1
|
Gerle C, Jiko C, Nakano A, Yokoyama K, Gopalasingam CC, Shigematsu H, Abe K. Human F-ATP synthase as a drug target. Pharmacol Res 2024; 209:107423. [PMID: 39303772 DOI: 10.1016/j.phrs.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Practical and conceptual barriers have kept human F-ATP synthase out of reach as a target for the treatment of human diseases. Although this situation has persisted for decades, it may change in the near future. In this review the principal functionalities of human F-ATP synthase--proton motive force / ATP interconversion, membrane bending and mitochondrial permeability transition--are surveyed in the context of their respective potential for pharmaceutical intervention. Further, the technical requirements necessary to allow drug designs that are effective at the multiple levels of functionality and modality of human F-ATP synthase are discussed. The structure-based development of gastric proton pump inhibitors is used to exemplify what might be feasible for human F-ATP synthase. And finally, four structural regions of the human F-ATP synthase are examined as potential sites for the development of structure based drug development.
Collapse
Affiliation(s)
- Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, 1-1-1, Sayo, Hyogo, Japan.
| | - Chimari Jiko
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Chai C Gopalasingam
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, 1-1-1, Sayo, Hyogo, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Kazuhiro Abe
- Molecular Biochemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Hickey AJR, Harford AR, Blier PU, Devaux JB. What causes cardiac mitochondrial failure at high environmental temperatures? J Exp Biol 2024; 227:jeb247432. [PMID: 39412006 DOI: 10.1242/jeb.247432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Although a mechanism accounting for hyperthermic death at critical temperatures remains elusive, the mitochondria of crucial active excitable tissues (i.e. heart and brain) may well be key to this process. Mitochondria produce ∼90% of the ATP required by cells to maintain cellular integrity and function. They also integrate into biosynthetic pathways that support metabolism as a whole, allow communication within the cell, and regulate cellular health and death pathways. We have previously shown that cardiac and brain mitochondria demonstrate decreases in the efficiency of, and absolute capacity for ATP synthesis as temperatures rise, until ultimately there is too little ATP to support cellular demands, and organ failure follows. Importantly, substantial decreases in ATP synthesis occur at temperatures immediately below the temperature of heart failure, and this suggests a causal role of mitochondria in hyperthermic death. However, what causes mitochondria to fail? Here, we consider the answers to this question. Mitochondrial dysfunction at high temperature has classically been attributed to elevated leak respiration suspected to result from increased movement of protons (H+) through the inner mitochondrial membrane (IMM), thereby bypassing the ATP synthases. In this Commentary, we introduce some alternative explanations for elevated leak respiration. We first consider respiratory complex I and then propose that a loss of IMM structure occurs as temperatures rise. The loss of the cristae folds of the IMM may affect the efficiency of H+ transport, increasing H+ conductance either through the IMM or into the bulk water phases of mitochondria. In either case, O2 consumption increases while ATP synthesis decreases.
Collapse
Affiliation(s)
- Anthony J R Hickey
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Alice R Harford
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Pierre U Blier
- Department of Biology, Chemistry and Geography, University of Quebec at Rimouski, 300 Allée des Ursulines, QC, Canada, G5L 3A1
| | - Jules B Devaux
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Martin FJO, Santiveri M, Hu H, Taylor NMI. Ion-driven rotary membrane motors: From structure to function. Curr Opin Struct Biol 2024; 88:102884. [PMID: 39053417 DOI: 10.1016/j.sbi.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Ion-driven membrane motors, essential across all domains of life, convert a gradient of ions across a membrane into rotational energy, facilitating diverse biological processes including ATP synthesis, substrate transport, and bacterial locomotion. Herein, we highlight recent structural advances in the understanding of two classes of ion-driven membrane motors: rotary ATPases and 5:2 motors. The recent structure of the human F-type ATP synthase is emphasised along with the gained structural insight into clinically relevant mutations. Furthermore, we highlight the diverse roles of 5:2 motors and recent mechanistic understanding gained through the resolution of ions in the structure of a sodium-driven motor, combining insights into potential unifying mechanisms of ion selectivity and rotational torque generation in the context of their function as part of complex biological systems.
Collapse
Affiliation(s)
- Freddie J O Martin
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Venkatraman K, Lee CT, Budin I. Setting the curve: the biophysical properties of lipids in mitochondrial form and function. J Lipid Res 2024; 65:100643. [PMID: 39303982 PMCID: PMC11513603 DOI: 10.1016/j.jlr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Mitochondrial membranes are defined by their diverse functions, complex geometries, and unique lipidomes. In the inner mitochondrial membrane, highly curved membrane folds known as cristae house the electron transport chain and are the primary sites of cellular energy production. The outer mitochondrial membrane is flat by contrast, but is critical for the initiation and mediation of processes key to mitochondrial physiology: mitophagy, interorganelle contacts, fission and fusion dynamics, and metabolite transport. While the lipid composition of both the inner mitochondrial membrane and outer mitochondrial membrane have been characterized across a variety of cell types, a mechanistic understanding for how individual lipid classes contribute to mitochondrial structure and function remains nebulous. In this review, we address the biophysical properties of mitochondrial lipids and their related functional roles. We highlight the intrinsic curvature of the bulk mitochondrial phospholipid pool, with an emphasis on the nuances surrounding the mitochondrially-synthesized cardiolipin. We also outline emerging questions about other lipid classes - ether lipids, and sterols - with potential roles in mitochondrial physiology. We propose that further investigation is warranted to elucidate the specific properties of these lipids and their influence on mitochondrial architecture and function.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Christopher T Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Zhang C, Feng Y, Calderin JD, Balutowski A, Ahmed R, Knapp C, Fratti RA. Lysophospholipid headgroup size, and acyl chain length and saturation differentially affect vacuole acidification, Ca 2+ transport, and fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615487. [PMID: 39386589 PMCID: PMC11463366 DOI: 10.1101/2024.09.27.615487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
SNARE-mediated membrane fusion is regulated by the lipid composition of the engaged bilayers. Lipid composition impacts fusion through direct protein lipid interactions or through modulating the physical properties of membranes at the site of contact, including the induction of positive curvature by lysophospholipids (LPLs). The degree of positive curvature induced is due to the length and saturation of the single acyl chain in addition to the size of the head group. Here we examined how yeast vacuole fusion and ion transport were differentially affected by changes in lysolipid properties. We found that lysophosphatidylcholine (LPC) with acyl chains containing 14-18 carbons all inhibited fusion with IC 50 values ranging from ∼40-120 µM. The monounsaturation of LPC-18:1 had no effect when compared to its saturated counterpart LPC-18:0. On the other hand, head group size played a more significant role in blocking fusion as lysophosphatidic acid (LPA)-18:1 failed to fully inhibit fusion. We also show that both Ca 2+ uptake and SNARE-dependent Ca 2+ efflux was sensitive to changes in the acyl chain length and saturation of LPCs, while LPA only affected Ca 2+ efflux. Finally, we tested these LPLs on vacuole acidification by the V-ATPase. This showed that LPC-18:0 could fully inhibit acidification whereas other LPCs had moderate effects. Again, LPA had no effect. Together these data suggest that the effects of LPLs were due to a combination of head group size and acyl chain length leading to a range in degree of positive curvature.
Collapse
|
7
|
Dietrich L, Agip ANA, Kunz C, Schwarz A, Kühlbrandt W. In situ structure and rotary states of mitochondrial ATP synthase in whole Polytomella cells. Science 2024; 385:1086-1090. [PMID: 39236170 DOI: 10.1126/science.adp4640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Cells depend on a continuous supply of adenosine triphosphate (ATP), the universal energy currency. In mitochondria, ATP is produced by a series of redox reactions, whereby an electrochemical gradient is established across the inner mitochondrial membrane. The ATP synthase harnesses the energy of the gradient to generate ATP from adenosine diphosphate (ADP) and inorganic phosphate. We determined the structure of ATP synthase within mitochondria of the unicellular flagellate Polytomella by electron cryo-tomography and subtomogram averaging at up to 4.2-angstrom resolution, revealing six rotary positions of the central stalk, subclassified into 21 substates of the F1 head. The Polytomella ATP synthase forms helical arrays with multiple adjacent rows defining the cristae ridges. The structure of ATP synthase under native operating conditions in the presence of a membrane potential represents a pivotal step toward the analysis of membrane protein complexes in situ.
Collapse
Affiliation(s)
- Lea Dietrich
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Ahmed-Noor A Agip
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Christina Kunz
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| |
Collapse
|
8
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dumbali SP, Horton PD, Moore TI, Wenzel PL. Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Commun Biol 2024; 7:967. [PMID: 39122870 PMCID: PMC11316084 DOI: 10.1038/s42003-024-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulina D Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
10
|
Venkatraman K, Budin I. Cardiolipin remodeling maintains the inner mitochondrial membrane in cells with saturated lipidomes. J Lipid Res 2024; 65:100601. [PMID: 39038656 PMCID: PMC11381790 DOI: 10.1016/j.jlr.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiolipin (CL) is a unique, four-chain phospholipid synthesized in the inner mitochondrial membrane (IMM). The acyl chain composition of CL is regulated through a remodeling pathway, whose loss causes mitochondrial dysfunction in Barth syndrome (BTHS). Yeast has been used extensively as a model system to characterize CL metabolism, but mutants lacking its two remodeling enzymes, Cld1p and Taz1p, exhibit mild structural and respiratory phenotypes compared to mammalian cells. Here, we show an essential role for CL remodeling in the structure and function of the IMM in yeast grown under reduced oxygenation. Microaerobic fermentation, which mimics natural yeast environments, caused the accumulation of saturated fatty acids and, under these conditions, remodeling mutants showed a loss of IMM ultrastructure. We extended this observation to HEK293 cells, where phospholipase A2 inhibition by Bromoenol lactone resulted in respiratory dysfunction and cristae loss upon mild treatment with exogenous saturated fatty acids. In microaerobic yeast, remodeling mutants accumulated unremodeled, saturated CL, but also displayed reduced total CL levels, highlighting the interplay between saturation and CL biosynthesis and/or breakdown. We identified the mitochondrial phospholipase A1 Ddl1p as a regulator of CL levels, and those of its precursors phosphatidylglycerol and phosphatidic acid, under these conditions. Loss of Ddl1p partially rescued IMM structure in cells unable to initiate CL remodeling and had differing lipidomic effects depending on oxygenation. These results introduce a revised yeast model for investigating CL remodeling and suggest that its structural functions are dependent on the overall lipid environment in the mitochondrion.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Kettel P, Karagöz GE. Endoplasmic reticulum: Monitoring and maintaining protein and membrane homeostasis in the endoplasmic reticulum by the unfolded protein response. Int J Biochem Cell Biol 2024; 172:106598. [PMID: 38768891 DOI: 10.1016/j.biocel.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The endoplasmic reticulum (ER) regulates essential cellular processes, including protein folding, lipid synthesis, and calcium homeostasis. The ER homeostasis is maintained by a conserved set of signaling cascades called the Unfolded Protein Response (UPR). How the UPR senses perturbations in ER homeostasis has been the subject of active research for decades. In metazoans, the UPR consists of three ER-membrane embedded sensors: IRE1, PERK and ATF6. These sensors detect the accumulation of misfolded proteins in the ER lumen and adjust protein folding capacity according to cellular needs. Early work revealed that the ER-resident chaperone BiP binds to all three UPR sensors in higher eukaryotes and BiP binding was suggested to regulate their activity. More recent data have shown that in higher eukaryotes the interaction of the UPR sensors with a complex network of chaperones and misfolded proteins modulates their activation and deactivation dynamics. Furthermore, emerging evidence suggests that the UPR monitors ER membrane integrity beyond protein folding defects. However, the mechanistic and structural basis of UPR activation by proteotoxic and lipid bilayer stress in higher eukaryotes remains only partially understood. Here, we review the current understanding of novel protein interaction networks and the contribution of the lipid membrane environment to UPR activation.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Preminger N, Schuldiner M. Beyond fission and fusion-Diving into the mysteries of mitochondrial shape. PLoS Biol 2024; 22:e3002671. [PMID: 38949997 PMCID: PMC11216622 DOI: 10.1371/journal.pbio.3002671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Mitochondrial shape and network formation have been primarily associated with the well-established processes of fission and fusion. However, recent research has unveiled an intricate and multifaceted landscape of mitochondrial morphology that extends far beyond the conventional fission-fusion paradigm. These less-explored dimensions harbor numerous unresolved mysteries. This review navigates through diverse processes influencing mitochondrial shape and network formation, highlighting the intriguing complexities and gaps in our understanding of mitochondrial architecture. The exploration encompasses various scales, from biophysical principles governing membrane dynamics to molecular machineries shaping mitochondria, presenting a roadmap for future research in this evolving field.
Collapse
Affiliation(s)
- Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Crameri JJ, Palmer CS, Stait T, Jackson TD, Lynch M, Sinclair A, Frajman LE, Compton AG, Coman D, Thorburn DR, Frazier AE, Stojanovski D. Reduced Protein Import via TIM23 SORT Drives Disease Pathology in TIMM50-Associated Mitochondrial Disease. Mol Cell Biol 2024; 44:226-244. [PMID: 38828998 PMCID: PMC11204040 DOI: 10.1080/10985549.2024.2353652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
TIMM50 is a core subunit of the TIM23 complex, the mitochondrial inner membrane translocase responsible for the import of pre-sequence-containing precursors into the mitochondrial matrix and inner membrane. Here we describe a mitochondrial disease patient who is homozygous for a novel variant in TIMM50 and establish the first proteomic map of mitochondrial disease associated with TIMM50 dysfunction. We demonstrate that TIMM50 pathogenic variants reduce the levels and activity of endogenous TIM23 complex, which significantly impacts the mitochondrial proteome, resulting in a combined oxidative phosphorylation (OXPHOS) defect and changes to mitochondrial ultrastructure. Using proteomic data sets from TIMM50 patient fibroblasts and a TIMM50 HEK293 cell model of disease, we reveal that laterally released substrates imported via the TIM23SORT complex pathway are most sensitive to loss of TIMM50. Proteins involved in OXPHOS and mitochondrial ultrastructure are enriched in the TIM23SORT substrate pool, providing a biochemical mechanism for the specific defects in TIMM50-associated mitochondrial disease patients. These results highlight the power of using proteomics to elucidate molecular mechanisms of disease and uncovering novel features of fundamental biology, with the implication that human TIMM50 may have a more pronounced role in lateral insertion than previously understood.
Collapse
Affiliation(s)
- Jordan J. Crameri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine S. Palmer
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Tegan Stait
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Thomas D. Jackson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Lynch
- Neurosciences Department, Queensland Children’s Hospital, South Brisbane, Queensland, Australia
- Department of Metabolic Medicine, Queensland Children’s Hospital, South Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Adriane Sinclair
- Neurosciences Department, Queensland Children’s Hospital, South Brisbane, Queensland, Australia
| | - Leah E. Frajman
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Alison G. Compton
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - David Coman
- Department of Metabolic Medicine, Queensland Children’s Hospital, South Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
15
|
Ren W, Ge X, Li M, Sun J, Li S, Gao S, Shan C, Gao B, Xi P. Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe. LIGHT, SCIENCE & APPLICATIONS 2024; 13:116. [PMID: 38782912 PMCID: PMC11116397 DOI: 10.1038/s41377-024-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024]
Abstract
Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.
Collapse
Affiliation(s)
- Wei Ren
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shiyi Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shu Gao
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chunyan Shan
- School of Life Sciences, Peking University, Beijing, 100871, China.
- National Center for Protein Sciences, Peking University, Beijing, 100871, China.
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China.
| | - Peng Xi
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Johnson DH, Kou OH, Bouzos N, Zeno WF. Protein-membrane interactions: sensing and generating curvature. Trends Biochem Sci 2024; 49:401-416. [PMID: 38508884 PMCID: PMC11069444 DOI: 10.1016/j.tibs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Biological membranes are integral cellular structures that can be curved into various geometries. These curved structures are abundant in cells as they are essential for various physiological processes. However, curved membranes are inherently unstable, especially on nanometer length scales. To stabilize curved membranes, cells can utilize proteins that sense and generate membrane curvature. In this review, we summarize recent research that has advanced our understanding of interactions between proteins and curved membrane surfaces, as well as work that has expanded our ability to study curvature sensing and generation. Additionally, we look at specific examples of cellular processes that require membrane curvature, such as neurotransmission, clathrin-mediated endocytosis (CME), and organelle biogenesis.
Collapse
Affiliation(s)
- David H Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Orianna H Kou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicoletta Bouzos
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Wade F Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
17
|
Speijer D. How mitochondrial cristae illuminate the important role of oxygen during eukaryogenesis. Bioessays 2024; 46:e2300193. [PMID: 38449346 DOI: 10.1002/bies.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Inner membranes of mitochondria are extensively folded, forming cristae. The observed overall correlation between efficient eukaryotic ATP generation and the area of internal mitochondrial inner membranes both in unicellular organisms and metazoan tissues seems to explain why they evolved. However, the crucial use of molecular oxygen (O2) as final acceptor of the electron transport chain is still not sufficiently appreciated. O2 was an essential prerequisite for cristae development during early eukaryogenesis and could be the factor allowing cristae retention upon loss of mitochondrial ATP generation. Here I analyze illuminating bacterial and unicellular eukaryotic examples. I also discuss formative influences of intracellular O2 consumption on the evolution of the last eukaryotic common ancestor (LECA). These considerations bring about an explanation for the many genes coming from other organisms than the archaeon and bacterium merging at the start of eukaryogenesis.
Collapse
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Grandi M, Fabbian S, Solaini G, Baracca A, Bellanda M, Giorgio V. Peptides Targeting the IF1-ATP Synthase Complex Modulate the Permeability Transition Pore in Cancer HeLa Cells. Int J Mol Sci 2024; 25:4655. [PMID: 38731874 PMCID: PMC11083241 DOI: 10.3390/ijms25094655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.
Collapse
Affiliation(s)
- Martina Grandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Simone Fabbian
- Department of Chemical Science, University of Padova, 35121 Padova, Italy
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Massimo Bellanda
- Department of Chemical Science, University of Padova, 35121 Padova, Italy
- Institute of Biomolecular Chemistry of National Research Council of Italy (CNR), 35131 Padova, Italy
| | - Valentina Giorgio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
19
|
Pandey MP, Telles de Souza PC, Pezeshkian W, Khandelia H. Bending of a lipid membrane edge by annexin A5 trimers. Biophys J 2024; 123:1006-1014. [PMID: 38486451 PMCID: PMC11052700 DOI: 10.1016/j.bpj.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/10/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Plasma membrane damage occurs in healthy cells and more frequently in cancer cells where high growth rates and metastasis result in frequent membrane damage. The annexin family of proteins plays a key role in membrane repair. Annexins are recruited at the membrane injury site by Ca+2 and repair the damaged membrane in concert with several other proteins. Annexin A4 (ANXA4) and ANXA5 form trimers at the bilayer surface, and previous simulations show that the trimers induce high local negative membrane curvature on a flat bilayer. The membrane-curvature-inducing property of ANXA5 is presumed to be vital to the membrane repair mechanism. A previously proposed descriptive model hypothesizes that ANXA5-mediated curvature force is utilized at the free edge of the membrane at a wound site to pull the wound edges together, resulting in the formation of a "neck"-shaped structure, which, when combined with a constriction force exerted by ANXA6, leads to membrane repair. The molecular details and mechanisms of repair remain unknown, in part because the membrane edge is a transient structure that is difficult to investigate both experimentally and computationally. For the first time, we investigate the impact of ANXA5 near a membrane edge, which is modeled by a bicelle under periodic boundary conditions. ANXA5 trimers induce local curvature on the membrane leading to global bending of the bicelle. The global curvature depends on the density of annexins on the bicelle, and the curvature increases with the ANXA5 concentration until it reaches a plateau. The simulations suggest that not only do annexins induce local membrane curvature, but they can change the overall shape of a free-standing membrane. We also demonstrate that ANXA5 trimers reduce the rate of phosphatidylserine lipid diffusion from the cytoplasmic to the exoplasmic leaflet along the edge of the bicelle. In this way, membrane-bound annexins can potentially delay the apoptotic signal triggered by the presence of phosphatidylserine lipids in the outer leaflet, thus biding time for repair of the membrane hole. Our findings provide new insights into the role of ANXA5 at the edges of the membrane (the injury site) and support the curvature-constriction model of membrane repair.
Collapse
Affiliation(s)
- Mayank Prakash Pandey
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Paulo Cesar Telles de Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, INSERM, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Himanshu Khandelia
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
20
|
Wang C, Østergaard L, Hasselholt S, Sporring J. A semi-automatic method for extracting mitochondrial cristae characteristics from 3D focused ion beam scanning electron microscopy data. Commun Biol 2024; 7:377. [PMID: 38548849 PMCID: PMC10978844 DOI: 10.1038/s42003-024-06045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Mitochondria are the main suppliers of energy for cells and their bioenergetic function is regulated by mitochondrial dynamics: the constant changes in mitochondria size, shape, and cristae morphology to secure cell homeostasis. Although changes in mitochondrial function are implicated in a wide range of diseases, our understanding is challenged by a lack of reliable ways to extract spatial features from the cristae, the detailed visualization of which requires electron microscopy (EM). Here, we present a semi-automatic method for the segmentation, 3D reconstruction, and shape analysis of mitochondria, cristae, and intracristal spaces based on 2D EM images of the murine hippocampus. We show that our method provides a more accurate characterization of mitochondrial ultrastructure in 3D than common 2D approaches and propose an operational index of mitochondria's internal organization. With an improved consistency of 3D shape analysis and a decrease in the workload needed for large-scale analysis, we speculate that this tool will help increase our understanding of mitochondrial dynamics in health and disease.
Collapse
Affiliation(s)
- Chenhao Wang
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
- Center for Quantification of Imaging Data from MAX IV, Copenhagen, Denmark.
| | - Leif Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus, Denmark
| | - Stine Hasselholt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus, Denmark
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
- Center for Quantification of Imaging Data from MAX IV, Copenhagen, Denmark.
| |
Collapse
|
21
|
Kang C, Fujioka K, Sun R. Atomistic Insight into the Lipid Nanodomains of Synaptic Vesicles. J Phys Chem B 2024; 128:2707-2716. [PMID: 38325816 DOI: 10.1021/acs.jpcb.3c07982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane curvature, once regarded as a passive consequence of membrane composition and cellular architecture, has been shown to actively modulate various properties of the cellular membrane. These changes could also lead to segregation of the constituents of the membrane, generating nanodomains with precise biological properties. Proteins often linked with neurodegeneration (e.g., tau, alpha-synuclein) exhibit an unintuitive affinity for synaptic vesicles in neurons, which are reported to lack distinct, ordered nanodomains based on their composition. In this study, all-atom molecular dynamics simulations are used to study a full-scale synaptic vesicle of realistic Gaussian curvature and its effect on the membrane dynamics and lipid nanodomain organization. Compelling indicators of nanodomain formation, from the perspective of composition, surface areas per lipid, order parameter, and domain lifetime, are identified in the vesicle membrane, which are absent in a flat bilayer of the same lipid composition. Therefore, our study supports the idea that curvature may induce phase separation in an otherwise fluid, disordered membrane.
Collapse
Affiliation(s)
- Christopher Kang
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kazuumi Fujioka
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Rui Sun
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
22
|
Zorov DB, Abramicheva PA, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT. Mitocentricity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:223-240. [PMID: 38622092 DOI: 10.1134/s0006297924020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Polina A Abramicheva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Vasily A Popkov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry S Semenovich
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elmira I Yakupova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis N Silachev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
23
|
Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, Landoni JC, Rath S, Inde Z, Lugo CM, Luce BE, Ge Y, McDonald JL, Ali I, Ha LL, Kleinstiver BP, Chan DC, Sarosiek KA, Chao LH. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. EMBO J 2024; 43:391-413. [PMID: 38225406 PMCID: PMC10897290 DOI: 10.1038/s44318-024-00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
Collapse
Affiliation(s)
- Michelle Y Fry
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Virly Y Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Juan C Landoni
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sneha Rath
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Bridget E Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, China
| | - Julie L McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ilzat Ali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Leillani L Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Nesterov SV, Plokhikh KS, Chesnokov YM, Mustafin DA, Goleva TN, Rogov AG, Vasilov RG, Yaguzhinsky LS. Safari with an Electron Gun: Visualization of Protein and Membrane Interactions in Mitochondria in Natural Environment. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:257-268. [PMID: 38622094 DOI: 10.1134/s0006297924020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/17/2024]
Abstract
This paper presents new structural data about mitochondria using correlative light and electron microscopy (CLEM) and cryo-electron tomography. These state-of-the-art structural biology methods allow studying biological objects at nanometer scales under natural conditions. Non-invasiveness of these methods makes them comparable to observing animals in their natural environment on a safari. The paper highlights two areas of research that can only be accomplished using these methods. The study visualized location of the Aβ42 amyloid aggregates in relation to mitochondria to test a hypothesis of development of mitochondrial dysfunction in Alzheimer's disease. The results showed that the Aβ42 aggregates do not interact with mitochondria, although some of them are closely located. Therefore, the study demonstrated that mitochondrial dysfunction is not directly associated with the effects of aggregates on mitochondrial structure. Other processes should be considered as sources of mitochondrial dysfunction. Second unique area presented in this work is high-resolution visualization of the mitochondrial membranes and proteins in them. Analysis of the cryo-ET data reveals toroidal holes in the lamellar structures of cardiac mitochondrial cristae, where ATP synthases are located. The study proposes a new mechanism for sorting and clustering protein complexes in the membrane based on topology. According to this suggestion, position of the OXPHOS system proteins in the membrane is determined by its curvature. High-resolution tomography expands and complements existing ideas about the structural and functional organization of mitochondria. This makes it possible to study the previously inaccessible structural interactions of proteins with each other and with membranes in vivo.
Collapse
Affiliation(s)
- Semen V Nesterov
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | | | - Yuriy M Chesnokov
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Denis A Mustafin
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Tatyana N Goleva
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Anton G Rogov
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Raif G Vasilov
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Lev S Yaguzhinsky
- Belozersky Research Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
25
|
Wang DX, Liu B, Han GM, Li Q, Kong DM, Enderlein J, Chen T. Metal-Induced Energy Transfer (MIET) Imaging of Cell Surface Engineering with Multivalent DNA Nanobrushes. ACS NANO 2024. [PMID: 38231016 PMCID: PMC10883130 DOI: 10.1021/acsnano.3c10162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The spacing between cells has a significant impact on cell-cell interactions, which are critical to the fate and function of both individual cells and multicellular organisms. However, accurately measuring the distance between cell membranes and the variations between different membranes has proven to be a challenging task. In this study, we employ metal-induced energy transfer (MIET) imaging/spectroscopy to determine and track the intermembrane distance and variations with nanometer precision. We have developed a DNA-based molecular adhesive called the DNA nanobrush, which serves as a cellular adhesive for connecting the plasma membranes of different cells. By manipulating the number of base pairs within the DNA nanobrush, we can modify various aspects of membrane-membrane interactions such as adhesive directionality, distance, and forces. We demonstrate that such nanometer-level changes can be detected with MIET imaging/spectroscopy. Moreover, we successfully employed MIET to measure distance variations between a cellular plasma membrane and a model membrane. This experiment not only showcases the effectiveness of MIET as a powerful tool for accurately quantifying membrane-membrane interactions but also validates the potential of DNA nanobrushes as cellular adhesives. This innovative method holds significant implications for advancing the study of multicellular interactions.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingnan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Tao Chen
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Pezeshkian W, Ipsen JH. Mesoscale simulation of biomembranes with FreeDTS. Nat Commun 2024; 15:548. [PMID: 38228588 PMCID: PMC10792169 DOI: 10.1038/s41467-024-44819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
We present FreeDTS software for performing computational research on biomembranes at the mesoscale. In this software, a membrane is represented by a dynamically triangulated surface equipped with vertex-based inclusions to integrate the effects of integral and peripheral membrane proteins. Several algorithms are included in the software to simulate complex membranes at different conditions such as framed membranes with constant tension, vesicles and high-genus membranes with various fixed volumes or constant pressure differences and applying external forces to membrane regions. Furthermore, the software allows the user to turn off the shape evolution of the membrane and focus solely on the organization of proteins. As a result, we can take realistic membrane shapes obtained from, for example, cryo-electron tomography and backmap them into a finer simulation model. In addition to many biomembrane applications, this software brings us a step closer to simulating realistic biomembranes with molecular resolution. Here we provide several interesting showcases of the power of the software but leave a wide range of potential applications for interested users.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - John H Ipsen
- MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
27
|
Langlois JP, Larose A, Brouillette E, Delbrouck JA, Boudreault PL, Malouin F. Mode of Antibacterial Action of Tomatidine C3-Diastereoisomers. Molecules 2024; 29:343. [PMID: 38257256 PMCID: PMC10821064 DOI: 10.3390/molecules29020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Tomatidine (TO) is a natural narrow-spectrum antibiotic acting on the Staphylococcus aureus small colony variant (SCV) with a minimal inhibitory concentration (MIC) of 0.06 µg/mL while it shows no activity against prototypical strains (MIC > 128 µg/mL). To expand the spectrum of activity of TO, the 3β-hydroxyl group was substituted with an ethane-1,2-diamine, resulting in two diastereoisomers, TM-02 (C3-β) and TM-03 (C3-α). These molecules are equally potent against prototypical S. aureus and E. coli strains (MIC 8 and 32 µg/mL, respectively), whereas TM-02 is more potent against SCV (MIC 0.5 µg/mL) and hyperpermeable E. coli strains (MIC 1 µg/mL). The differences in their modes of action were investigated. We used membrane vesicles to confirm the inhibition of the bacterial ATP synthase, the documented target of TO, and measured effects on bacterial cell membranes. Both molecules inhibited E. coli ATP synthase, with Ki values of 1.1 µM and 3.5 µM for TM-02 and TM-03, respectively, and the bactericidal effect of TM-02 was linked to ATP synthase inhibition. Furthermore, TM-02 had no major effect on the membrane fluidity and gradually reduced membrane potential. In contrast, TM-03 caused structural damages to membranes and completely disrupted the membrane potential (>90%). We were successful in broadening the spectrum of activity of TO. C3-β-diastereoisomers may have more specific antibacterial action than C3-α.
Collapse
Affiliation(s)
- Jean-Philippe Langlois
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| | - Audrey Larose
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| | - Eric Brouillette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| | - Julien A. Delbrouck
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Pierre-Luc Boudreault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| |
Collapse
|
28
|
Buzzard E, McLaren M, Bragoszewski P, Brancaccio A, Ford H, Daum B, Kuwabara P, Collinson I, Gold V. The consequence of ATP synthase dimer angle on mitochondrial morphology studied by cryo-electron tomography. Biochem J 2024; 481:BCJ20230450. [PMID: 38164968 PMCID: PMC10903453 DOI: 10.1042/bcj20230450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we determined the structure of the ATP synthase dimer from the nematode worm C. elegans and show that the dimer angle differs from previously determined structures. The consequences of this species-specific difference at the dimer interface were investigated by comparing C. elegans and S. cerevisiae mitochondrial morphology. We reveal that C. elegans has a larger ATP synthase dimer angle with more lamellar (flatter) cristae when compared to yeast. The underlying cause of this difference was investigated by generating an atomic model of the C. elegans ATP synthase dimer by homology modelling. A comparison of our C. elegans model to an existing S. cerevisiae structure reveals the presence of extensions and rearrangements in C. elegans subunits associated with maintaining the dimer interface. We speculate that increasing dimer angles could provide an advantage for species that inhabit variable-oxygen environments by forming flatter more energetically efficient cristae.
Collapse
Affiliation(s)
| | | | - Piotr Bragoszewski
- Instytut Biologii Doswiadczalnej im Marcelego Nenckiego Polskiej Akademii Nauk, Warsaw, Poland
| | | | - Holly Ford
- University of Bristol, Bristol, United Kingdom
| | | | | | | | - Vicki Gold
- University of Exeter, Exeter, United Kingdom
| |
Collapse
|
29
|
Podinić T, MacAndrew A, Raha S. Trophoblast Syncytialization: A Metabolic Crossroads. Results Probl Cell Differ 2024; 71:101-125. [PMID: 37996675 DOI: 10.1007/978-3-031-37936-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
During placentation, villous cytotrophoblast (CTB) stem cells proliferate and fuse, giving rise to the multinucleated syncytiotrophoblast (STB), which represents the terminally differentiated villous layer as well as the maternal-fetal interface. The syncytiotrophoblast is at the forefront of nutrient, gas, and waste exchange while also harboring essential endocrine functions to support pregnancy and fetal development. Considering that mitochondrial dynamics and respiration have been implicated in stem cell fate decisions of several cell types and that the placenta is a mitochondria-rich organ, we will highlight the role of mitochondria in facilitating trophoblast differentiation and maintaining trophoblast function. We discuss both the process of syncytialization and the distinct metabolic characteristics associated with CTB and STB sub-lineages prior to and during syncytialization. As mitochondrial respiration is tightly coupled to redox homeostasis, we emphasize the adaptations of mitochondrial respiration to the hypoxic placental environment. Furthermore, we highlight the critical role of mitochondria in conferring the steroidogenic potential of the STB following differentiation. Ultimately, mitochondrial function and morphological changes centrally regulate respiration and influence trophoblast fate decisions through the production of reactive oxygen species (ROS), whose levels modulate the transcriptional activation or suppression of pluripotency or commitment genes.
Collapse
Affiliation(s)
- Tina Podinić
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andie MacAndrew
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sandeep Raha
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
30
|
Sannino DR, Arroyo FA, Pepe-Ranney C, Chen W, Volland JM, Elisabeth NH, Angert ER. The exceptional form and function of the giant bacterium Ca. Epulopiscium viviparus revolves around its sodium motive force. Proc Natl Acad Sci U S A 2023; 120:e2306160120. [PMID: 38109545 PMCID: PMC10756260 DOI: 10.1073/pnas.2306160120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
Epulopiscium spp. are the largest known heterotrophic bacteria; a large cigar-shaped individual is a million times the volume of Escherichia coli. To better understand the metabolic potential and relationship of Epulopiscium sp. type B with its host Naso tonganus, we generated a high-quality draft genome from a population of cells taken from a single fish. We propose the name Candidatus Epulopiscium viviparus to describe populations of this best-characterized Epulopiscium species. Metabolic reconstruction reveals more than 5% of the genome codes for carbohydrate active enzymes, which likely degrade recalcitrant host-diet algal polysaccharides into substrates that may be fermented to acetate, the most abundant short-chain fatty acid in the intestinal tract. Moreover, transcriptome analyses and the concentration of sodium ions in the host intestinal tract suggest that the use of a sodium motive force (SMF) to drive ATP synthesis and flagellar rotation is integral to symbiont metabolism and cellular biology. In natural populations, genes encoding both F-type and V-type ATPases and SMF generation via oxaloacetate decarboxylation are among the most highly expressed, suggesting that ATPases synthesize ATP and balance ion concentrations across the cell membrane. High expression of these and other integral membrane proteins may allow for the growth of its extensive intracellular membrane system. Further, complementary metabolism between microbe and host is implied with the potential provision of nitrogen and B vitamins to reinforce this nutritional symbiosis. The few features shared by all bacterial behemoths include extreme polyploidy, polyphosphate synthesis, and thus far, they have all resisted cultivation in the lab.
Collapse
Affiliation(s)
| | | | - Charles Pepe-Ranney
- Soil & Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY14853
| | - Wenbo Chen
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | - Jean-Marie Volland
- Laboratory for Research in Complex Systems, Menlo Park, CA94025
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Nathalie H. Elisabeth
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | | |
Collapse
|
31
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
32
|
Xie P, Zhang H, Qin Y, Xiong H, Shi C, Zhou Z. Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules 2023; 13:1772. [PMID: 38136643 PMCID: PMC10741411 DOI: 10.3390/biom13121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of various diseases often involves an intricate interplay between membrane proteins and membrane curvature. Understanding the underlying mechanisms of this interaction could offer novel perspectives on disease treatment. In this review, we provide an introduction to membrane curvature and its association with membrane proteins. Furthermore, we delve into the impact and potential implications of this interaction in the context of disease treatment. Lastly, we discuss the prospects and challenges associated with harnessing these interactions for effective disease management, aiming to provide fresh insights into therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China; (P.X.); (H.Z.); (Y.Q.); (H.X.); (C.S.)
| |
Collapse
|
33
|
Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, Landoni JC, Rath S, Inde Z, Lugo CM, Luce BE, Ge Y, McDonald JL, Ali I, Ha LL, Kleinstiver BP, Chan DC, Sarosiek KA, Chao LH. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524176. [PMID: 36711707 PMCID: PMC9882235 DOI: 10.1101/2023.01.16.524176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Paula P. Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Virly Y. Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Juan C. Landoni
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sneha Rath
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | | | - Bridget E. Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Current address: Interdisciplinary Research Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China
| | - Julie L. McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Current address: Massachusetts Institute of Technology, Biology, Cambridge, USA
| | - Ilzat Ali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Leillani L. Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Harvard Medical School, Boston, USA
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| |
Collapse
|
34
|
Althaher AR, Alwahsh M. An overview of ATP synthase, inhibitors, and their toxicity. Heliyon 2023; 9:e22459. [PMID: 38106656 PMCID: PMC10722325 DOI: 10.1016/j.heliyon.2023.e22459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Mitochondrial complex V (ATP synthase) is a remarkable molecular motor crucial in generating ATP and sustaining mitochondrial function. Its importance in cellular metabolism cannot be overstated, as malfunction of ATP synthase has been linked to various pathological conditions. Both natural and synthetic ATP synthase inhibitors have been extensively studied, revealing their inhibitory sites and modes of action. These findings have opened exciting avenues for developing new therapeutics and discovering new pesticides and herbicides to safeguard global food supplies. However, it is essential to remember that these compounds can also adversely affect human and animal health, impacting vital organs such as the nervous system, heart, and kidneys. This review aims to provide a comprehensive overview of mitochondrial ATP synthase, its structural and functional features, and the most common inhibitors and their potential toxicities.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammad Alwahsh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
35
|
Valdivieso González D, Makowski M, Lillo MP, Cao‐García FJ, Melo MN, Almendro‐Vedia VG, López‐Montero I. Rotation of the c-Ring Promotes the Curvature Sorting of Monomeric ATP Synthases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301606. [PMID: 37705095 PMCID: PMC10625105 DOI: 10.1002/advs.202301606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/07/2023] [Indexed: 09/15/2023]
Abstract
ATP synthases are proteins that catalyse the formation of ATP through the rotatory movement of their membrane-spanning subunit. In mitochondria, ATP synthases are found to arrange as dimers at the high-curved edges of cristae. Here, a direct link is explored between the rotatory movement of ATP synthases and their preference for curved membranes. An active curvature sorting of ATP synthases in lipid nanotubes pulled from giant vesicles is found. Coarse-grained simulations confirm the curvature-seeking behaviour of rotating ATP synthases, promoting reversible and frequent protein-protein contacts. The formation of transient protein dimers relies on the membrane-mediated attractive interaction of the order of 1.5 kB T produced by a hydrophobic mismatch upon protein rotation. Transient dimers are sustained by a conic-like arrangement characterized by a wedge angle of θ ≈ 50°, producing a dynamic coupling between protein shape and membrane curvature. The results suggest a new role of the rotational movement of ATP synthases for their dynamic self-assembly in biological membranes.
Collapse
Affiliation(s)
- David Valdivieso González
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
| | - Marcin Makowski
- Instituto de Medicina MolecularFacultade de MedicinaUniversidade de LisboaLisbon1649‐028Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - M. Pilar Lillo
- Departamento Química Física BiológicaInstituto de Química‐Física “Blas Cabrera” (CSIC)Serrano 119Madrid28006Spain
| | - Francisco J. Cao‐García
- Departamento de Estructura de la MateriaFísica Térmica y ElectrónicaUniversidad Complutense de MadridPlaza de Ciencias 1Madrid28040Spain
- Instituto Madrileño de Estudios Avanzados en NanocienciaIMDEA NanocienciaC/ Faraday 9Madrid28049Spain
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Víctor G. Almendro‐Vedia
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
| | - Iván López‐Montero
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
- Instituto PluridisciplinarPaseo Juan XXIII 1Madrid28040Spain
| |
Collapse
|
36
|
Usey MM, Huet D. ATP synthase-associated coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing proteins are critical for mitochondrial function in Toxoplasma gondii. mBio 2023; 14:e0176923. [PMID: 37796022 PMCID: PMC10653836 DOI: 10.1128/mbio.01769-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family are transported into the mitochondrial intermembrane space, where they play important roles in the biogenesis and function of the organelle. Unexpectedly, the ATP synthase of the apicomplexan Toxoplasma gondii harbors CHCH domain-containing subunits of unknown function. As no other ATP synthase studied to date contains this class of proteins, characterizing their function will be of broad interest to the fields of molecular parasitology and mitochondrial evolution. Here, we demonstrate that that two T. gondii ATP synthase subunits containing CHCH domains are required for parasite survival and for stability and function of the ATP synthase. We also show that knockdown disrupts multiple aspects of the mitochondrial morphology of T. gondii and that mutation of key residues in the CHCH domains caused mis-localization of the proteins. This work provides insight into the unique features of the apicomplexan ATP synthase, which could help to develop therapeutic interventions against this parasite and other apicomplexans, such as the malaria-causing parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
37
|
Shoham Y, Oppenheimer N. Hamiltonian Dynamics and Structural States of Two-Dimensional Active Particles. PHYSICAL REVIEW LETTERS 2023; 131:178301. [PMID: 37955494 DOI: 10.1103/physrevlett.131.178301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/27/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023]
Abstract
We show that a two-dimensional system of flocking active particles interacting hydrodynamically can be expressed using a Hamiltonian formalism. The Hamiltonian depends strictly on the angles between the particles and their orientation, thereby restricting their available phase-space. Simulations of co-oriented active particles evolve into "escalators"-sharp lines at a particular tilt along which particles circulate. The conservation of the Hamiltonian and its symmetry germinate the self-assembly of the observed steady-state arrangements as confirmed by stability analysis.
Collapse
Affiliation(s)
- Yuval Shoham
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naomi Oppenheimer
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
38
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
39
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
40
|
Romero-Carramiñana I, Esparza-Moltó PB, Domínguez-Zorita S, Nuevo-Tapioles C, Cuezva JM. IF1 promotes oligomeric assemblies of sluggish ATP synthase and outlines the heterogeneity of the mitochondrial membrane potential. Commun Biol 2023; 6:836. [PMID: 37573449 PMCID: PMC10423274 DOI: 10.1038/s42003-023-05214-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
The coexistence of two pools of ATP synthase in mitochondria has been largely neglected despite in vitro indications for the existence of reversible active/inactive state transitions in the F1-domain of the enzyme. Herein, using cells and mitochondria from mouse tissues, we demonstrate the existence in vivo of two pools of ATP synthase: one active, the other IF1-bound inactive. IF1 is required for oligomerization and inactivation of ATP synthase and for proper cristae formation. Immunoelectron microscopy shows the co-distribution of IF1 and ATP synthase, placing the inactive "sluggish" ATP synthase preferentially at cristae tips. The intramitochondrial distribution of IF1 correlates with cristae microdomains of high membrane potential, partially explaining its heterogeneous distribution. These findings support that IF1 is the in vivo regulator of the active/inactive state transitions of the ATP synthase and suggest that local regulation of IF1-ATP synthase interactions is essential to activate the sluggish ATP synthase.
Collapse
Affiliation(s)
- Inés Romero-Carramiñana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
41
|
Sohn JH, Mutlu B, Latorre-Muro P, Liang J, Bennett CF, Sharabi K, Kantorovich N, Jedrychowski M, Gygi SP, Banks AS, Puigserver P. Liver mitochondrial cristae organizing protein MIC19 promotes energy expenditure and pedestrian locomotion by altering nucleotide metabolism. Cell Metab 2023; 35:1356-1372.e5. [PMID: 37473754 PMCID: PMC10528355 DOI: 10.1016/j.cmet.2023.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.
Collapse
Affiliation(s)
- Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiaxin Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Noa Kantorovich
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Jedrychowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Kumari A, Nguyen DM, Garg V. Patch-clamp technique to study mitochondrial membrane biophysics. J Gen Physiol 2023; 155:e202313347. [PMID: 37347216 PMCID: PMC10287547 DOI: 10.1085/jgp.202313347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Mitochondria are double-membrane organelles crucial for oxidative phosphorylation, enabling efficient ATP synthesis by eukaryotic cells. Both of the membranes, the highly selective inner mitochondrial membrane (IMM) and a relatively porous outer membrane (OMM), harbor a number of integral membrane proteins that help in the transport of biological molecules. These transporters are especially enriched in the IMM, where they help maintain transmembrane gradients for H+, K+, Ca2+, PO43-, and metabolites like ADP/ATP, citrate, etc. Impaired activity of these transporters can affect the efficiency of energy-transducing processes and can alter cellular redox state, leading to activation of cell-death pathways or metabolic syndromes in vivo. Although several methodologies are available to study ion flux through membrane proteins, the patch-clamp technique remains the gold standard for quantitatively analyzing electrogenic ion exchange across membranes. Direct patch-clamp recordings of mitoplasts (mitochondria devoid of outer membrane) in different modes, such as whole-mitoplast or excised-patch mode, allow researchers the opportunity to study the biophysics of mitochondrial transporters in the native membrane, in real time, in isolation from other fluxes or confounding factors due to changes in ion gradients, pH, or mitochondrial potential (ΔΨ). Here, we summarize the use of patch clamp to investigate several membrane proteins of mitochondria. We demonstrate how this technique can be reliably applied to record whole-mitoplast Ca2+ currents mediated via mitochondrial calcium uniporter or H+ currents mediated by uncoupling protein 1 and discuss critical considerations while recording currents from these small vesicles of the IMM (mitoplast diameter = 2-5 µm).
Collapse
Affiliation(s)
- Anshu Kumari
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Dung M. Nguyen
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Vivek Garg
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
43
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
45
|
Adams RA, Liu Z, Hsieh C, Marko M, Lederer WJ, Jafri MS, Mannella C. Structural Analysis of Mitochondria in Cardiomyocytes: Insights into Bioenergetics and Membrane Remodeling. Curr Issues Mol Biol 2023; 45:6097-6115. [PMID: 37504301 PMCID: PMC10378267 DOI: 10.3390/cimb45070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Mitochondria in mammalian cardiomyocytes display considerable structural heterogeneity, the significance of which is not currently understood. We use electron microscopic tomography to analyze a dataset of 68 mitochondrial subvolumes to look for correlations among mitochondrial size and shape, crista morphology and membrane density, and organelle location within rat cardiac myocytes. A tomographic analysis guided the definition of four classes of crista morphology: lamellar, tubular, mixed and transitional, the last associated with remodeling between lamellar and tubular cristae. Correlations include an apparent bias for mitochondria with lamellar cristae to be located in the regions between myofibrils and a two-fold larger crista membrane density in mitochondria with lamellar cristae relative to mitochondria with tubular cristae. The examination of individual cristae inside mitochondria reveals local variations in crista topology, such as extent of branching, alignment of fenestrations and progressive changes in membrane morphology and packing density. The findings suggest both a rationale for the interfibrillar location of lamellar mitochondria and a pathway for crista remodeling from lamellar to tubular morphology.
Collapse
Affiliation(s)
- Raquel A. Adams
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Chongere Hsieh
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Michael Marko
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - W. Jonathan Lederer
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - M. Saleet Jafri
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carmen Mannella
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
46
|
Mendes TV, Ranft J, Berthoumieux H. Model of membrane deformations driven by a surface pH gradient. Phys Rev E 2023; 108:014113. [PMID: 37583220 DOI: 10.1103/physreve.108.014113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/06/2023] [Indexed: 08/17/2023]
Abstract
Many cellular organelles are membrane-bound structures with complex membrane composition and shape. Their shapes have been observed to depend on the metabolic state of the organelle and the mechanisms that couple biochemical pathways and membrane shape are still actively investigated. Here, we study a model coupling inhomogeneities in the lipid composition and membrane geometry via a generalized Helfrich free energy. We derive the resulting stress tensor, the Green's function for a tubular membrane, and compute the phase diagram of the induced deformations. We then apply this model to study the deformation of mitochondria cristae described as membrane tubes supporting a pH gradient at its surface. This gradient in turn controls the lipid composition of the membrane via the protonation or deprotonation of cardiolipins, which are acid-based lipids known to be crucial for mitochondria shape and functioning. Our model predicts the appearance of tube deformations resembling the observed shape changes of cristea when submitted to a proton gradient.
Collapse
Affiliation(s)
- Toni V Mendes
- Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux, Unité Mixte de Recherche 5798, CNRS, F-33400 Talence, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
| | - Jonas Ranft
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, 46 rue d'Ulm, F-75005 Paris, France
| | - Hélène Berthoumieux
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|
47
|
Sinha SD, Wideman JG. The persistent homology of mitochondrial ATP synthases. iScience 2023; 26:106700. [PMID: 37250340 PMCID: PMC10214729 DOI: 10.1016/j.isci.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Relatively little is known about ATP synthase structure in protists, and the investigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling tools to identify an ancestral set of 17 ATP synthase subunits. Most eukaryotes possess an ATP synthase comparable to those of animals and fungi, while some have undergone drastic divergence (e.g., ciliates, myzozoans, euglenozoans). Additionally, a ∼1 billion-year-old gene fusion between ATP synthase stator subunits was identified as a synapomorphy of the SAR (Stramenopila, Alveolata, Rhizaria) supergroup (stramenopile, alveolate, rhizaria). Our comparative approach highlights the persistence of ancestral subunits even amidst major structural changes. We conclude by urging that more ATP synthase structures (e.g., from jakobids, heteroloboseans, stramenopiles, rhizarians) are needed to provide a complete picture of the evolution of the structural diversity of this ancient and essential complex.
Collapse
Affiliation(s)
- Savar D. Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
48
|
Wei Q, Chen B, Wang J, Huang M, Gui Y, Sayyed A, Tan BC. PHB3 Is Required for the Assembly and Activity of Mitochondrial ATP Synthase in Arabidopsis. Int J Mol Sci 2023; 24:ijms24108787. [PMID: 37240131 DOI: 10.3390/ijms24108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial ATP synthase is a multiprotein complex, which consists of a matrix-localized F1 domain (F1-ATPase) and an inner membrane-embedded Fo domain (Fo-ATPase). The assembly process of mitochondrial ATP synthase is complex and requires the function of many assembly factors. Although extensive studies on mitochondrial ATP synthase assembly have been conducted on yeast, much less study has been performed on plants. Here, we revealed the function of Arabidopsis prohibitin 3 (PHB3) in mitochondrial ATP synthase assembly by characterizing the phb3 mutant. The blue native PAGE (BN-PAGE) and in-gel activity staining assays showed that the activities of ATP synthase and F1-ATPase were significantly decreased in the phb3 mutant. The absence of PHB3 resulted in the accumulation of the Fo-ATPase and F1-ATPase intermediates, whereas the abundance of the Fo-ATPase subunit a was decreased in the ATP synthase monomer. Furthermore, we showed that PHB3 could interact with the F1-ATPase subunits β and δ in the yeast two-hybrid system (Y2H) and luciferase complementation imaging (LCI) assay and with Fo-ATPase subunit c in the LCI assay. These results indicate that PHB3 acts as an assembly factor required for the assembly and activity of mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Qingqing Wei
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baoyin Chen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Junjun Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Manna Huang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yuanye Gui
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
49
|
Xin Y, Zhao L, Peng R. HIF-1 signaling: an emerging mechanism for mitochondrial dynamics. J Physiol Biochem 2023:10.1007/s13105-023-00966-0. [PMID: 37178248 DOI: 10.1007/s13105-023-00966-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
A growing emphasis has been paid to the function of mitochondria in tumors, neurodegenerative disorders (NDs), and cardiovascular diseases. Mitochondria are oxygen-sensitive organelles whose function depends on their structural basis. Mitochondrial dynamics are critical in regulating the structure. Mitochondrial dynamics include fission, fusion, motility, cristae remodeling, and mitophagy. These processes could alter mitochondrial morphology, number, as well as distribution, to regulate complicated cellular signaling processes like metabolism. Meanwhile, they also could modulate cell proliferation and apoptosis. The initiation and progression of several diseases, such as tumors, NDs, cardiovascular disease, were all interrelated with mitochondrial dynamics. HIF-1 is a nuclear protein presented as heterodimers, and its transcriptional activity is triggered by hypoxia. It plays an important role in numerous physiological processes including the development of cardiovascular system, immune system, and cartilage. Additionally, it could evoke compensatory responses in cells during hypoxia through upstream and downstream signaling networks. Moreover, the alteration of oxygen level is a pivotal factor to promote mitochondrial dynamics and HIF-1 activation. HIF-1α might be a promising target for modulating mitochondrial dynamics to develop therapeutic approaches for NDs, immunological diseases, and other related diseases. Here, we reviewed the research progress of mitochondrial dynamics and the potential regulatory mechanism of HIF-1 in mitochondrial dynamics.
Collapse
Affiliation(s)
- Yu Xin
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
50
|
Barad BA, Medina M, Fuentes D, Wiseman RL, Grotjahn DA. Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline. J Cell Biol 2023; 222:e202204093. [PMID: 36786771 PMCID: PMC9960335 DOI: 10.1083/jcb.202204093] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cellular cryo-electron tomography (cryo-ET) enables three-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semiautomated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open-source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics pipeline. This pipeline enables rapid modeling of complex membrane structures and allows detailed mapping of inter- and intramembrane spacing, curvedness, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our pipeline, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvedness of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our pipeline offers opportunities for quantifying changes in membrane ultrastructure on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.
Collapse
Affiliation(s)
- Benjamin A. Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michaela Medina
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Fuentes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|