1
|
Miyata Y, Takahashi K, Lee Y, Sultan CS, Kuribayashi R, Takahashi M, Hata K, Bamba T, Izumi Y, Liu K, Uemura T, Nomura N, Iwata S, Nagata S, Nishizawa T, Segawa K. Membrane structure-responsive lipid scrambling by TMEM63B to control plasma membrane lipid distribution. Nat Struct Mol Biol 2025; 32:185-198. [PMID: 39424995 PMCID: PMC11753361 DOI: 10.1038/s41594-024-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Phospholipids are asymmetrically distributed in the plasma membrane (PM), with phosphatidylcholine and sphingomyelin abundant in the outer leaflet. However, the mechanisms by which their distribution is regulated remain unclear. Here, we show that transmembrane protein 63B (TMEM63B) functions as a membrane structure-responsive lipid scramblase localized at the PM and lysosomes, activating bidirectional lipid translocation upon changes in membrane curvature and thickness. TMEM63B contains two intracellular loops with palmitoylated cysteine residue clusters essential for its scrambling function. TMEM63B deficiency alters phosphatidylcholine and sphingomyelin distributions in the PM. Persons with heterozygous mutations in TMEM63B are known to develop neurodevelopmental disorders. We show that V44M, the most frequent substitution, confers constitutive scramblase activity on TMEM63B, disrupting PM phospholipid asymmetry. We determined the cryo-electron microscopy structures of TMEM63B in its open and closed conformations, uncovering a lipid translocation pathway formed in response to changes in the membrane environment. Together, our results identify TMEM63B as a membrane structure-responsive scramblase that controls PM lipid distribution and we reveal the molecular basis for lipid scrambling and its biological importance.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yongchan Lee
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Cheryl S Sultan
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Kuribayashi
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Uemura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigekazu Nagata
- Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
2
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
3
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
5
|
Yabas M, Bostanci A, Aral S. ATP11C promotes the differentiation of pre-B cells into immature B cells but does not affect their IL-7-dependent proliferation. Immunol Res 2023; 71:609-616. [PMID: 36753036 DOI: 10.1007/s12026-023-09364-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The P4-type ATPases are believed to function as flippases that contribute to the organization of the asymmetric aminophospholipid distribution on the plasma membranes of eukaryotes by their ability to internalize specific phospholipids from the outer leaflet to the inner leaflet. Despite the existence of 14 members of the P4-type ATPases in humans and 15 in mice, their roles in the immune system have not been fully understood. So far, ATP11C was shown to be important for B cells, and mice deficient for ATP11C had a developmental arrest at the pro-B to pre-B cell transition stage of B cell development. Using an ATP11C-deficient pre-B cell line generated through CRISPR/Cas9 engineering, we here tested the role of ATP11C in pre-B cells in vitro and showed that ablation of ATP11C in pre-B cells causes a defect in the flippase activity. We further demonstrated that loss of ATP11C does not impede the proliferation of pre-B cells in response to IL-7. However, pre-B cells lacking ATP11C failed to differentiate into immature B cells upon removal of IL-7. These results suggest that disruption of lipid asymmetry by loss of ATP11C in pre-B cells may control the switch from proliferation to differentiation in pre-B cells.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey.
- Department of Immunology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey.
| | - Ayten Bostanci
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - Seda Aral
- Department of Biotechnology and Genetics, Institute of Natural Sciences, Trakya University, Edirne, Turkey
| |
Collapse
|
6
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Furuta Y, Zhou Z. How do necrotic cells expose phosphatidylserine to attract their predators—What’s unique and what’s in common with apoptotic cells. Front Cell Dev Biol 2023; 11:1170551. [PMID: 37091984 PMCID: PMC10113483 DOI: 10.3389/fcell.2023.1170551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Phosphatidylserine (PS) is a lipid component of the plasma membrane. It is asymmetrically distributed to the inner leaflet in live cells. In cells undergoing apoptosis, phosphatidylserine is exposed to the outer surfaces. The exposed phosphatidylserine acts as an evolutionarily conserved “eat-me” signal that attracts neighboring engulfing cells in metazoan organisms, including the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and mammals. During apoptosis, the exposure of phosphatidylserine to the outer surface of a cell is driven by the membrane scramblases and flippases, the activities of which are regulated by caspases. Cells undergoing necrosis, a kind of cell death frequently associated with cellular injuries and morphologically distinct from apoptosis, were initially believed to allow passive exposure of phosphatidylserine through membrane rupture. Later studies revealed that necrotic cells actively expose phosphatidylserine before any rupture occurs. A recent study in C. elegans further reported that the calcium ion (Ca2+) plays an essential role in promoting the exposure of phosphatidylserine on the surfaces of necrotic cells. These findings indicate that necrotic and apoptotic cells, which die through different molecular mechanisms, use common and unique mechanisms for promoting the exposure of the same “eat me” signal. This article will review the mechanisms regulating the exposure of phosphatidylserine on the surfaces of necrotic and apoptotic cells and highlight their similarities and differences.
Collapse
|
8
|
Miyata Y, Segawa K. Protocol to analyze lipid asymmetry in the plasma membrane. STAR Protoc 2022; 3:101870. [PMID: 36595929 PMCID: PMC9692065 DOI: 10.1016/j.xpro.2022.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The plasma membrane containing cholesterol exhibits phospholipid asymmetry, with phosphatidylcholine and sphingomyelin enriched in its outer leaflet and phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) on the cytoplasmic side. We herein describe steps for bacterial expression of recombinant proteins that bind to membrane lipids, followed by affinity purification. Using fluorescence-labeled phospholipid analogs, we further detail the assay to detect flippase activity, which maintains the single-sided distribution of PtdSer and PtdEtn, in mammalian cells. For complete details on the use and execution of this protocol, please refer to Segawa et al. (2021).1.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan,Corresponding author
| |
Collapse
|
9
|
Vorselen D. Dynamics of phagocytosis mediated by phosphatidylserine. Biochem Soc Trans 2022; 50:1281-1291. [PMID: 36281986 PMCID: PMC9704538 DOI: 10.1042/bst20211254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/13/2023]
Abstract
Phagocytosis triggered by the phospholipid phosphatidylserine (PS) is key for the removal of apoptotic cells in development, tissue homeostasis and infection. Modulation of PS-mediated phagocytosis is an attractive target for therapeutic intervention in the context of atherosclerosis, neurodegenerative disease, and cancer. Whereas the mechanisms of target recognition, lipid and protein signalling, and cytoskeletal remodelling in opsonin-driven modes of phagocytosis are increasingly well understood, PS-mediated phagocytosis has remained more elusive. This is partially due to the involvement of a multitude of receptors with at least some redundancy in functioning, which complicates dissecting their contributions and results in complex downstream signalling networks. This review focusses on the receptors involved in PS-recognition, the signalling cascades that connect receptors to cytoskeletal remodelling required for phagocytosis, and recent progress in our understanding of how phagocytic cup formation is coordinated during PS-mediated phagocytosis.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology, University of Washington, Seattle, WA 98105, U.S.A
| |
Collapse
|
10
|
Early death in a mouse model of Alzheimer's disease exacerbated by microglial loss of TAM receptor signaling. Proc Natl Acad Sci U S A 2022; 119:e2204306119. [PMID: 36191221 PMCID: PMC9564325 DOI: 10.1073/pnas.2204306119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent seizure is a common comorbidity in early-stage Alzheimer's disease (AD) and may contribute to AD pathogenesis and cognitive decline. Similarly, many mouse models of Alzheimer's disease that overproduce amyloid beta are prone to epileptiform seizures that may result in early sudden death. We studied one such model, designated APP/PS1, and found that mutation of the TAM receptor tyrosine kinase (RTK) Mer or its ligand Gas6 greatly exacerbated early death. Lethality was tied to violent seizures that appeared to initiate in the dentate gyrus (DG) of the hippocampus, where Mer plays an essential role in the microglial phagocytosis of both apoptotic and newborn cells normally generated during adult neurogenesis. We found that newborn DG neurons and excitatory synapses between the DG and the cornu ammonis field 3 (CA3) field of the hippocampus were increased in TAM-deficient mice, and that premature death and adult neurogenesis in these mice were coincident. In contrast, the incidence of lethal seizures and the deposition of dense-core amyloid plaques were strongly anticorrelated. Together, these results argue that TAM-mediated phagocytosis sculpts synaptic connectivity in the hippocampus, and that seizure-inducing amyloid beta polymers are present prior to the formation of dense-core plaques.
Collapse
|
11
|
Miyata Y, Yamada K, Nagata S, Segawa K. Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes. J Biol Chem 2022; 298:102527. [PMID: 36162506 PMCID: PMC9597894 DOI: 10.1016/j.jbc.2022.102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Phospholipids are asymmetrically distributed between the lipid bilayer of plasma membranes in which phosphatidylserine (PtdSer) is confined to the inner leaflet. ATP11A and ATP11C, type IV P-Type ATPases in plasma membranes, flip PtdSer from the outer to the inner leaflet, but involvement of other P4-ATPases is unclear. We herein demonstrated that once PtdSer was exposed on the cell surface of ATP11A−/−ATP11C−/− mouse T cell line (W3), its internalization to the inner leaflet of plasma membranes was negligible at 15 °C. However, ATP11A−/−ATP11C−/− cells internalized the exposed PtdSer at 37 °C, a temperature at which trafficking of intracellular membranes was active. In addition to ATP11A and 11C, W3 cells expressed ATP8A1, 8B2, 8B4, 9A, 9B, and 11B, with ATP8A1 and ATP11B being present at recycling endosomes. Cells deficient in four P4-ATPases (ATP8A1, 11A, 11B, and 11C) (QKO) did not constitutively expose PtdSer on the cell surface but lost the ability to re-establish PtdSer asymmetry within 1 hour, even at 37 °C. The expression of ATP11A or ATP11C conferred QKO cells with the ability to rapidly re-establish PtdSer asymmetry at 15 °C and 37 °C, while cells expressing ATP8A1 or ATP11B required a temperature of 37 °C to achieve this function, and a dynamin inhibitor blocked this process. These results revealed that mammalian cells are equipped with two independent mechanisms to re-establish its asymmetry: the first is a rapid process involving plasma membrane flippases, ATP11A and ATP11C, while the other is mediated by ATP8A1 and ATP11B, which require an endocytosis process.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Yamada
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan; Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
12
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|
13
|
Khunsriraksakul C, McGuire D, Sauteraud R, Chen F, Yang L, Wang L, Hughey J, Eckert S, Dylan Weissenkampen J, Shenoy G, Marx O, Carrel L, Jiang B, Liu DJ. Integrating 3D genomic and epigenomic data to enhance target gene discovery and drug repurposing in transcriptome-wide association studies. Nat Commun 2022; 13:3258. [PMID: 35672318 PMCID: PMC9171100 DOI: 10.1038/s41467-022-30956-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
Transcriptome-wide association studies (TWAS) are popular approaches to test for association between imputed gene expression levels and traits of interest. Here, we propose an integrative method PUMICE (Prediction Using Models Informed by Chromatin conformations and Epigenomics) to integrate 3D genomic and epigenomic data with expression quantitative trait loci (eQTL) to more accurately predict gene expressions. PUMICE helps define and prioritize regions that harbor cis-regulatory variants, which outperforms competing methods. We further describe an extension to our method PUMICE +, which jointly combines TWAS results from single- and multi-tissue models. Across 79 traits, PUMICE + identifies 22% more independent novel genes and increases median chi-square statistics values at known loci by 35% compared to the second-best method, as well as achieves the narrowest credible interval size. Lastly, we perform computational drug repurposing and confirm that PUMICE + outperforms other TWAS methods.
Collapse
Affiliation(s)
- Chachrit Khunsriraksakul
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Daniel McGuire
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Renan Sauteraud
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Fang Chen
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Lina Yang
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Lida Wang
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Jordan Hughey
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Scott Eckert
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - J. Dylan Weissenkampen
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Ganesh Shenoy
- grid.29857.310000 0001 2097 4281Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Olivia Marx
- grid.29857.310000 0001 2097 4281Biomedical Science Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Laura Carrel
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Bibo Jiang
- grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Dajiang J. Liu
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
14
|
Inefficient development of syncytiotrophoblasts in the Atp11a-deficient mouse placenta. Proc Natl Acad Sci U S A 2022; 119:e2200582119. [PMID: 35476530 PMCID: PMC9170144 DOI: 10.1073/pnas.2200582119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plasma membranes are composed of a lipid bilayer in which phosphatidylserine (PtdSer) is confined to the inner leaflet by the action of flippase that translocates PtdSer from the outer to inner leaflets. Two P4-ATPases (ATP11A and ATP11C) work as flippase at plasma membranes. Here, we report that the mouse placenta expresses only ATP11A, and Atp11a-deficient mouse embryos die during embryogenesis due to inefficient formation of syncytiotrophoblasts in the placental labyrinth. The flippase-null mutation inactivates human choriocarcinoma BeWo cells to translocate PtdSer into the inner leaflet and undergo cell fusion. These findings highlight the importance of flippase to regulate the distribution of phospholipids for cell fusion, at least in trophoblast fusion. The P4-ATPases ATP11A and ATP11C function as flippases at the plasma membrane to translocate phosphatidylserine from the outer to the inner leaflet. We herein demonstrated that Atp11a-deficient mouse embryos died at approximately E14.5 with thin-walled heart ventricles. However, the cardiomyocyte- or epiblast-specific Atp11a deletion did not affect mouse development or mortality. ATP11C may have compensated for the function of ATP11A in most of the cell types in the embryo. On the other hand, Atp11a, but not Atp11c, was expressed in the mouse placenta, and the Atp11a-null mutation caused poor development of the labyrinthine layer with an increased number of TUNEL-positive foci. Immunohistochemistry and electron microscopy revealed a disorganized labyrinthine layer with unfused trophoblasts in the Atp11a-null placenta. Human placenta-derived choriocarcinoma BeWo cells expressed the ATP11A and ATP11C genes. A lack of ATP11A and ATP11C eliminated the ability of BeWo cells to flip phosphatidylserine and fuse when treated with forskolin. These results indicate that flippases at the plasma membrane play an important role in the formation of syncytiotrophoblasts in placental development.
Collapse
|
15
|
Savitskaya MA, Zakharov II, Onishchenko GE. Apoptotic Features in Non-Apoptotic Processes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:191-206. [PMID: 35526851 DOI: 10.1134/s0006297922030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/02/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Apoptosis is the most thoroughly studied type of regulated cell death. Certain events, such as externalization of phosphatidylserine (PS) into the outer leaflet of plasma membrane, mitochondrial outer membrane permeabilization, caspase cascade activation, DNA fragmentation and blebbing, are widely considered to be hallmarks of apoptosis as well as being traditionally viewed as irreversible. This review shows that under particular circumstances these events can also participate in physiological processes not associated with initiation of apoptosis, such as cell differentiation, division, and motility, as well as non-apoptotic types of cell death. Moreover, these events may often be reversible. This review focuses on three processes: phosphatidylserine externalization, blebbing, and activation of apoptotic caspases. Mitochondrial outer membrane permeabilization and DNA fragmentation are not discussed.
Collapse
Affiliation(s)
| | - Ilya I Zakharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
16
|
Maremonti F, Meyer C, Linkermann A. Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss. J Am Soc Nephrol 2022; 33:472-486. [PMID: 35022311 PMCID: PMC8975069 DOI: 10.1681/asn.2021101293] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding nephron loss is a primary strategy for preventing CKD progression. Death of renal tubular cells may occur by apoptosis during developmental and regenerative processes. However, during AKI, the transition of AKI to CKD, sepsis-associated AKI, and kidney transplantation ferroptosis and necroptosis, two pathways associated with the loss of plasma membrane integrity, kill renal cells. This necrotic type of cell death is associated with an inflammatory response, which is referred to as necroinflammation. Importantly, the necroinflammatory response to cells that die by necroptosis may be fundamentally different from the tissue response to ferroptosis. Although mechanisms of ferroptosis and necroptosis have recently been investigated in detail, the cell death propagation during tubular necrosis, although described morphologically, remains incompletely understood. Here, we argue that a molecular switch downstream of tubular necrosis determines nephron regeneration versus nephron loss. Unraveling the details of this "switch" must include the inflammatory response to tubular necrosis and regenerative signals potentially controlled by inflammatory cells, including the stimulation of myofibroblasts as the origin of fibrosis. Understanding in detail the molecular switch and the inflammatory responses to tubular necrosis can inform the discussion of therapeutic options.
Collapse
Affiliation(s)
- Francesca Maremonti
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany .,Biotechnology Center, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
17
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Bohan D, Van Ert H, Ruggio N, Rogers KJ, Badreddine M, Aguilar Briseño JA, Elliff JM, Rojas Chavez RA, Gao B, Stokowy T, Christakou E, Kursula P, Micklem D, Gausdal G, Haim H, Minna J, Lorens JB, Maury W. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009743. [PMID: 34797899 PMCID: PMC8641883 DOI: 10.1371/journal.ppat.1009743] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/03/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2. Phosphatidylserine (PS) receptors bind PS and mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. This clever use of this uptake mechanism by enveloped viruses is termed apoptotic mimicry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. PS is readily detectable on the surface of SARS-CoV-2 virions, and contrary to prior reports we were unable to identify any interaction between AXL and SARS-CoV-2 spike. Pharmacological inhibition of AXL activity and knockout of AXL expression suggest it is the preferred PS receptor during SARS-CoV-2 entry. We propose that AXL is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Hanora Van Ert
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mohammad Badreddine
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - José A. Aguilar Briseño
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jonah M. Elliff
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | | | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tomasz Stokowy
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Eleni Christakou
- Department of Biomedicine, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Hillel Haim
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James B. Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
20
|
Segawa K, Kikuchi A, Noji T, Sugiura Y, Hiraga K, Suzuki C, Haginoya K, Kobayashi Y, Matsunaga M, Ochiai Y, Yamada K, Nishimura T, Iwasawa S, Shoji W, Sugihara F, Nishino K, Kosako H, Ikawa M, Uchiyama Y, Suematsu M, Ishikita H, Kure S, Nagata S. A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. J Clin Invest 2021; 131:e148005. [PMID: 34403372 DOI: 10.1172/jci148005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023] Open
Abstract
ATP11A translocates phosphatidylserine (PtdSer), but not phosphatidylcholine (PtdCho), from the outer to the inner leaflet of plasma membranes, thereby maintaining the asymmetric distribution of PtdSer. Here, we detected a de novo heterozygous point mutation of ATP11A in a patient with developmental delays and neurological deterioration. Mice carrying the corresponding mutation died perinatally of neurological disorders. This mutation caused an amino acid substitution (Q84E) in the first transmembrane segment of ATP11A, and mutant ATP11A flipped PtdCho. Molecular dynamics simulations revealed that the mutation allowed PtdCho binding at the substrate entry site. Aberrant PtdCho flipping markedly decreased the concentration of PtdCho in the outer leaflet of plasma membranes, whereas sphingomyelin (SM) concentrations in the outer leaflet increased. This change in the distribution of phospholipids altered cell characteristics, including cell growth, cholesterol homeostasis, and sensitivity to sphingomyelinase. Matrix-assisted laser desorption ionization-imaging mass spectrometry (MALDI-IMS) showed a marked increase of SM levels in the brains of Q84E-knockin mouse embryos. These results provide insights into the physiological importance of the substrate specificity of plasma membrane flippases for the proper distribution of PtdCho and SM.
Collapse
Affiliation(s)
- Katsumori Segawa
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Keita Hiraga
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Chigure Suzuki
- Department of Cellular and Molecular Pharmacology and.,Department of Cellular and Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Miyagi, Japan.,Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Miyagi, Japan
| | - Yasuko Kobayashi
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Miyagi, Japan.,Department of Pediatrics, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Miyagi, Japan
| | - Mitsuhiro Matsunaga
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yuki Ochiai
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Kyoko Yamada
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takuo Nishimura
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Shinya Iwasawa
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Pharmacology and.,Department of Cellular and Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Calianese D, Kreiss T, Kasikara C, Davra V, Lahey KC, Gadiyar V, Geng K, Singh S, Honnen W, Jaijyan DK, Reichman C, Siekierka J, Gennaro ML, Kotenko SV, Ucker DS, Brekken RA, Pinter A, Birge RB, Choudhary A. Phosphatidylserine-Targeting Monoclonal Antibodies Exhibit Distinct Biochemical and Cellular Effects on Anti-CD3/CD28-Stimulated T Cell IFN-γ and TNF-α Production. THE JOURNAL OF IMMUNOLOGY 2021; 207:436-448. [PMID: 34215655 DOI: 10.4049/jimmunol.2000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Phosphatidylserine (PS)-targeting monoclonal Abs (mAbs) that directly target PS and target PS via β2-gp1 (β2GP1) have been in preclinical and clinical development for over 10 y for the treatment of infectious diseases and cancer. Although the intended targets of PS-binding mAbs have traditionally included pathogens as well as stressed tumor cells and its associated vasculature in oncology, the effects of PS-targeting mAbs on activated immune cells, notably T cells, which externalize PS upon Ag stimulation, is not well understood. Using human T cells from healthy donor PBMCs activated with an anti-CD3 + anti-CD28 Ab mixture (anti-CD3/CD28) as a model for TCR-mediated PS externalization and T cell stimulation, we investigated effects of two different PS-targeting mAbs, 11.31 and bavituximab (Bavi), on TCR activation and TCR-mediated cytokine production in an ex vivo paradigm. Although 11.31 and Bavi bind selectivity to anti-CD3/28 activated T cells in a PS-dependent manner, surprisingly, they display distinct functional activities in their effect on IFN-γ and TNF-ɑ production, whereby 11.31, but not Bavi, suppressed cytokine production. This inhibitory effect on anti-CD3/28 activated T cells was observed on both CD4+ and CD8+ cells and independently of monocytes, suggesting the effects of 11.31 were directly mediated by binding to externalized PS on activated T cells. Imaging showed 11.31 and Bavi bind at distinct focal depots on the cell membrane. Collectively, our findings indicate that PS-targeting mAb 11.31 suppresses cytokine production by anti-CD3/28 activated T cells.
Collapse
Affiliation(s)
- David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Tamara Kreiss
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ.,Department of Chemistry and Biochemistry, The Herman and Margaret Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ
| | - Canan Kasikara
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Kevin C Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Ke Geng
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - William Honnen
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Charles Reichman
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - John Siekierka
- Department of Chemistry and Biochemistry, The Herman and Margaret Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ
| | - Maria Laura Gennaro
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, Dallas, TX; and.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abraham Pinter
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Alok Choudhary
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ;
| |
Collapse
|
22
|
Bohan D, Ert HV, Ruggio N, Rogers KJ, Badreddine M, Aguilar Briseño JA, Rojas Chavez RA, Gao B, Stokowy T, Christakou E, Micklem D, Gausdal G, Haim H, Minna J, Lorens JB, Maury W. Phosphatidylserine Receptors Enhance SARS-CoV-2 Infection: AXL as a Therapeutic Target for COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34159331 PMCID: PMC8219095 DOI: 10.1101/2021.06.15.448419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphatidylserine (PS) receptors are PS binding proteins that mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells and this is termed apoptotic mimicry. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when low concentrations of the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. We demonstrated that this PS receptor enhances SARS-CoV-2 binding to and infection of an array of human lung cell lines and is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Hanora Van Ert
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Kai J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Mohammad Badreddine
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | | | | | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tomasz Stokowy
- Department of Biomedicine, University of Bergen, Bergen Norway
| | - Eleni Christakou
- Department of Biomedicine, University of Bergen, Bergen Norway.,BerGenBio ASA, Bergen, Norway
| | | | | | - Hillel Haim
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - James B Lorens
- Department of Biomedicine, University of Bergen, Bergen Norway
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
23
|
Pineau F, Caimmi D, Taviaux S, Reveil M, Brosseau L, Rivals I, Drevait M, Vachier I, Claustres M, Chiron R, De Sario A. DNA Methylation at ATP11A cg11702988 Is a Biomarker of Lung Disease Severity in Cystic Fibrosis: A Longitudinal Study. Genes (Basel) 2021; 12:genes12030441. [PMID: 33808877 PMCID: PMC8003783 DOI: 10.3390/genes12030441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a chronic genetic disease that mainly affects the respiratory and gastrointestinal systems. No curative treatments are available, but the follow-up in specialized centers has greatly improved the patient life expectancy. Robust biomarkers are required to monitor the disease, guide treatments, stratify patients, and provide outcome measures in clinical trials. In the present study, we outline a strategy to select putative DNA methylation biomarkers of lung disease severity in cystic fibrosis patients. In the discovery step, we selected seven potential biomarkers using a genome-wide DNA methylation dataset that we generated in nasal epithelial samples from the MethylCF cohort. In the replication step, we assessed the same biomarkers using sputum cell samples from the MethylBiomark cohort. Of interest, DNA methylation at the cg11702988 site (ATP11A gene) positively correlated with lung function and BMI, and negatively correlated with lung disease severity, P. aeruginosa chronic infection, and the number of exacerbations. These results were replicated in prospective sputum samples collected at four time points within an 18-month period and longitudinally. To conclude, (i) we identified a DNA methylation biomarker that correlates with CF severity, (ii) we provided a method to easily assess this biomarker, and (iii) we carried out the first longitudinal analysis of DNA methylation in CF patients. This new epigenetic biomarker could be used to stratify CF patients in clinical trials.
Collapse
Affiliation(s)
- Fanny Pineau
- LGMR, EA7402 University of Montpellier, 34093 Montpellier, France; (F.P.); (S.T.); (M.R.); (L.B.); (M.C.)
| | - Davide Caimmi
- CRCM, CHU Montpellier, 34090 Montpellier, France; (D.C.); (M.D.); (R.C.)
- IDESP, UMR INSERM, University of Montpellier, 34093 Montpellier, France
| | - Sylvie Taviaux
- LGMR, EA7402 University of Montpellier, 34093 Montpellier, France; (F.P.); (S.T.); (M.R.); (L.B.); (M.C.)
| | - Maurane Reveil
- LGMR, EA7402 University of Montpellier, 34093 Montpellier, France; (F.P.); (S.T.); (M.R.); (L.B.); (M.C.)
| | - Laura Brosseau
- LGMR, EA7402 University of Montpellier, 34093 Montpellier, France; (F.P.); (S.T.); (M.R.); (L.B.); (M.C.)
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS1158, 75231 Paris, France;
| | - Margot Drevait
- CRCM, CHU Montpellier, 34090 Montpellier, France; (D.C.); (M.D.); (R.C.)
| | | | - Mireille Claustres
- LGMR, EA7402 University of Montpellier, 34093 Montpellier, France; (F.P.); (S.T.); (M.R.); (L.B.); (M.C.)
| | - Raphaël Chiron
- CRCM, CHU Montpellier, 34090 Montpellier, France; (D.C.); (M.D.); (R.C.)
| | - Albertina De Sario
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34093 Montpellier, France
- Correspondence: ; Tel.: +33-411759867
| |
Collapse
|
24
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Akaeda S, Hirota Y, Fukui Y, Aikawa S, Shimizu-Hirota R, Kaku T, Gebril M, Hirata T, Hiraoka T, Matsuo M, Haraguchi H, Saito-Kanatani M, Takeda N, Fujii T, Osuga Y. Retinoblastoma protein promotes uterine epithelial cell cycle arrest and necroptosis for embryo invasion. EMBO Rep 2021; 22:e50927. [PMID: 33399260 DOI: 10.15252/embr.202050927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma protein (RB) encoded by Rb1 is a prominent inducer of cell cycle arrest (CCA). The hormone progesterone (P4 ) promotes CCA in the uterine epithelium and previous studies indicated that P4 activates RB by reducing the phosphorylated, inactive form of RB. Here, we show that embryo implantation is impaired in uterine-specific Rb1 knockout mice. We observe persistent cell proliferation of the Rb1-deficient uterine epithelium until embryo attachment, loss of epithelial necroptosis, and trophoblast phagocytosis, which correlates with subsequent embryo invasion failure, indicating that Rb1-induced CCA and necroptosis of uterine epithelium are involved in embryo invasion. Pre-implantation P4 supplementation is sufficient to restore these defects and embryo invasion. In Rb1-deficient uterine epithelial cells, TNFα-primed necroptosis is impaired, which is rescued by the treatment with a CCA inducer thymidine or P4 through the upregulation of TNF receptor type 2. TNFα is expressed in the luminal epithelium and the embryo at the embryo attachment site. These results provide evidence that uterine Rb1-induced CCA is involved in TNFα-primed epithelial necroptosis at the implantation site for successful embryo invasion.
Collapse
Affiliation(s)
- Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Frontier Outstanding Research for Clinical Empowerment (FORCE), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center of Preventive Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mona Gebril
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuko Saito-Kanatani
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotuke, Tochigi, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Chen K, Günay-Esiyok Ö, Klingeberg M, Marquardt S, Pomorski TG, Gupta N. Aminoglycerophospholipid flipping and P4-ATPases in Toxoplasma gondii. J Biol Chem 2021; 296:100315. [PMID: 33485966 PMCID: PMC7949121 DOI: 10.1016/j.jbc.2021.100315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.
Collapse
Affiliation(s)
- Kai Chen
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Melissa Klingeberg
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Stephan Marquardt
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Department of Experimental Biophysics, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Thomas Günther Pomorski
- Department of Experimental Biophysics, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India.
| |
Collapse
|
27
|
Clarke R, Hossain K, Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183382. [DOI: 10.1016/j.bbamem.2020.183382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
28
|
Nagata S, Segawa K. Sensing and clearance of apoptotic cells. Curr Opin Immunol 2020; 68:1-8. [PMID: 32853880 DOI: 10.1016/j.coi.2020.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Macrophages specifically engulf apoptotic cells but not healthy cells. Phosphatidylserine (PtdSer) is localized at the inner leaflet of plasma membranes as a result of the action of flippases (ATP11A and 11C). When cells undergo apoptosis, caspase 3 cleaves and inactivates the flippases, while simultaneously cleaving XKR8 to activate its phospholipid scramblase activity. PtdSer is thus swiftly and irreversibly exposed to the cell surface as an 'eat me' signal. Tissue resident macrophages recognize the apoptotic cells using a PtdSer-receptor TIM4 and engulf them with TAM tyrosine-kinase receptors, and integrins. The PtdSer 'eat me' signal appears to override 'don't eat me' signals in most cases.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Katsumori Segawa
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Nakanishi H, Irie K, Segawa K, Hasegawa K, Fujiyoshi Y, Nagata S, Abe K. Crystal structure of a human plasma membrane phospholipid flippase. J Biol Chem 2020; 295:10180-10194. [PMID: 32493773 DOI: 10.1074/jbc.ra120.014144] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
ATP11C, a member of the P4-ATPase flippase, translocates phosphatidylserine from the outer to the inner plasma membrane leaflet, and maintains the asymmetric distribution of phosphatidylserine in the living cell. We present the crystal structures of a human plasma membrane flippase, ATP11C-CDC50A complex, in a stabilized E2P conformation. The structure revealed a deep longitudinal crevice along transmembrane helices continuing from the cell surface to the phospholipid occlusion site in the middle of the membrane. We observed that the extension of the crevice on the exoplasmic side is open, and the complex is therefore in an outward-open E2P state, similar to a recently reported cryo-EM structure of yeast flippase Drs2p-Cdc50p complex. We noted extra densities, most likely bound phosphatidylserines, in the crevice and in its extension to the extracellular side. One was close to the phosphatidylserine occlusion site as previously reported for the human ATP8A1-CDC50A complex, and the other in a cavity at the surface of the exoplasmic leaflet of the bilayer. Substitutions in either of the binding sites or along the path between them impaired specific ATPase and transport activities. These results provide evidence that the observed crevice is the conduit along that phosphatidylserine traverses from the outer leaflet to its occlusion site in the membrane and suggest that the exoplasmic cavity is important for phospholipid recognition. They also yield insights into how phosphatidylserine is incorporated from the outer leaflet of the plasma membrane into the transmembrane.
Collapse
Affiliation(s)
- Hanayo Nakanishi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Katsumori Segawa
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Japan
| | - Yoshinori Fujiyoshi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.,CeSPIA Inc, 2-1-1, Otemachi, Chiyoda, Tokyo, Japan
| | - Shigekazu Nagata
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kazuhiro Abe
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan .,Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21:398-414. [PMID: 32251387 DOI: 10.1038/s41580-020-0232-1] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute for Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Nagata S, Sakuragi T, Segawa K. Flippase and scramblase for phosphatidylserine exposure. Curr Opin Immunol 2020; 62:31-38. [DOI: 10.1016/j.coi.2019.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/25/2019] [Indexed: 01/30/2023]
|
32
|
Takayama M, Takatsu H, Hamamoto A, Inoue H, Naito T, Nakayama K, Shin HW. The cytoplasmic C-terminal region of the ATP11C variant determines its localization at the polarized plasma membrane. J Cell Sci 2019; 132:jcs.231720. [PMID: 31371488 DOI: 10.1242/jcs.231720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
ATP11C, a member of the P4-ATPase family, is a major phosphatidylserine (PS)-flippase located at the plasma membrane. ATP11C deficiency causes a defect in B-cell maturation, anemia and hyperbilirubinemia. Although there are several alternatively spliced variants derived from the ATP11C gene, the functional differences between them have not been considered. Here, we compared and characterized three C-terminal spliced forms (we designated as ATP11C-a, ATP11C-b and ATP11C-c), with respect to their expression patterns in cell types and tissues, and their subcellular localizations. We had previously shown that the C-terminus of ATP11C-a is critical for endocytosis upon PKC activation. Here, we found that ATP11C-b and ATP11C-c did not undergo endocytosis upon PKC activation. Importantly, we also found that ATP11C-b localized to a limited region of the plasma membrane in polarized cells, whereas ATP11C-a was distributed on the entire plasma membrane in both polarized and non-polarized cells. Moreover, we successfully identified LLXY residues within the ATP11C-b C-terminus as a critical motif for the polarized localization. These results suggest that the ATP11C-b regulates PS distribution in distinct regions of the plasma membrane in polarized cells.
Collapse
Affiliation(s)
- Masahiro Takayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Hamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroki Inoue
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoki Naito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Abstract
Tissue macrophages rapidly recognize and engulf apoptotic cells. These events require the display of so-called eat-me signals on the apoptotic cell surface, the most fundamental of which is phosphatidylserine (PtdSer). Externalization of this phospholipid is catalysed by scramblase enzymes, several of which are activated by caspase cleavage. PtdSer is detected both by macrophage receptors that bind to this phospholipid directly and by receptors that bind to a soluble bridging protein that is independently bound to PtdSer. Prominent among the latter receptors are the MER and AXL receptor tyrosine kinases. Eat-me signals also trigger macrophages to engulf virus-infected or metabolically traumatized, but still living, cells, and this 'murder by phagocytosis' may be a common phenomenon. Finally, the localized presentation of PtdSer and other eat-me signals on delimited cell surface domains may enable the phagocytic pruning of these 'locally dead' domains by macrophages, most notably by microglia of the central nervous system.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
34
|
Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc Natl Acad Sci U S A 2019; 116:2907-2912. [PMID: 30718401 DOI: 10.1073/pnas.1820499116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The exposure of phosphatidylserine (PtdSer) to the cell surface is regulated by the down-regulation of flippases and the activation of scramblases. Xkr8 has been identified as a scramblase that is activated during apoptosis, but its exogenous expression in the mouse Ba/F3 pro B cell line induces constitutive PtdSer exposure. Here we found that this Xkr8-mediated PtdSer exposure occurred at 4 °C, but not at 20 °C, although its scramblase activity was observed at 20 °C. The Xkr8-mediated PtdSer exposure was inhibited by a kinase inhibitor and enhanced by phosphatase inhibitors. Phosphorylated Xkr8 was detected by Phos-tag PAGE, and a mass spectrometric and mutational analysis identified three phosphorylation sites. Their phosphomimic mutation rendered Xkr8 resistant to the kinase inhibitor for PtdSer exposure at 4 °C, but unlike phosphatase inhibitors, it did not induce constitutive PtdSer exposure at 20 °C. On the other hand, when the flippase genes were deleted, the Xkr8 induced constitutive PtdSer exposure at high temperature, indicating that the flippase activity normally counteracted Xkr8's ability to expose PtdSer. These results indicate that PtdSer exposure can be increased by the phosphorylation-mediated activation of Xkr8 scramblase and flippase down-regulation.
Collapse
|
35
|
|