysate-induced inhibition. To overcome this limitation, we used a plate-based RT-PCR assay designed to mimic reactions in picoliter droplets to systematically quantify and ameliorate the inhibition. We find that RT-PCR is blocked by lysate-induced cleavage of nucleic acid probes and primers, which can be efficiently alleviated through heat lysis. We further show that the magnitude of inhibition depends on the cell type, but that RT-PCR can proceed in low-picoscale reaction volumes for most mouse and human cell lines tested. Finally, we demonstrate one-step RT-PCR from single cells in 20 pL DE droplets with fluorescence quantifiable via FACS. These results open up new avenues for improving picoscale droplet RT-PCR reactions and expanding microfluidic droplet-based single-cell analysis technologies.
Collapse
Affiliation(s)
- Margarita Khariton
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Conor J McClune
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, California94305, United States
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, California94305, United States
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, California94305, United States
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, California94305, United States.,Department of Genetics, Stanford University, Stanford, California94305, United States.,ChEM-H Institute, Stanford University, Stanford, California94305, United States.,Chan Zuckerberg Biohub, San Francisco, California94110, United States
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
43
|
Tu X, Huang H, Xu S, Li C, Luo S. Single-cell transcriptomics reveals immune infiltrate in sepsis. Front Pharmacol 2023; 14:1133145. [PMID: 37113759 PMCID: PMC10126435 DOI: 10.3389/fphar.2023.1133145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Immune cells and immune microenvironment play important in the evolution of sepsis. This study aimed to explore hub genes related to the abundance of immune cell infiltration in sepsis. The GEOquery package is used to download and organize data from the GEO database. A total of 61 differentially expressed genes (DEGs) between sepsis samples and normal samples were obtained through the 'limma' package. T cells, natural killer (NK) cells, monocytes, megakaryocytes, dendritic cells (DCs), and B cells formed six distinct clusters on the t-distributed stochastic neighbor embedding (t-SNE) plot generated using the Seurat R package. Gene set enrichment analysis (GSEA) enrichment analysis showed that sepsis samples and normal samples were related to Neutrophil Degranulation, Modulators of Tcr Signaling and T Cell Activation, IL 17 Pathway, T Cell Receptor Signaling Pathway, Ctl Pathway, Immunoregulatory Interactions Between a Lymphoid and A Non-Lymphoid Cell. GO analysis and KEGG analysis of immune-related genes showed that the intersection genes were mainly associated with Immune-related signaling pathways. Seven hub genes (CD28, CD3D, CD2, CD4, IL7R, LCK, and CD3E) were screened using Maximal Clique Centrality, Maximum neighborhood component, and Density of Maximum Neighborhood Component algorithms. The lower expression of the six hub genes (CD28, CD3D, CD4, IL7R, LCK, and CD3E) was observed in sepsis samples. We observed the significant difference of several immune cell between sepsis samples and control samples. Finally, we carried out in vivo animal experiments, including Western blotting, flow cytometry, Elisa, and qPCR assays to detect the concentration and the expression of several immune factors.
Collapse
Affiliation(s)
- Xusheng Tu
- Department of Emergency Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - He Huang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caifei Li
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Caifei Li, ; Shaoning Luo,
| | - Shaoning Luo
- Department of Emergency Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Caifei Li, ; Shaoning Luo,
| |
Collapse
|
44
|
Ratnasiri K, Wilk AJ, Lee MJ, Khatri P, Blish CA. Single-cell RNA-seq methods to interrogate virus-host interactions. Semin Immunopathol 2023; 45:71-89. [PMID: 36414692 PMCID: PMC9684776 DOI: 10.1007/s00281-022-00972-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The twenty-first century has seen the emergence of many epidemic and pandemic viruses, with the most recent being the SARS-CoV-2-driven COVID-19 pandemic. As obligate intracellular parasites, viruses rely on host cells to replicate and produce progeny, resulting in complex virus and host dynamics during an infection. Single-cell RNA sequencing (scRNA-seq), by enabling broad and simultaneous profiling of both host and virus transcripts, represents a powerful technology to unravel the delicate balance between host and virus. In this review, we summarize technological and methodological advances in scRNA-seq and their applications to antiviral immunity. We highlight key scRNA-seq applications that have enabled the understanding of viral genomic and host response heterogeneity, differential responses of infected versus bystander cells, and intercellular communication networks. We expect further development of scRNA-seq technologies and analytical methods, combined with measurements of additional multi-omic modalities and increased availability of publicly accessible scRNA-seq datasets, to enable a better understanding of viral pathogenesis and enhance the development of antiviral therapeutics strategies.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Purvesh Khatri
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Center for Biomedical Informatics Research, Stanford, CA, USA.
- Inflammatix, Inc., Sunnyvale, CA, 94085, USA.
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
45
|
Xu G, Gao Y, Pan T, Li S, Zhang Y, Guo J, Tian Z, Xu J, Li Y, Li X. Dynamic immune ecosystem of dengue infection revealed by single-cell sequencing. J Leukoc Biol 2022; 112:1621-1631. [PMID: 35766188 DOI: 10.1002/jlb.6ma0622-738rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
Dengue is the most common human arboviral disease worldwide, which can result in severe complications. A dysfunctional immune response in dengue infective patients is a recurrent theme impacting symptoms and mortality, but the heterogeneity and dynamics of immune infiltrates during dengue infection remain poorly characterized. Here, we identified the immune cell types in scRNA-seq data from 13127 cells of 10 dengue infective patients and discovered the dynamic immune ecosystems of dengue infection. Notably, genes that exhibited higher expression in specific cell types play important roles in response to virus infection in a module manner. Transcription factors (TFs) are the major regulators (i.e., PAX5, IRF7, KLF4, and IRF8) that can potentially regulate infection-related genes. We demonstrated that the dynamic rewired regulatory network during dengue infection. Moreover, our data revealed the complex cell-cell communications from control to fever and severe dengue patients and prevalent cell-cell communication rewiring was observed. We further identified the IFN-II and CXCL signaling pathways that medicated the communications and play important roles in dengue infection. Together, our comprehensive analysis of dynamic immune ecosystem of dengue infection provided novel insights for understanding the pathogenesis of and developing effective therapeutic strategies for dengue infection.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Yueying Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Si Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Ya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Jing Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Zhanyu Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Xia Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
46
|
Jusof FF, Lim CK, Aziz FN, Soe HJ, Raju CS, Sekaran SD, Guillemin GJ. The Cytokines CXCL10 and CCL2 and the Kynurenine Metabolite Anthranilic Acid Accurately Predict Patients at Risk of Developing Dengue With Warning Signs. J Infect Dis 2022; 226:1964-1973. [PMID: 35767283 DOI: 10.1093/infdis/jiac273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The resolution or aggravation of dengue infection depends on the patient's immune response during the critical phase. Cytokines released by immune cells increase with the worsening severity of dengue infections. Cytokines activate the kynurenine pathway (KP) and the extent of KP activation then influences disease severity. METHODS KP metabolites and cytokines in plasma samples of patients with dengue infection (dengue without warning signs [DWS-], dengue with warning signs [DWS+], or severe dengue) were analyzed. Cytokines (interferon gamma [IFN-ɣ], tumor necrosis factor, interleukin 6, CXCL10/interferon-inducile protein 10 [IP-10], interleukin 18 [IL-18], CCL2/monocyte chemoattractant protein-1 [MCP-1], and CCL4/macrophage inflammatory protein-1beta [MIP-1β] were assessed by a Human Luminex Screening Assay, while KP metabolites (tryptophan, kynurenine, anthranilic acid [AA], picolinic acid, and quinolinic acid) were assessed by ultra-high-performance liquid chromatography and Gas Chromatography Mass Spectrophotometry [GCMS] assays. RESULTS Patients with DWS+ had increased activation of the KP where kynurenine-tryptophan ratio, anthranilic acid, and picolinic acid were elevated. These patients also had higher levels of the cytokines IFN-ɣ, CXCL10, CCL4, and IL-18 than those with DWS-. Further receiver operating characteristic analysis identified 3 prognostic biomarker candidates, CXCL10, CCL2, and AA, which predicted patients with higher risks of developing DWS+ with an accuracy of 97%. CONCLUSIONS The data suggest a unique biochemical signature in patients with DWS+. CXCL10 and CCL2 together with AA are potential prognostic biomarkers that discern patients with higher risk of developing DWS+ at earlier stages of infection.
Collapse
Affiliation(s)
- Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chai K Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Fazidatul Nadhirah Aziz
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hui Jen Soe
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University Springhill Campus, Bandar Springhill, Port Dickson, Negri Sembilan, Malaysia
| | - Gilles J Guillemin
- Neuroinflammation Group, Motor Neurone Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Single-cell RNA-sequencing data analysis reveals a highly correlated triphasic transcriptional response to SARS-CoV-2 infection. Commun Biol 2022; 5:1302. [PMID: 36435849 PMCID: PMC9701238 DOI: 10.1038/s42003-022-04253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is currently one of the most powerful techniques available to study the transcriptional response of thousands of cells to an external perturbation. Here, we perform a pseudotime analysis of SARS-CoV-2 infection using publicly available scRNA-seq data from human bronchial epithelial cells and colon and ileum organoids. Our results reveal that, for most genes, the transcriptional response to SARS-CoV-2 infection follows a non-linear pattern characterized by an initial and a final down-regulatory phase separated by an intermediate up-regulatory stage. A correlation analysis of transcriptional profiles suggests a common mechanism regulating the mRNA levels of most genes. Interestingly, genes encoded in the mitochondria or involved in translation exhibited distinct pseudotime profiles. To explain our results, we propose a simple model where nuclear export inhibition of nsp1-sensitive transcripts will be sufficient to explain the transcriptional shutdown of SARS-CoV-2 infected cells.
Collapse
|
48
|
Waltari E, Nafees S, McCutcheon KM, Wong J, Pak JE. AIRRscape: An interactive tool for exploring B-cell receptor repertoires and antibody responses. PLoS Comput Biol 2022; 18:e1010052. [PMID: 36126074 PMCID: PMC9524643 DOI: 10.1371/journal.pcbi.1010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/30/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022] Open
Abstract
The sequencing of antibody repertoires of B-cells at increasing coverage and depth has led to the identification of vast numbers of immunoglobulin heavy and light chains. However, the size and complexity of these Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) datasets makes it difficult to perform exploratory analyses. To aid in data exploration, we have developed AIRRscape, an R Shiny-based interactive web browser application that enables B-cell receptor (BCR) and antibody feature discovery through comparisons among multiple repertoires. Using AIRR-seq data as input, AIRRscape starts by aggregating and sorting repertoires into interactive and explorable bins of germline V-gene, germline J-gene, and CDR3 length, providing a high-level view of the entire repertoire. Interesting subsets of repertoires can be quickly identified and selected, and then network topologies of CDR3 motifs can be generated for further exploration. Here we demonstrate AIRRscape using patient BCR repertoires and sequences of published monoclonal antibodies to investigate patterns of humoral immunity to three viral pathogens: SARS-CoV-2, HIV-1, and DENV (dengue virus). AIRRscape reveals convergent antibody sequences among datasets for all three pathogens, although HIV-1 antibody datasets display limited convergence and idiosyncratic responses. We have made AIRRscape available as a web-based Shiny application, along with code on GitHub to encourage its open development and use by immuno-informaticians, virologists, immunologists, vaccine developers, and other scientists that are interested in exploring and comparing multiple immune receptor repertoires.
Collapse
Affiliation(s)
- Eric Waltari
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail: (EW); (JEP)
| | - Saba Nafees
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | | | - Joan Wong
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - John E. Pak
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail: (EW); (JEP)
| |
Collapse
|
49
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Zheng W, Yan Q, Li Z, Wang X, Wu P, Liao F, Lao Z, Jiang Y, Liu X, Zhan S, Li G. Liver transcriptomics reveals features of the host response in a mouse model of dengue virus infection. Front Immunol 2022; 13:892469. [PMID: 36091000 PMCID: PMC9459046 DOI: 10.3389/fimmu.2022.892469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dengue virus (DENV) infection induces various clinical manifestations and even causes organ injuries, leading to severe dengue haemorrhagic fever and dengue shock syndrome. Hepatic dysfunction was identified as a risk predictor of progression to severe disease during the febrile phase of dengue. However, the underlying mechanisms of hepatic injury remain unclear. Methods A model of dengue disease was established in IFNAR−/− C57BL/6 mice by challenge with DENV-2. Body weight, symptoms, haematological parameters and liver pathological observations in mice were used to determine the effects of DENV infection. Liver transcriptome sequencing was performed to evaluate the features of the host response in IFNAR−/− mice challenged with DENV. Functional enrichment analysis and analysis of significantly differentially expressed genes (DEGs) were used to determine the critical molecular mechanism of hepatic injury. Results We observed haemoconcentration, leukopenia and liver pathologies in mice, consistent with findings in clinical dengue patients. Some differences in gene expression and biological processes were identified in this study. Transcriptional patterns in the liver indicated that antiviral responses to DENV and tissue damage via abnormal expression of proinflammatory cytokines were induced. Further analysis showed that the upregulated DEGs were significantly enriched in the leukocyte transendothelial migration, complement and coagulation cascades, and cytokine-cytokine receptor interactions signalling pathways, which are considered to be closely associated with the pathogenic mechanism of dengue. IL6, IL 10, ICAM-1, VCAM-1, MMP9 and NLRP3 were identified as biomarkers of progression to severe disease. Conclusions The interactions of these cytokines, which activate inflammatory signalling, may lead to organ injury and haemoconcentration and even to vascular leakage in tissues, including the mouse liver. Our study identifies candidate host targets that could be used for further functional verification.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyang Wang
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Liao
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zizhao Lao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xiaohong Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaohong Liu, ; Shaofeng Zhan, ; Geng Li,
| | - Shaofeng Zhan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaohong Liu, ; Shaofeng Zhan, ; Geng Li,
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaohong Liu, ; Shaofeng Zhan, ; Geng Li,
| |
Collapse
|