1
|
Pan Y, Qi Z, Hu J, Zheng X, Wang X. Bio-molecular analyses enable new insights into the taphonomy of feathers. PNAS NEXUS 2024; 3:pgae341. [PMID: 39228813 PMCID: PMC11368126 DOI: 10.1093/pnasnexus/pgae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Exceptionally preserved feathers from the Mesozoic era have provided valuable insights into the early evolution of feathers and enabled color reconstruction of extinct dinosaurs, including early birds. Mounting chemical evidence for the two key components of feathers-keratins and melanins-in fossil feathers has demonstrated that exceptional preservation can be traced down to the molecular level. However, the chemical changes that keratin and eumelanin undergo during fossilization are still not fully understood, introducing uncertainty in the identification of these two molecules in fossil feathers. To address this issue, we need to examine their taphonomic process. In this study, we analyzed the structural and chemical composition of fossil feathers from the Jehol Biota and compared them with the structural and chemical changes observed in modern feathers during the process of biodegradation and thermal degradation, as well as the structural and chemical characteristics of a Cenozoic fossil feather. Our results suggest that the taphonomic process of feathers from the Cretaceous Jehol Biota is mainly controlled by the process of thermal degradation. The Cretaceous fossil feathers studied exhibited minimal keratin preservation but retained strong melanin signals, attributed to melanin's higher thermal stability. Low-maturity carbonaceous fossils can indeed preserve biosignals, especially signals from molecules with high resistance to thermal degradation. These findings provide clues about the preservation potential of keratin and melanin, and serve as a reference for searching for those two biomolecules in different geological periods and environments.
Collapse
Affiliation(s)
- Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230027, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| |
Collapse
|
2
|
Umamaheswaran R, Dutta S. Preservation of proteins in the geosphere. Nat Ecol Evol 2024; 8:858-865. [PMID: 38472431 DOI: 10.1038/s41559-024-02366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Deep-time protein preservation has attracted increasing interest and rapid research activity within the palaeobiological community in recent years, but there are several different viewpoints without a cohesive framework for the interpretation of these proteins. Therefore, despite this activity, crucial gaps exist in the understanding of how proteins are preserved in the geological record and we believe it is vital to arrive at a synthesis of the various taphonomic pathways in order to proceed forward with their elucidation. Here we take a critical look at the state of knowledge regarding deep-time protein preservation and argue for the necessity of a more nuanced approach to understanding the molecular taphonomy of proteins through the lens of diagenetic pathways. We also propound an initial framework with which to comprehend the chemical changes undergone by proteins via the concept of 'proteagen'.
Collapse
Affiliation(s)
- Raman Umamaheswaran
- Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai, India.
- Department of Earth and Planetary Sciences, Hokkaido University, Sapporo, Japan.
| | - Suryendu Dutta
- Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
3
|
Slater TS, Edwards NP, Webb SM, Zhang F, McNamara ME. Preservation of corneous β-proteins in Mesozoic feathers. Nat Ecol Evol 2023; 7:1706-1713. [PMID: 37735563 DOI: 10.1038/s41559-023-02177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Fossil proteins are valuable tools in evolutionary biology. Recent technological advances and better integration of experimental methods have confirmed the feasibility of biomolecular preservation in deep time, yielding new insights into the timing of key evolutionary transitions. Keratins (formerly α-keratins) and corneous β-proteins (CBPs, formerly β-keratins) are of particular interest as they define tissue structures that underpin fundamental physiological and ecological strategies and have the potential to inform on the molecular evolution of the vertebrate integument. Reports of CBPs in Mesozoic fossils, however, appear to conflict with experimental evidence for CBP degradation during fossilization. Further, the recent model for molecular modification of feather chemistry during the dinosaur-bird transition does not consider the relative preservation potential of different feather proteins. Here we use controlled taphonomic experiments coupled with infrared and sulfur X-ray spectroscopy to show that the dominant β-sheet structure of CBPs is progressively altered to α-helices with increasing temperature, suggesting that (α-)keratins and α-helices in fossil feathers are most likely artefacts of fossilization. Our analyses of fossil feathers shows that this process is independent of geological age, as even Cenozoic feathers can comprise primarily α-helices and disordered structures. Critically, our experiments show that feather CBPs can survive moderate thermal maturation. As predicted by our experiments, analyses of Mesozoic feathers confirm that evidence of feather CBPs can persist through deep time.
Collapse
Affiliation(s)
- Tiffany S Slater
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Nicholas P Edwards
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Fucheng Zhang
- Institute of Geology and Paleontology, Linyi University, Linyi, China
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Zhao T, Pan Y. An evaluation of the effect of hydrofluoric acid (HF) treatment on keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:377-384. [PMID: 36002950 DOI: 10.1002/jez.b.23173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 06/09/2023]
Abstract
Hydrofluoric acid (HF) is commonly used in geological and paleontological research to extract organic fossils for morphological and chemical studies. However, during HF treatment, organic matter can also be altered, which raises concerns that HF-treated organic matter may not be representative of the original organic matter. To provide reference data for protein studies on fossils, herein, we use Fourier transform infrared (FTIR) spectroscopy to investigate the effect of HF (21.3 M) treatment on keratins, with treatment durations ranging from 2 to 48 h. Results show that the FTIR spectra of HF-treated samples are overall similar to that of the untreated sample, while curve fitting shows that HF treatment has led to alteration of the secondary structure in all the HF-treated samples and the effect is time-dependent. The 2- and 4-h treatment mainly reduced the content of the random coils, α-helix, and intermolecular β-sheet. From 8h onwards, the content of random coils greatly increased at the expense of other structures. Our results imply that for protein detection in fossils using FTIR spectroscopy, the negative effect of HF treatment is not substantial, as the bands characteristic of proteins, that is, amide A, amide B, amide I, amide II, and amide III, are still present after the 48-h treatment. If the target is a secondary structure, the effect of HF treatment should be considered. When HF treatment is necessary, limiting the treatment duration to less than 4h may be a choice.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Ke Y, Wu J, Ye Y, Zhang X, Gu T, Wang Y, Jiang F, Yu J. Feather keratin-montmorillonite nanocomposite hydrogel promotes bone regeneration by stimulating the osteogenic differentiation of endogenous stem cells. Int J Biol Macromol 2023:125330. [PMID: 37307978 DOI: 10.1016/j.ijbiomac.2023.125330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Bone defects caused by bone trauma, infection, surgery, or other systemic diseases remain a severe challenge for the medical field. To address this clinical problem, different hydrogels were exploited to promote bone tissue regrowth and regeneration. Keratins are natural fibrous proteins found in wool, hair, horns, nails, and feather. Due to their unique characteristics of outstanding biocompatibility, great biodegradability, and hydrophilic, keratins have been widely applicated in different fields. In our study, the feather keratin-montmorillonite nanocomposite hydrogels that consist of keratin hydrogels serving as the scaffold support to accommodate endogenous stem cells and montmorillonite is synthesized. The introduction of montmorillonite greatly improves the osteogenic effect of the keratin hydrogels via bone morphogenetic protein 2 (BMP-2)/phosphorylated small mothers against decapentaplegic homolog 1/5/8 (p-SMAD 1/5/8)/runt-related transcription factor 2 (RUNX2) expression. Moreover, the incorporation of montmorillonite into hydrogels can improve the mechanical properties and bioactivity of the hydrogels. The morphology of feather keratin-montmorillonite nanocomposite hydrogels was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of montmorillonite into the keratin hydrogels was confirmed by the energy dispersive spectrum (EDS). We prove that the feather keratin-montmorillonite nanocomposite hydrogels enhance the osteogenic differentiation of BMSCs. Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that feather keratin-montmorillonite nanocomposite hydrogels dramatically stimulated bone regeneration in vivo. Collectively, feather keratin-montmorillonite nanocomposite hydrogels can regulate BMP/SMAD signaling pathway to stimulate osteogenic differentiation of endogenous stem cells and promote bone defect healing, indicating their promising candidate in bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Stomatology, East Hospital Affiliated to Tongji University, Shanghai 200120, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Institute of Periodontology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolan Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of General Dentistry, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Anné J, Canoville A, Edwards NP, Schweitzer MH, Zanno LE. Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus rex. BIOLOGY 2023; 12:biology12020264. [PMID: 36829540 PMCID: PMC9953530 DOI: 10.3390/biology12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Biomolecules preserved in deep time have potential to shed light on major evolutionary questions, driving the search for new and more rigorous methods to detect them. Despite the increasing body of evidence from a wide variety of new, high resolution/high sensitivity analytical techniques, this research is commonly met with skepticism, as the long standing dogma persists that such preservation in very deep time (>1 Ma) is unlikely. The Late Cretaceous dinosaur Tyrannosaurus rex (MOR 1125) has been shown, through multiple biochemical studies, to preserve original bone chemistry. Here, we provide additional, independent support that deep time bimolecular preservation is possible. We use synchrotron X-ray fluorescence imaging (XRF) and X-ray absorption spectroscopy (XAS) to investigate a section from the femur of this dinosaur, and demonstrate preservation of elements (S, Ca, and Zn) associated with bone remodeling and redeposition. We then compare these data to the bone of an extant dinosaur (bird), as well as a second non-avian dinosaur, Tenontosaurus tilletti (OMNH 34784) that did not preserve any sign of original biochemistry. Our data indicate that MOR 1125 bone cortices have similar bone elemental distributions to that of an extant bird, which supports preservation of original endogenous chemistry in this specimen.
Collapse
Affiliation(s)
- Jennifer Anné
- The Children’s Museum of Indianapolis, Indianapolis, IN 46208, USA
- Correspondence:
| | | | - Nicholas P. Edwards
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mary H. Schweitzer
- Department of Biological Sciences, Campus Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St., Raleigh, NC 27601, USA
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Lindsay E. Zanno
- Department of Biological Sciences, Campus Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St., Raleigh, NC 27601, USA
| |
Collapse
|
7
|
Taphonomic and Diagenetic Pathways to Protein Preservation, Part II: The Case of Brachylophosaurus canadensis Specimen MOR 2598. BIOLOGY 2022; 11:biology11081177. [PMID: 36009804 PMCID: PMC9404959 DOI: 10.3390/biology11081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Reports of the recovery of proteins and other molecules from fossils have become so common over the last two decades that some paleontologists now focus almost entirely on studying how biologic molecules can persist in fossils. In this study, we explored the fossilization history of a specimen of the hadrosaurid dinosaur Brachylophosaurus which was previously shown to preserve original cells, tissues, and structural proteins. Trace element analyses of the tibia of this specimen revealed that after its bones were buried in a brackish estuarine channel, they fossilized under wet conditions which shifted in redox state multiple times. The successful recovery of proteins from this specimen, despite this complex history of chemical alterations, shows that the processes which bind and stabilize biologic molecules shortly after death provide them remarkable physical and chemical resiliency. By uniting our results with those of similar studies on other dinosaur fossils known to also preserve original proteins, we also conclude that exposure to oxidizing conditions in the initial ~48 h postmortem likely promotes molecular stabilization reactions, and the retention of early-diagenetic trace element signatures may be a useful proxy for molecular recovery potential. Abstract Recent recoveries of peptide sequences from two Cretaceous dinosaur bones require paleontologists to rethink traditional notions about how fossilization occurs. As part of this shifting paradigm, several research groups have recently begun attempting to characterize biomolecular decay and stabilization pathways in diverse paleoenvironmental and diagenetic settings. To advance these efforts, we assessed the taphonomic and geochemical history of Brachylophosaurus canadensis specimen MOR 2598, the left femur of which was previously found to retain endogenous cells, tissues, and structural proteins. Combined stratigraphic and trace element data show that after brief fluvial transport, this articulated hind limb was buried in a sandy, likely-brackish, estuarine channel. During early diagenesis, percolating groundwaters stagnated within the bones, forming reducing internal microenvironments. Recent exposure and weathering also caused the surficial leaching of trace elements from the specimen. Despite these shifting redox regimes, proteins within the bones were able to survive through diagenesis, attesting to their remarkable resiliency over geologic time. Synthesizing our findings with other recent studies reveals that oxidizing conditions in the initial ~48 h postmortem likely promote molecular stabilization reactions and that the retention of early-diagenetic trace element signatures may be a useful proxy for molecular recovery potential.
Collapse
|
8
|
Soft Tissue and Biomolecular Preservation in Vertebrate Fossils from Glauconitic, Shallow Marine Sediments of the Hornerstown Formation, Edelman Fossil Park, New Jersey. BIOLOGY 2022; 11:biology11081161. [PMID: 36009787 PMCID: PMC9405258 DOI: 10.3390/biology11081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Endogenous biomolecules and soft tissues are known to persist in the fossil record. To date, these discoveries derive from a limited number of preservational environments, (e.g., fluvial channels and floodplains), and fossils from less common depositional environments have been largely unexplored. We conducted paleomolecular analyses of shallow marine vertebrate fossils from the Cretaceous–Paleogene Hornerstown Formation, an 80–90% glauconitic greensand from Jean and Ric Edelman Fossil Park in Mantua Township, NJ. Twelve samples were demineralized and found to yield products morphologically consistent with vertebrate osteocytes, blood vessels, and bone matrix. Specimens from these deposits that are dark in color exhibit excellent histological preservation and yielded a greater recovery of cells and soft tissues, whereas lighter-colored specimens exhibit poor histology and few to no cells/soft tissues. Additionally, a well-preserved femur of the marine crocodilian Thoracosaurus was found to have retained endogenous collagen I by immunofluorescence and enzyme-linked immunosorbent assays. Our results thus not only corroborate previous findings that soft tissue and biomolecular recovery from fossils preserved in marine environments are possible but also expand the range of depositional environments documented to preserve endogenous biomolecules, thus broadening the suite of geologic strata that may be fruitful to examine in future paleomolecular studies.
Collapse
|
9
|
Soft-Tissue, Rare Earth Element, and Molecular Analyses of Dreadnoughtus schrani, an Exceptionally Complete Titanosaur from Argentina. BIOLOGY 2022; 11:biology11081158. [PMID: 36009785 PMCID: PMC9404821 DOI: 10.3390/biology11081158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/22/2022]
Abstract
Evidence that organic material preserves in deep time (>1 Ma) has been reported using a wide variety of analytical techniques. However, the comprehensive geochemical data that could aid in building robust hypotheses for how soft-tissues persist over millions of years are lacking from most paleomolecular reports. Here, we analyze the molecular preservation and taphonomic history of the Dreadnougtus schrani holotype (MPM-PV 1156) at both macroscopic and microscopic levels. We review the stratigraphy, depositional setting, and physical taphonomy of the D. schrani skeletal assemblage, and extensively characterize the preservation and taphonomic history of the humerus at a micro-scale via: (1) histological analysis (structural integrity) and X-ray diffraction (exogenous mineral content); (2) laser ablation-inductively coupled plasma mass spectrometry (analyses of rare earth element content throughout cortex); (3) demineralization and optical microscopy (soft-tissue microstructures); (4) in situ and in-solution immunological assays (presence of endogenous protein). Our data show the D. schrani holotype preserves soft-tissue microstructures and remnants of endogenous bone protein. Further, it was exposed to LREE-enriched groundwaters and weakly-oxidizing conditions after burial, but experienced negligible further chemical alteration after early-diagenetic fossilization. These findings support previous hypotheses that fossils that display low trace element uptake are favorable targets for paleomolecular analyses.
Collapse
|
10
|
Zhou Z. The Rising of Paleontology in China: A Century-Long Road. BIOLOGY 2022; 11:1104. [PMID: 35892960 PMCID: PMC9332504 DOI: 10.3390/biology11081104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the history of paleontology in China from 1920 to 2020 is divided into three major stages, i.e., 1920-1949, 1949-1978, and 1979-2020. As one of the first scientific disciplines to have earned international fame in China, the development of Chinese paleontology benefitted from international collaborations and China's rich resources. Since 1978, China's socio-economic development and its open-door policy to the outside world have also played a key role in the growth of Chinese paleontology. In the 21st century, thanks to constant funding from the government and the rise of the younger generation of paleontologists, Chinese paleontology is expected to make even more contributions to the integration of paleontology with both biological and geological research projects by taking advantage of new technologies and China's rich paleontological resources.
Collapse
Affiliation(s)
- Zhonghe Zhou
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, China
| |
Collapse
|
11
|
Environmental Factors Affecting Feather Taphonomy. BIOLOGY 2022; 11:biology11050703. [PMID: 35625431 PMCID: PMC9138376 DOI: 10.3390/biology11050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The exceptional preservation of feathers in the fossil record has led to a better understanding of both phylogeny and evolution. Here we address factors that may have contributed to the preservation of feathers in ancient organisms using experimental taphonomy. We show that the atmospheres of the Mesozoic, known to be elevated in both CO2 and with temperatures above present levels, may have contributed to the preservation of these soft tissues by facilitating rapid precipitation of hydroxy- or carbonate hydroxyapatite, thus outpacing natural degradative processes. Data also support that that microbial degradation was enhanced in elevated CO2, but mineral deposition was also enhanced, contributing to preservation by stabilizing the organic components of feathers.
Collapse
|
12
|
Liu H, Xu Q, Xi Y, Ma S, Wang J, Bai L, Han C, He H, Li L. Dynamic transcriptome profiling reveals essential roles of the Receptor Tyrosine Kinases (RTK) family in feather development of duck. Br Poult Sci 2022; 63:605-612. [PMID: 35383522 DOI: 10.1080/00071668.2022.2061839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Chicken primary myoblasts (CPMs) are precursors that form muscle fibres. The proliferation and differentiation of CPMs is an essential stage in muscle development. Previous RNA-seq analysis showed that phosphoglycerate dehydrogenase (PHGDH) is a differentially expressed gene in chicken muscle tissue at different growth stages. Therefore, the following study explored the effect of PHGDH on the proliferation and differentiation of CPMs.2. The effect on the proliferation of CPMs by RT-qPCR, CCK-8, and EdU assays after the overexpression and knockdown of PHGDH was evaluated. RT-qPCR, western blotting, and indirect immunofluorescence were used to detect the effect of PHGDH on the differentiation of the CPMs. The expression was observed at different time points for differentiation induced by the CPMs.3. The results showed that PHGDH significantly promoted proliferation and differentiation in CPMs. The results showed that overexpression of PHGDH significantly upregulated CPM proliferation, while knockdown had the opposite effect. Marker genes showed that overexpression of PHGDH significantly upregulated the expression of P21, MYOG and MYOD genes, significantly downregulated the expression of the MSTN gene and promoted the expression of the MYHC protein. In contrast, PHGDH knockdown had the opposite effect.4. Desmin immunofluorescence analysis of myotube differentiation in primary myoblasts showed that overexpression of PHGDH significantly increased the area of myotube differentiation and promoted the proliferation and differentiation of myoblasts. Knockdown of PHGDH had the opposite effect.5. In summary, PHGDH was shown to play a positive role in regulating myoblast proliferation and differentiation. This provided a theoretical basis for further analysis of the regulatory mechanism of the PHGDH gene in chicken muscle development and for improving poultry production.
Collapse
Affiliation(s)
| | - Qian Xu
- Sichuan Agricultural University - Chengdu Campus
| | - Yang Xi
- Sichuan Agricultural University - Chengdu Campus
| | - ShengChao Ma
- Sichuan Agricultural University - Chengdu Campus
| | - Jianmei Wang
- Sichuan Agricultural University - Chengdu Campus
| | - Lili Bai
- Sichuan Agricultural University - Chengdu Campus
| | - Chunchun Han
- Sichuan Agricultural University - Chengdu Campus, College of Animal Science and Technology
| | - Hua He
- Sichuan Agricultural University - Chengdu Campus
| | - Liang Li
- Sichuan Agricultural University, College of Animal Sci & Tech
| |
Collapse
|
13
|
Frenkel-Pinter M, Petrov AS, Matange K, Travisano M, Glass JB, Williams LD. Adaptation and Exaptation: From Small Molecules to Feathers. J Mol Evol 2022; 90:166-175. [PMID: 35246710 PMCID: PMC8975760 DOI: 10.1007/s00239-022-10049-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Evolution works by adaptation and exaptation. At an organismal level, exaptation and adaptation are seen in the formation of organelles and the advent of multicellularity. At the sub-organismal level, molecular systems such as proteins and RNAs readily undergo adaptation and exaptation. Here we suggest that the concepts of adaptation and exaptation are universal, synergistic, and recursive and apply to small molecules such as metabolites, cofactors, and the building blocks of extant polymers. For example, adenosine has been extensively adapted and exapted throughout biological evolution. Chemical variants of adenosine that are products of adaptation include 2' deoxyadenosine in DNA and a wide array of modified forms in mRNAs, tRNAs, rRNAs, and viral RNAs. Adenosine and its variants have been extensively exapted for various functions, including informational polymers (RNA, DNA), energy storage (ATP), metabolism (e.g., coenzyme A), and signaling (cyclic AMP). According to Gould, Vrba, and Darwin, exaptation imposes a general constraint on interpretation of history and origins; because of exaptation, extant function should not be used to explain evolutionary history. While this notion is accepted in evolutionary biology, it can also guide the study of the chemical origins of life. We propose that (i) evolutionary theory is broadly applicable from the dawn of life to the present time from molecules to organisms, (ii) exaptation and adaptation were important and simultaneous processes, and (iii) robust origin of life models can be constructed without conflating extant utility with historical basis of origins.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,NSF-NASA Center of Chemical Evolution, Atlanta, GA, 30332-0400, USA.,Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Anton S Petrov
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,NSF-NASA Center of Chemical Evolution, Atlanta, GA, 30332-0400, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Kavita Matange
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jennifer B Glass
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Loren Dean Williams
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA. .,NSF-NASA Center of Chemical Evolution, Atlanta, GA, 30332-0400, USA. .,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
14
|
Abstract
The goal of paleoproteomics is to characterize proteins from specimens that have been subjected to the degrading and obscuring effects of time, thus obtaining biological information about tissues or organisms both unobservable in the present and unobtainable through morphological study. Although the description of sequences from Tyrannosaurus rex and Brachylophosaurus canadensis suggested that proteins may persist over tens of millions of years, the majority of paleoproteomic analyses have focused on historical, archeological, or relatively young paleontological samples that rarely exceed 1 million years in age. However, recent advances in methodology and analyses of diverse tissues types (e.g., fossil eggshell, dental enamel) have begun closing the large window of time that remains unexplored in the fossil history of the Cenozoic. In this perspective, we discuss the history and current state of deep time paleoproteomics (DTPp), here defined as paleoproteomic study of samples ∼1 million years (1 Ma) or more in age. We then discuss the future of DTPp research, including what we see as critical ways the field can expand, advancements in technology that can be utilized, and the types of questions DTPp can address if such a future is realized.
Collapse
Affiliation(s)
- Elena R Schroeter
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Timothy P Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland 20746, United States
| | - Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina 27605, United States.,Department of Geology, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
15
|
Ullmann PV, Macauley K, Ash RD, Shoup B, Scannella JB. Taphonomic and Diagenetic Pathways to Protein Preservation, Part I: The Case of Tyrannosaurus rex Specimen MOR 1125. BIOLOGY 2021; 10:1193. [PMID: 34827186 PMCID: PMC8614911 DOI: 10.3390/biology10111193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 04/08/2023]
Abstract
Many recent reports have demonstrated remarkable preservation of proteins in fossil bones dating back to the Permian. However, preservation mechanisms that foster the long-term stability of biomolecules and the taphonomic circumstances facilitating them remain largely unexplored. To address this, we examined the taphonomic and geochemical history of Tyrannosaurus rex specimen Museum of the Rockies (MOR) 1125, whose right femur and tibiae were previously shown to retain still-soft tissues and endogenous proteins. By combining taphonomic insights with trace element compositional data, we reconstruct the postmortem history of this famous specimen. Our data show that following prolonged, subaqueous decay in an estuarine channel, MOR 1125 was buried in a coarse sandstone wherein its bones fossilized while interacting with oxic and potentially brackish early-diagenetic groundwaters. Once its bones became stable fossils, they experienced minimal further chemical alteration. Comparisons with other recent studies reveal that oxidizing early-diagenetic microenvironments and diagenetic circumstances which restrict exposure to percolating pore fluids elevate biomolecular preservation potential by promoting molecular condensation reactions and hindering chemical alteration, respectively. Avoiding protracted interactions with late-diagenetic pore fluids is also likely crucial. Similar studies must be conducted on fossil bones preserved under diverse paleoenvironmental and diagenetic contexts to fully elucidate molecular preservation pathways.
Collapse
Affiliation(s)
- Paul V. Ullmann
- Department of Geology, Rowan University, Glassboro, NJ 08028, USA;
| | - Kyle Macauley
- Department of Geology, Rowan University, Glassboro, NJ 08028, USA;
| | - Richard D. Ash
- Department of Geology, University of Maryland, College Park, MD 20742, USA;
| | - Ben Shoup
- Absaroka Energy & Environmental Solutions, Buffalo, WY 82834, USA;
| | - John B. Scannella
- Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA;
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
16
|
Patel AD. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200326. [PMID: 34420384 PMCID: PMC8380969 DOI: 10.1098/rstb.2020.0326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
The human capacity to synchronize movements to an auditory beat is central to musical behaviour and to debates over the evolution of human musicality. Have humans evolved any neural specializations for music processing, or does music rely entirely on brain circuits that evolved for other reasons? The vocal learning and rhythmic synchronization hypothesis proposes that our ability to move in time with an auditory beat in a precise, predictive and tempo-flexible manner originated in the neural circuitry for complex vocal learning. In the 15 years, since the hypothesis was proposed a variety of studies have supported it. However, one study has provided a significant challenge to the hypothesis. Furthermore, it is increasingly clear that vocal learning is not a binary trait animals have or lack, but varies more continuously across species. In the light of these developments and of recent progress in the neurobiology of beat processing and of vocal learning, the current paper revises the vocal learning hypothesis. It argues that an advanced form of vocal learning acts as a preadaptation for sporadic beat perception and synchronization (BPS), providing intrinsic rewards for predicting the temporal structure of complex acoustic sequences. It further proposes that in humans, mechanisms of gene-culture coevolution transformed this preadaptation into a genuine neural adaptation for sustained BPS. The larger significance of this proposal is that it outlines a hypothesis of cognitive gene-culture coevolution which makes testable predictions for neuroscience, cross-species studies and genetics. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, USA
- Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
17
|
Zhou Z, Meng Q, Zhu R, Wang M. Spatiotemporal evolution of the Jehol Biota: Responses to the North China craton destruction in the Early Cretaceous. Proc Natl Acad Sci U S A 2021; 118:e2107859118. [PMID: 34400505 PMCID: PMC8403929 DOI: 10.1073/pnas.2107859118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Early Cretaceous Jehol Biota is a terrestrial lagerstätte that contains exceptionally well-preserved fossils indicating the origin and early evolution of Mesozoic life, such as birds, dinosaurs, pterosaurs, mammals, insects, and flowering plants. New geochronologic studies have further constrained the ages of the fossil-bearing beds, and recent investigations on Early Cretaceous tectonic settings have provided much new information for understanding the spatiotemporal distribution of the biota and dispersal pattern of its members. Notably, the occurrence of the Jehol Biota coincides with the initial and peak stages of the North China craton destruction in the Early Cretaceous, and thus the biotic evolution is related to the North China craton destruction. However, it remains largely unknown how the tectonic activities impacted the development of the Jehol Biota in northeast China and other contemporaneous biotas in neighboring areas in East and Central Asia. It is proposed that the Early Cretaceous rift basins migrated eastward in the northern margin of the North China craton and the Great Xing'an Range, and the migration is regarded to have resulted from eastward retreat of the subducting paleo-Pacific plate. The diachronous development of the rift basins led to the lateral variations of stratigraphic sequences and depositional environments, which in turn influenced the spatiotemporal evolution of the Jehol Biota. This study represents an effort to explore the linkage between terrestrial biota evolution and regional tectonics and how plate tectonics constrained the evolution of a terrestrial biota through various surface geological processes.
Collapse
Affiliation(s)
- Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China;
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingren Meng
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Rixiang Zhu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| |
Collapse
|
18
|
Ehrlich F, Lachner J, Hermann M, Tschachler E, Eckhart L. Convergent Evolution of Cysteine-Rich Keratins in Hard Skin Appendages of Terrestrial Vertebrates. Mol Biol Evol 2021; 37:982-993. [PMID: 31822906 PMCID: PMC7086170 DOI: 10.1093/molbev/msz279] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Terrestrial vertebrates have evolved hard skin appendages, such as scales, claws, feathers, and hair that play crucial roles in defense, predation, locomotion, and thermal insulation. The mechanical properties of these skin appendages are largely determined by cornified epithelial components. So-called "hair keratins," cysteine-rich intermediate filament proteins that undergo covalent cross-linking via disulfide bonds, are the crucial structural proteins of hair and claws in mammals and hair keratin orthologs are also present in lizard claws, indicating an evolutionary origin in a hairless common ancestor of amniotes. Here, we show that reptiles and birds have also other cysteine-rich keratins which lack cysteine-rich orthologs in mammals. In addition to hard acidic (type I) sauropsid-specific (HAS) keratins, we identified hard basic (type II) sauropsid-specific (HBS) keratins which are conserved in lepidosaurs, turtles, crocodilians, and birds. Immunohistochemical analysis with a newly made antibody revealed expression of chicken HBS1 keratin in the cornifying epithelial cells of feathers. Molecular phylogenetics suggested that the high cysteine contents of HAS and HBS keratins evolved independently from the cysteine-rich sequences of hair keratin orthologs, thus representing products of convergent evolution. In conclusion, we propose an evolutionary model in which HAS and HBS keratins evolved as structural proteins in epithelial cornification of reptiles and at least one HBS keratin was co-opted as a component of feathers after the evolutionary divergence of birds from reptiles. Thus, cytoskeletal proteins of hair and feathers are products of convergent evolution and evolutionary co-option to similar biomechanical functions in clade-specific hard skin appendages.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Molecular tests support the viability of rare earth elements as proxies for fossil biomolecule preservation. Sci Rep 2020; 10:15566. [PMID: 32968129 PMCID: PMC7511940 DOI: 10.1038/s41598-020-72648-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022] Open
Abstract
The rare earth element (REE) composition of a fossil bone reflects its chemical alteration during diagenesis. Consequently, fossils presenting low REE concentrations and/or REE profiles indicative of simple diffusion, signifying minimal alteration, have been proposed as ideal candidates for paleomolecular investigation. We directly tested this prediction by conducting multiple biomolecular assays on a well-preserved fibula of the dinosaur Edmontosaurus from the Cretaceous Hell Creek Formation previously found to exhibit low REE concentrations and steeply-declining REE profiles. Gel electrophoresis identified the presence of organic material in this specimen, and subsequent immunofluorescence and enzyme-linked immunosorbant assays identified preservation of epitopes of the structural protein collagen I. Our results thereby support the utility of REE profiles as proxies for soft tissue and biomolecular preservation in fossil bones. Based on considerations of trace element taphonomy, we also draw predictions as to the biomolecular recovery potential of additional REE profile types exhibited by fossil bones.
Collapse
|
20
|
Martin-Silverstone E, Habib MB, Hone DWE. Volant Fossil Vertebrates: Potential for Bioinspired Flight Technology. Trends Ecol Evol 2020; 35:618-629. [PMID: 32521245 DOI: 10.1016/j.tree.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
Animal flight is ecologically important and has a long evolutionary history. It has evolved independently in many distantly related clades of animals. Powered flight has evolved only three times in vertebrates, making it evolutionarily rare. Major recent fossil discoveries have provided key data on fossil flying vertebrates and critical insights regarding the evolution and different arrangements of animal flight surfaces. Combined with new methodologies, these discoveries have paved the way for potentially expanding biomimetic and biologically inspired designs to incorporate lessons from fossil taxa. Here, we review the latest knowledge and literature regarding flight performance in fossil vertebrates. We then synthesise key elements to provide an overview of those cases where fossil flyers might provide new insights for applied sciences.
Collapse
Affiliation(s)
- Elizabeth Martin-Silverstone
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Michael B Habib
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA 90007, USA
| | - David W E Hone
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
21
|
Pan Y. Molecular paleontology as an exciting, challenging and controversial field. Natl Sci Rev 2020; 7:823. [PMID: 34692100 PMCID: PMC8288859 DOI: 10.1093/nsr/nwaa001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yanhong Pan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, China
| |
Collapse
|
22
|
Canoville A, Schweitzer MH, Zanno L. Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190133. [PMID: 31928189 DOI: 10.1098/rstb.2019.0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medullary bone (MB) is a sex-specific tissue produced by female birds during the laying cycle, and it is hypothesized to have arisen within Avemetatarsalia, possibly outside Avialae. Over the years, researchers have attempted to define a set of criteria from which to evaluate the nature of purported MB-like tissues recovered from fossil specimens. However, we argue that the prevalence, microstructural and chemical variability of MB in Neornithes is, as of yet, incompletely known and thus current diagnoses of MB do not capture the extent of variability that exists in modern birds. Based on recently published data and our own observations of MB distribution and structure using computed tomography and histochemistry, we attempt to advance the discourse on identifying MB in fossil specimens. We propose: (i) new insights into the phylogenetic breadth and structural diversity of MB within extant birds; (ii) a reevaluation and refinement of the most recently published list of criteria suggested for confidently identifying MB in the fossil record; (iii) reconsideration of some prior identifications of MB-like tissues in fossil specimens by taking into account the newly acquired data; and (iv) discussions on the challenges of characterizing MB in Neornithes with the goal of improving its diagnosis in extinct avemetatarsalians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Aurore Canoville
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Schweitzer
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA.,Department of Geology, Lund University, 223 62 Lund, Sweden
| | - Lindsay Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
23
|
Slater TS, McNamara ME, Orr PJ, Foley TB, Ito S, Wakamatsu K. Taphonomic experiments resolve controls on the preservation of melanosomes and keratinous tissues in feathers. PALAEONTOLOGY 2020; 63:103-115. [PMID: 32025055 PMCID: PMC6988486 DOI: 10.1111/pala.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Fossils are a key source of data on the evolution of feather structure and function through deep time, but their ability to resolve macroevolutionary questions is compromised by an incomplete understanding of their taphonomy. Critically, the relative preservation potential of two key feather components, melanosomes and keratinous tissue, is not fully resolved. Recent studies suggesting that melanosomes are preferentially preserved conflict with observations that melanosomes preserve in fossil feathers as external moulds in an organic matrix. To date, there is no model to explain the latter mode of melanosome preservation. We addressed these issues by degrading feathers in systematic taphonomic experiments incorporating decay, maturation and oxidation in isolation and combination. Our results reveal that the production of mouldic melanosomes requires interactions with an oxidant and is most likely to occur prior to substantial maturation. This constrains the taphonomic conditions under which melanosomes are likely to be fossilized. Critically, our experiments also confirm that keratinous feather structures have a higher preservation potential than melanosomes under a range of diagenetic conditions, supporting hitherto controversial hypotheses that fossil feathers can retain degraded keratinous structures.
Collapse
Affiliation(s)
- Tiffany S. Slater
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
| | - Maria E. McNamara
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
| | - Patrick J. Orr
- UCDSchool of Earth SciencesUniversity College DublinDublinIreland
| | - Tara B. Foley
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
| | - Shosuke Ito
- Department of ChemistryFujita Health University School of Health SciencesToyoakeAichiJapan
| | - Kazumasa Wakamatsu
- Department of ChemistryFujita Health University School of Health SciencesToyoakeAichiJapan
| |
Collapse
|
24
|
Zhou Z. Dinosaurs: what discoveries are truly revolutionary? Curr Biol 2019. [DOI: 10.1016/j.cub.2019.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
O'Connor J, Zheng X, Dong L, Wang X, Wang Y, Zhang X, Zhou Z. Microraptor with Ingested Lizard Suggests Non-specialized Digestive Function. Curr Biol 2019; 29:2423-2429.e2. [PMID: 31303494 DOI: 10.1016/j.cub.2019.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
Direct indicators of diet and predator-prey relationships are exceedingly rare in the fossil record [1, 2]. However, it is through such traces that we can best understand trophic interactions in ancient ecosystems [3], confirm dietary inferences derived from skeletal morphologies [4], and clarify behavioral and ecological interpretations [5]. Here, we identify a previously unrecognized lizard species in the abdomen of a specimen of Microraptor zhaoianus, a small, volant dromaeosaurid (Paraves) with asymmetrical flight feathers on both its forelimbs and hindlimbs from the Early Cretaceous Jehol Biota [6-8]. The lizard is largely complete and articulated, confirming the current perception of Microraptor as an agile opportunistic predator that, like extant reptiles, including raptorial birds, ingested small prey whole and head first [9]. The lizard can be readily distinguished from previously recognized Early Cretaceous species based on its unusual widely spaced and brachydont dentition. Phylogenetic analysis suggests Indrasaurus wangi gen. et sp. nov. is a basal scleroglossan closely related to the slightly older Liushusaurus [10]. Comparison of ingested remains preserved across Paraves suggests that dromaeosaurids retained the plesiomorphic condition in which ingested prey were fully digested, rather than egested, as has been demonstrated was the case in the probable troodontid Anchiornis [11]. This supports a closer relationship between Aves and Anchiornis [12, 13] and suggests that flight did not precipitate the evolution of pellet egestion in Paraves and that the evolution of the "modern avian" digestive system in paravians was highly homoplastic [14]. A preliminary Jehol food web is reconstructed from current data.
Collapse
Affiliation(s)
- Jingmai O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 10010, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China.
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China; Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Liping Dong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 10010, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China; Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China; College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China; Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Xiaomei Zhang
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 10010, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China
| |
Collapse
|
26
|
Hartman S, Mortimer M, Wahl WR, Lomax DR, Lippincott J, Lovelace DM. A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight. PeerJ 2019; 7:e7247. [PMID: 31333906 PMCID: PMC6626525 DOI: 10.7717/peerj.7247] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/01/2019] [Indexed: 11/20/2022] Open
Abstract
The last two decades have seen a remarkable increase in the known diversity of basal avialans and their paravian relatives. The lack of resolution in the relationships of these groups combined with attributing the behavior of specialized taxa to the base of Paraves has clouded interpretations of the origin of avialan flight. Here, we describe Hesperornithoides miessleri gen. et sp. nov., a new paravian theropod from the Morrison Formation (Late Jurassic) of Wyoming, USA, represented by a single adult or subadult specimen comprising a partial, well-preserved skull and postcranial skeleton. Limb proportions firmly establish Hesperornithoides as occupying a terrestrial, non-volant lifestyle. Our phylogenetic analysis emphasizes extensive taxonomic sampling and robust character construction, recovering the new taxon most parsimoniously as a troodontid close to Daliansaurus, Xixiasaurus, and Sinusonasus. Multiple alternative paravian topologies have similar degrees of support, but proposals of basal paravian archaeopterygids, avialan microraptorians, and Rahonavis being closer to Pygostylia than archaeopterygids or unenlagiines are strongly rejected. All parsimonious results support the hypothesis that each early paravian clade was plesiomorphically flightless, raising the possibility that avian flight originated as late as the Late Jurassic or Early Cretaceous.
Collapse
Affiliation(s)
- Scott Hartman
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Dean R. Lomax
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | | | - David M. Lovelace
- University of Wisconsin Geology Museum, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Benton MJ, Dhouailly D, Jiang B, McNamara M. The Early Origin of Feathers. Trends Ecol Evol 2019; 34:856-869. [PMID: 31164250 DOI: 10.1016/j.tree.2019.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Feathers have long been regarded as the innovation that drove the success of birds. However, feathers have been reported from close dinosaurian relatives of birds, and now from ornithischian dinosaurs and pterosaurs, the cousins of dinosaurs. Incomplete preservation makes these reports controversial. If true, these findings shift the origin of feathers back 80 million years before the origin of birds. Gene regulatory networks show the deep homology of scales, feathers, and hairs. Hair and feathers likely evolved in the Early Triassic ancestors of mammals and birds, at a time when synapsids and archosaurs show independent evidence of higher metabolic rates (erect gait and endothermy), as part of a major resetting of terrestrial ecosystems following the devastating end-Permian mass extinction.
Collapse
Affiliation(s)
| | | | - Baoyu Jiang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University of Cork, Cork, Ireland
| |
Collapse
|
28
|
Affiliation(s)
- Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.
| |
Collapse
|
29
|
Rauhut OWM, Tischlinger H, Foth C. A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 2019; 8:e43789. [PMID: 31084702 PMCID: PMC6516837 DOI: 10.7554/elife.43789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
The Late Jurassic 'Solnhofen Limestones' are famous for their exceptionally preserved fossils, including the urvogel Archaeopteryx, which has played a pivotal role in the discussion of bird origins. Here we describe a new, non-archaeopterygid avialan from the Lower Tithonian Mörnsheim Formation of the Solnhofen Archipelago, Alcmonavis poeschli gen. et sp. nov. Represented by a right wing, Alcmonavis shows several derived characters, including a pronounced attachment for the pectoralis muscle, a pronounced tuberculum bicipitale radii, and a robust second manual digit, indicating that it is a more derived avialan than Archaeopteryx. Several modifications, especially in muscle attachments of muscles that in modern birds are related to the downstroke of the wing, indicate an increased adaptation of the forelimb for active flapping flight in the early evolution of birds. This discovery indicates higher avialan diversity in the Late Jurassic than previously recognized.
Collapse
Affiliation(s)
- Oliver WM Rauhut
- Staatliche naturwissenschaftliche Sammlungen Bayerns (SNSB)Bayerische Staatssammlung für Paläontologie und GeologieMünchenGermany
- Department for Earth and Environmental Sciences, Palaeontology and GeobiologyLudwig-Maximilians-UniversitätMünchenGermany
- GeoBioCenterLudwig-Maximilians-UniversitätMünchenGermany
| | | | - Christian Foth
- Department of GeosciencesUniversité de FribourgFribourgSwitzerland
| |
Collapse
|
30
|
Abstract
Ancient protein analysis is a rapidly developing field of research. Proteins ranging in age from the Quaternary to Jurassic are being used to answer questions about phylogeny, evolution, and extinction. However, these analyses are sometimes contentious, and focus primarily on large vertebrates in sedimentary fossilisation environments; there are few studies of protein preservation in fossils in amber. Here we show exceptionally slow racemisation rates during thermal degradation experiments of resin enclosed feathers, relative to previous thermal degradation experiments of ostrich eggshell, coral skeleton, and limpet shell. We also recover amino acids from two specimens of fossil feathers in amber. The amino acid compositions are broadly similar to those of degraded feathers, but concentrations are very low, suggesting that much of the original protein has been degraded and lost. High levels of racemisation in more apolar, slowly racemising amino acids suggest that some of the amino acids were ancient and therefore original. Our findings indicate that the unique fossilisation environment inside amber shows potential for the recovery of ancient amino acids and proteins.
Collapse
|