1
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
2
|
Zhang Z, Deng H, Hu S, Han H. Phase separation: a new window in RALF signaling. FRONTIERS IN PLANT SCIENCE 2024; 15:1409770. [PMID: 39006963 PMCID: PMC11240277 DOI: 10.3389/fpls.2024.1409770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Affiliation(s)
- Zilin Zhang
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Huiming Deng
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Songping Hu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Huibin Han
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Hoffmann N, Mohammad E, McFarlane HE. Disrupting cell wall integrity impacts endomembrane trafficking to promote secretion over endocytic trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3731-3747. [PMID: 38676707 PMCID: PMC11194303 DOI: 10.1093/jxb/erae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | - Eskandar Mohammad
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | | |
Collapse
|
4
|
Wang B, Zhou Z, Zhou JM, Li J. Myosin XI-mediated BIK1 recruitment to nanodomains facilitates FLS2-BIK1 complex formation during innate immunity in Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2312415121. [PMID: 38875149 PMCID: PMC11194512 DOI: 10.1073/pnas.2312415121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
Plants rely on immune receptor complexes at the cell surface to perceive microbial molecules and transduce these signals into the cell to regulate immunity. Various immune receptors and associated proteins are often dynamically distributed in specific nanodomains on the plasma membrane (PM). However, the exact molecular mechanism and functional relevance of this nanodomain targeting in plant immunity regulation remain largely unknown. By utilizing high spatiotemporal resolution imaging and single-particle tracking analysis, we show that myosin XIK interacts with remorin to recruit and stabilize PM-associated kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) within immune receptor FLAGELLIN SENSING 2 (FLS2)-containing nanodomains. This recruitment facilitates FLS2/BIK1 complex formation, leading to the full activation of BIK1-dependent defense responses upon ligand perception. Collectively, our findings provide compelling evidence that myosin XI functions as a molecular scaffold to enable a spatially confined complex assembly within nanodomains. This ensures the presence of a sufficient quantity of preformed immune receptor complex for efficient signaling transduction from the cell surface.
Collapse
Affiliation(s)
- Bingxiao Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing100875, China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing100193, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- Yazhouwan National Laboratory, Sanya, Hainan Province572024, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing100875, China
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
| |
Collapse
|
5
|
Lalun VO, Breiden M, Galindo-Trigo S, Smakowska-Luzan E, Simon RGW, Butenko MA. A dual function of the IDA peptide in regulating cell separation and modulating plant immunity at the molecular level. eLife 2024; 12:RP87912. [PMID: 38896460 PMCID: PMC11186634 DOI: 10.7554/elife.87912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.
Collapse
Affiliation(s)
- Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Maike Breiden
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Elwira Smakowska-Luzan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | - Rüdiger GW Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| |
Collapse
|
6
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Rohr L, Ehinger A, Rausch L, Glöckner Burmeister N, Meixner AJ, Gronnier J, Harter K, Kemmerling B, zur Oven-Krockhaus S. OneFlowTraX: a user-friendly software for super-resolution analysis of single-molecule dynamics and nanoscale organization. FRONTIERS IN PLANT SCIENCE 2024; 15:1358935. [PMID: 38708397 PMCID: PMC11066300 DOI: 10.3389/fpls.2024.1358935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Super-resolution microscopy (SRM) approaches revolutionize cell biology by providing insights into the nanoscale organization and dynamics of macromolecular assemblies and single molecules in living cells. A major hurdle limiting SRM democratization is post-acquisition data analysis which is often complex and time-consuming. Here, we present OneFlowTraX, a user-friendly and open-source software dedicated to the analysis of single-molecule localization microscopy (SMLM) approaches such as single-particle tracking photoactivated localization microscopy (sptPALM). Through an intuitive graphical user interface, OneFlowTraX provides an automated all-in-one solution for single-molecule localization, tracking, as well as mobility and clustering analyses. OneFlowTraX allows the extraction of diffusion and clustering parameters of millions of molecules in a few minutes. Finally, OneFlowTraX greatly simplifies data management following the FAIR (Findable, Accessible, Interoperable, Reusable) principles. We provide a detailed step-by-step manual and guidelines to assess the quality of single-molecule analyses. Applying different fluorophores including mEos3.2, PA-GFP, and PATagRFP, we exemplarily used OneFlowTraX to analyze the dynamics of plant plasma membrane-localized proteins including an aquaporin, the brassinosteroid receptor Brassinosteroid Insensitive 1 (BRI1) and the Receptor-Like Protein 44 (RLP44).
Collapse
Affiliation(s)
- Leander Rohr
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Alexandra Ehinger
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Luiselotte Rausch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Alfred J. Meixner
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
| | - Julien Gronnier
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Birgit Kemmerling
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Sven zur Oven-Krockhaus
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Stuebler M, Manzer ZA, Liu HY, Miller J, Richter A, Krishnan S, Selivanovitch E, Banuna B, Jander G, Reimhult E, Zipfel WR, Roeder AHK, Piñeros MA, Daniel S. Plant Membrane-On-A-Chip: A Platform for Studying Plant Membrane Proteins and Lipids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593404 DOI: 10.1021/acsami.3c18562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a "plasma membrane on a chip," also known as a supported lipid bilayer. Here, we create the "plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein-protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein-protein and protein-lipid interactions in a convenient, cell-free platform.
Collapse
Affiliation(s)
- Martin Stuebler
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- University of Natural Resources and Life Sciences, Vienna 1180, Austria
| | - Zachary A Manzer
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Julia Miller
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, United States
| | - Annett Richter
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | | | - Ekaterina Selivanovitch
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Barituziga Banuna
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Erik Reimhult
- University of Natural Resources and Life Sciences, Vienna 1180, Austria
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Miguel A Piñeros
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, United States
- Robert W. Holley Center for Agriculture & Health, ARS-USDA, Ithaca, New York 14853, United States
| | - Susan Daniel
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Liu MCJ, Yeh FLJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu HM, Cheung AY. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. Cell 2024; 187:312-330.e22. [PMID: 38157854 DOI: 10.1016/j.cell.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.
Collapse
Affiliation(s)
- Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Fang-Ling Jessica Yeh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelly Simpson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Samuel Jordan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - James Chambers
- Light Microscopy Core Facility, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Pain C, Tynan C, Botchway SW, Kriechbaumer V. Variable-Angle Epifluorescence Microscopy for Single-Particle Tracking in the Plant ER. Methods Mol Biol 2024; 2772:273-283. [PMID: 38411821 DOI: 10.1007/978-1-0716-3710-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Single-particle tracking (SPT) of biomolecules in the plant endoplasmic reticulum has the potential to inform on the formation of protein-protein complexes, metabolons, and the transport of molecules through both the ER membrane and lumen. Plant cells are particularly challenging for observing and tracking single molecules due to their unique structure, size, and considerable autofluorescence. However, by using variable-angle or highly inclined epifluorescence microscopy (VAEM) and transient expression in tobacco, it is possible to observe single-particle dynamics in the ER. Selecting the appropriate fluorophore, and ensuring the correct fluorophore density in the ER, is essential for successful SPT. By using tuneable fluorophores, which can be photoconverted and photoactivated, it is possible to vary the density of visible fluorophores in the ER dynamically. Here we describe methods to prepare plant samples for VAEM and two methods for determining and analyzing single-particle tracks from VAEM time series.
Collapse
Affiliation(s)
- Charlotte Pain
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Christopher Tynan
- Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
11
|
Arico DS, Dickmann JE, Hamant O, Canut H. The plasma membrane - cell wall nexus in plant cells: focus on the Hechtian structure. Cell Surf 2023; 10:100115. [PMID: 38024561 PMCID: PMC10663899 DOI: 10.1016/j.tcsw.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Across all kingdoms of life, cells secrete an extracellular polymer mesh that in turn feeds back onto them. This entails physical connections between the plasma membrane and the polymer mesh. In plant cells, one connection stands out: the Hechtian strand which, during plasmolysis, reflects the existence of a physical link between the plasma membrane of the retracting protoplast and the cell wall. The Hechtian strand is part of a larger structure, which we call the Hechtian structure, that comprises the Hechtian strand, the Hechtian reticulum and the Hechtian attachment sites. Although it has been observed for more than 100 years, its molecular composition and biological functions remain ill-described. A comprehensive characterization of the Hechtian structure is a critical step towards understanding this plasma membrane-cell wall connection and its relevance in cell signaling. This short review intends to highlight the main features of the Hechtian structure, in order to provide a clear framework for future research in this under-explored and promising field.
Collapse
Affiliation(s)
- Denise S. Arico
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320 Auzeville Tolosane, France
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Johanna E.M. Dickmann
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320 Auzeville Tolosane, France
| |
Collapse
|
12
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
13
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
14
|
Kado T, Akbary Z, Motooka D, Sparks IL, Melzer ES, Nakamura S, Rojas ER, Morita YS, Siegrist MS. A cell wall synthase accelerates plasma membrane partitioning in mycobacteria. eLife 2023; 12:e81924. [PMID: 37665120 PMCID: PMC10547480 DOI: 10.7554/elife.81924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/02/2023] [Indexed: 09/05/2023] Open
Abstract
Lateral partitioning of proteins and lipids shapes membrane function. In model membranes, partitioning can be influenced both by bilayer-intrinsic factors like molecular composition and by bilayer-extrinsic factors such as interactions with other membranes and solid supports. While cellular membranes can departition in response to bilayer-intrinsic or -extrinsic disruptions, the mechanisms by which they partition de novo are largely unknown. The plasma membrane of Mycobacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane partitioning and cell growth during recovery from benzyl alcohol exposure. PonA2's role in membrane repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer helps to maintain membrane partitioning. Our work highlights the complexity of membrane-cell wall interactions and establishes a facile model system for departitioning and repartitioning cellular membranes.
Collapse
Affiliation(s)
- Takehiro Kado
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Zarina Akbary
- Department of Biology, New York UniversityNew YorkUnited States
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Emily S Melzer
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Enrique R Rojas
- Department of Biology, New York UniversityNew YorkUnited States
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Graduate Program, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
15
|
Pan X, Pérez-Henríquez P, Van Norman JM, Yang Z. Membrane nanodomains: Dynamic nanobuilding blocks of polarized cell growth. PLANT PHYSIOLOGY 2023; 193:83-97. [PMID: 37194569 DOI: 10.1093/plphys/kiad288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Cell polarity is intimately linked to numerous biological processes, such as oriented plant cell division, particular asymmetric division, cell differentiation, cell and tissue morphogenesis, and transport of hormones and nutrients. Cell polarity is typically initiated by a polarizing cue that regulates the spatiotemporal dynamic of polarity molecules, leading to the establishment and maintenance of polar domains at the plasma membrane. Despite considerable progress in identifying key polarity regulators in plants, the molecular and cellular mechanisms underlying cell polarity formation have yet to be fully elucidated. Recent work suggests a critical role for membrane protein/lipid nanodomains in polarized morphogenesis in plants. One outstanding question is how the spatiotemporal dynamics of signaling nanodomains are controlled to achieve robust cell polarization. In this review, we first summarize the current state of knowledge on potential regulatory mechanisms of nanodomain dynamics, with a special focus on Rho-like GTPases from plants. We then discuss the pavement cell system as an example of how cells may integrate multiple signals and nanodomain-involved feedback mechanisms to achieve robust polarity. A mechanistic understanding of nanodomains' roles in plant cell polarity is still in the early stages and will remain an exciting area for future investigations.
Collapse
Affiliation(s)
- Xue Pan
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C 1A4, Canada
| | - Patricio Pérez-Henríquez
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Jaimie M Van Norman
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| |
Collapse
|
16
|
Guo X, Zhu K, Zhu X, Zhao W, Miao Y. Two-dimensional molecular condensation in cell signaling and mechanosensing. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1064-1074. [PMID: 37475548 PMCID: PMC10423693 DOI: 10.3724/abbs.2023132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/21/2023] [Indexed: 07/22/2023] Open
Abstract
Membraneless organelles (MLO) regulate diverse biological processes in a spatiotemporally controlled manner spanning from inside to outside of the cells. The plasma membrane (PM) at the cell surface serves as a central platform for forming multi-component signaling hubs that sense mechanical and chemical cues during physiological and pathological conditions. During signal transduction, the assembly and formation of membrane-bound MLO are dynamically tunable depending on the physicochemical properties of the surrounding environment and partitioning biomolecules. Biomechanical properties of MLO-associated membrane structures can control the microenvironment for biomolecular interactions and assembly. Lipid-protein complex interactions determine the catalytic region's assembly pattern and assembly rate and, thereby, the amplitude of activities. In this review, we will focus on how cell surface microenvironments, including membrane curvature, surface topology and tension, lipid-phase separation, and adhesion force, guide the assembly of PM-associated MLO for cell signal transductions.
Collapse
Affiliation(s)
- Xiangfu Guo
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological UniversitySingapore637457Singapore
| | - Kexin Zhu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xinlu Zhu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Wenting Zhao
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological UniversitySingapore637457Singapore
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingapore636921Singapore
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingapore636921Singapore
| |
Collapse
|
17
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Kryzheuskaya K, Dziewit K, Wdowiak A, Laszczka M, Szal B. A prospective study of short-term apoplastic responses to ammonium treatment. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154008. [PMID: 37245458 DOI: 10.1016/j.jplph.2023.154008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
The integration of external stimuli into plant cells has been extensively studied. Ammonium is a metabolic trigger because it affects plant nutrition status; on the contrary, it is also a stress factor inducing oxidative changes. Plants, upon quick reaction to the presence of ammonium, can avoid the development of toxicity symptoms, but their primary ammonium sensing mechanisms remain unknown. This study aimed to investigate the different signaling routes available in the extracellular space in response to supplying ammonium to plants. During short-term (30 min-24 h) ammonium treatment of Arabidopsis seedlings, no indication of oxidative stress development or cell wall modifications was observed. However, specific changes in reactive oxygen species (ROS) and redox status were observed in the apoplast, consequently leading to the activation of several ROS (RBOH, NQR), redox (MPK, OXI), and cell-wall (WAK, FER, THE, HERK) related genes. Therefore, it is expected that immediately after ammonium supply, a defense signaling route is initiated in the extracellular space. To conclude, the presence of ammonium is primarily perceived as a typical immune reaction.
Collapse
Affiliation(s)
- Maria Burian
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Kacper Dziewit
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Agata Wdowiak
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Marta Laszczka
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
18
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
19
|
Lu Y, Zhang Y, Lian N, Li X. Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. Int J Mol Sci 2023; 24:ijms24076059. [PMID: 37047032 PMCID: PMC10094514 DOI: 10.3390/ijms24076059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The plasma membrane (PM), which is composed of a lipid layer implanted with proteins, has diverse functions in plant responses to environmental triggers. The heterogenous dynamics of lipids and proteins in the plasma membrane play important roles in regulating cellular activities with an intricate pathway that orchestrates reception, signal transduction and appropriate response in the plant immune system. In the process of the plasma membrane participating in defense responses, the cytoskeletal elements have important functions in a variety of ways, including regulation of protein and lipid dynamics as well as vesicle trafficking. In this review, we summarized how the plasma membrane contributed to plant immunity and focused on the dynamic process of cytoskeleton regulation of endocytosis and exocytosis and propose future research directions.
Collapse
Affiliation(s)
- Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Abstract
Most bacteria have cell wall peptidoglycan surrounding their plasma membranes. The essential cell wall provides a scaffold for the envelope, protection against turgor pressure and is a proven drug target. Synthesis of the cell wall involves reactions that span cytoplasmic and periplasmic compartments. Bacteria carry out the last steps of cell wall synthesis along their plasma membrane. The plasma membrane in bacteria is heterogeneous and contains membrane compartments. Here, I outline findings that highlight the emerging notion that plasma membrane compartments and the cell wall peptidoglycan are functionally intertwined. I start by providing models of cell wall synthesis compartmentalization within the plasma membrane in mycobacteria, Escherichia coli, and Bacillus subtilis. Then, I revisit literature that supports a role for the plasma membrane and its lipids in modulating enzymatic reactions that synthesize cell wall precursors. I also elaborate on what is known about bacterial lateral organization of the plasma membrane and the mechanisms by which organization is established and maintained. Finally, I discuss the implications of cell wall partitioning in bacteria and highlight how targeting plasma membrane compartmentalization serves as a way to disrupt cell wall synthesis in diverse species.
Collapse
Affiliation(s)
- Alam García-Heredia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Chen W, Zhou H, Xu F, Yu M, Coego A, Rodriguez L, Lu Y, Xie Q, Fu Q, Chen J, Xu G, Wu D, Li X, Li X, Jaillais Y, Rodriguez PL, Zhu S, Yu F. CAR modulates plasma membrane nano-organization and immune signaling downstream of RALF1-FERONIA signaling pathway. THE NEW PHYTOLOGIST 2023; 237:2148-2162. [PMID: 36527240 DOI: 10.1111/nph.18687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In Arabidopsis, the receptor-like kinase (RLK) FERONIA (FER) senses peptide ligands in the plasma membrane (PM), modulates plant growth and development, and integrates biotic and abiotic stress signaling for downstream adaptive responses. However, the molecular interplay of these diverse processes is largely unknown. Here, we show that FER, the receptor of Rapid Alkalinization Factor 1 (RALF1), physically interacts with C2 domain ABA-related (CAR) proteins to control the nano-organization of the PM. During this process, the RALF1-FER pathway upregulates CAR protein translation, and then more CAR proteins are recruited to the PM. This acts as a rapid feedforward loop that stabilizes the PM liquid-ordered phase. FER interacts with and phosphorylates CARs, thereby reducing their lipid-binding ability and breaking the feedback regulation at later time points. The formation of the flg22-induced FLS2-BAK1 immune complex, which depends on the integrity of FER-containing nanodomains, is impaired in fer and pentuple car14569 mutant. Together, we propose that the FER-CAR module controls the formation of PM nano-organization during RALF signaling through a self-contained amplifying loop including both positive and negative feedback.
Collapse
Affiliation(s)
- Weijun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Yuqing Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Qijun Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
22
|
Light Microscopy Technologies and the Plant Cytoskeleton. Methods Mol Biol 2023; 2604:337-352. [PMID: 36773248 DOI: 10.1007/978-1-0716-2867-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cytoskeleton is a dynamic and diverse subcellular filament network, and as such microscopy is an essential technology to enable researchers to study and characterize these systems. Microscopy has a long history of observing the plant world not least as the subject where Robert Hooke coined the term "cell" in his publication Micrographia. From early observations of plant morphology to today's advanced super-resolution technologies, light microscopy is the indispensable tool for the plant cell biologist. In this mini review, we will discuss some of the major modalities used to examine the plant cytoskeleton and the theory behind them.
Collapse
|
23
|
Studying Nuclear Dynamics in Response to Actin Disruption in Planta. Methods Mol Biol 2023; 2604:203-214. [PMID: 36773235 DOI: 10.1007/978-1-0716-2867-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The plant nucleus and the actin cytoskeleton are intimately connected. The actin cytoskeleton is pivotal for nuclear positioning, shape, and dynamics. These properties of the nucleus are important for its functions during normal development and in response to external cues such as biotic and abiotic stresses. Moreover, we know that there is a direct physical connection between the actin cytoskeleton and the nucleus which spans the double-membraned nuclear envelope into the nuclear lamina, and this connection is called the linker of nucleoskeleton and cytoskeleton (LINC) complex. Recently a role for actin in regulating inter-nuclear organization via the control of nuclear invaginations has emerged. Therefore, a detailed understanding of nuclear shape, organization, and dynamics and the techniques used to measure and quantify these metrics will allow us to determine and further understand the contribution made by actin to these parameters. The protocols described here will allow researchers to determine the circularity index of a nucleus, quantify nuclear deformations, and determine dynamics of nuclei within plant cells.
Collapse
|
24
|
Traeger J, Hu D, Yang M, Stacey G, Orr G. Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution. MEMBRANES 2023; 13:142. [PMID: 36837645 PMCID: PMC9958960 DOI: 10.3390/membranes13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Plant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. Here, we used stochastic optical reconstruction fluorescence microscopy (STORM) to quantify the colocalization of the flagellin-sensitive-2 (FLS2) receptor and the nanodomain marker, remorin, within Arabidopsis thaliana root hair cells. We found that recovery of FLS2 and remorin in the plasma membrane, following ligand-induced internalization by bacterial-flagellin-peptide (flg22), reached ~85% of their original membrane density after ~90 min. The pairs colocalized at the membrane at greater frequencies, compared with simulated randomly distributed pairs, except for directly after recovery, suggesting initial uncoordinated recovery followed by remorin and FLS2 pairing in the membrane. The purinergic receptor, P2K1, colocalized with remorin at similar frequencies as FLS2, while FLS2 and P2K1 colocalization occurred at significantly lower frequencies, suggesting that these RLKs mostly occupy distinct nanodomains. The chitin elicitor receptor, CERK1, colocalized with FLS2 and remorin at much lower frequencies, suggesting little coordination between CERK1 and FLS2. These findings emphasize STORM's capacity to observe distinct nanodomains and degrees of coordination between plant cell receptors, and their respective immune pathways.
Collapse
Affiliation(s)
- Jeremiah Traeger
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Mengran Yang
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
25
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
26
|
Wu H, Li Z. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? PLANT COMMUNICATIONS 2022; 3:100346. [PMID: 35689377 PMCID: PMC9700125 DOI: 10.1016/j.xplc.2022.100346] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 05/15/2023]
Abstract
Nano-enabled agriculture is a topic of intense research interest. However, our knowledge of how nanoparticles enter plants, plant cells, and organelles is still insufficient. Here, we discuss the barriers that limit the efficient delivery of nanoparticles at the whole-plant and single-cell levels. Some commonly overlooked factors, such as light conditions and surface tension of applied nano-formulations, are discussed. Knowledge gaps regarding plant cell uptake of nanoparticles, such as the effect of electrochemical gradients across organelle membranes on nanoparticle delivery, are analyzed and discussed. The importance of controlling factors such as size, charge, stability, and dispersibility when properly designing nanomaterials for plants is outlined. We mainly focus on understanding how nanoparticles travel across barriers in plants and plant cells and the major factors that limit the efficient delivery of nanoparticles, promoting a better understanding of nanoparticle-plant interactions. We also provide suggestions on the design of nanomaterials for nano-enabled agriculture.
Collapse
Affiliation(s)
- Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
27
|
Abstract
When the microscope was first introduced to scientists in the 17th century, it started a revolution. Suddenly, a whole new world, invisible to the naked eye, was opened to curious explorers. In response to this realization, Nehemiah Grew, an English plant anatomist and physiologist and one of the early microscopists, noted in 1682 "that Nothing hereof remains further to be known, is a Thought not well Calculated". Since Grew made his observations, the microscope has undergone numerous variations, developing from early compound microscopes-hollow metal tubes with a lens on each end-to the modern, sophisticated, out-of-the-box super-resolution microscopes available to researchers today. In this Overview article, I describe these developments and discuss how each new and improved variant of the microscope led to major breakthroughs in the life sciences, with a focus on the plant field. These advances start with Grew's simple and-at the time-surprising realization that plant cells are as complex as animals cells, and that the different parts of the plant body indeed qualify to be called "organs", then move on to the development of the groundbreaking "cell theory" in the mid-19th century and the description of eu- and heterochromatin in the early 20th century, and finish with the precise localization of individual proteins in intact, living cells that we can perform today. Indeed, Grew was right; with ever-increasing resolution, there really does not seem to be an end to what can be explored with a microscope. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Rzemieniewski J, Stegmann M. Regulation of pattern-triggered immunity and growth by phytocytokines. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102230. [PMID: 35588597 DOI: 10.1016/j.pbi.2022.102230] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Endogenous signalling peptides play diverse roles during plant growth, development and stress responses. Research in recent years has unravelled peptides with previously known growth-regulatory function as immune-modulatory agents that fine-tune pattern-triggered immunity (PTI). Moreover, peptides that are long known as endogenous danger signals were recently implicated in growth and development. In analogy to metazoan systems these peptides are referred to as phytocytokines. In this review we will highlight recent progress made on our understanding of phytocytokines simultaneously regulating growth and PTI which shows the complex interplay of peptide signalling pathways regulating multiple aspects of a plant's life.
Collapse
Affiliation(s)
- Jakub Rzemieniewski
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Stegmann
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
29
|
Gigli-Bisceglia N, van Zelm E, Huo W, Lamers J, Testerink C. Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing. Development 2022; 149:275422. [PMID: 35574987 PMCID: PMC9270968 DOI: 10.1242/dev.200363] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/29/2022] [Indexed: 12/21/2022]
Abstract
Owing to its detrimental effect on plant growth, salinity is an increasing worldwide problem for agriculture. To understand the molecular mechanisms activated in response to salt in Arabidopsis thaliana, we investigated the Catharanthus roseus receptor-like kinase 1-like family, which contains sensors that were previously shown to be involved in sensing the structural integrity of the cell walls. We found that herk1 the1-4 double mutants, lacking the function of HERKULES1 (HERK1) and combined with a gain-of-function allele of THESEUS1 (THE1), strongly respond to salt application, resulting in an intense activation of stress responses, similarly to plants lacking FERONIA (FER) function. We report that salt triggers pectin methyl esterase (PME) activation and show its requirement for the activation of several salt-dependent responses. Because chemical inhibition of PMEs alleviates these salt-induced responses, we hypothesize a model in which salt directly leads to cell wall modifications through the activation of PMEs. Responses to salt partly require the functionality of FER alone or HERK1/THE1 to attenuate salt effects, highlighting the complexity of the salt-sensing mechanisms that rely on cell wall integrity. Summary: Salt-triggered activation of pectin methyl esterase changes pectin in Arabidopsis, inducing at least two pathways: a CrRLK1L-dependent pathway downregulating salt stress responses and a CrRLK1L-independent pathway that activates downstream signaling.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Wenying Huo
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
30
|
Chen P, Ge Y, Chen L, Yan F, Cai L, Zhao H, Lei D, Jiang J, Wang M, Tao Y. SAV4 is required for ethylene-induced root hair growth through stabilizing PIN2 auxin transporter in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1735-1752. [PMID: 35274300 DOI: 10.1111/nph.18079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Root hair development is regulated by hormonal and environmental cues, such as ethylene and low phosphate. Auxin efflux carrier PIN2 (PIN-FORMED 2) plays an important role in establishing a proper auxin gradient in root tips, which is required for root hair development. Ethylene promotes root hair development through increasing PIN2 abundance in root tips, which subsequently leads to enhanced expression of auxin reporter genes. However, how PIN2 is regulated remains obscure. Here, we report that Arabidopsis thaliana sav4 (shade avoidance 4) mutant exhibits defects in ethylene-induced root hair development and in establishing a proper auxin gradient in root tips. Ethylene treatment increased SAV4 abundance in root tips. SAV4 and PIN2 co-localize to the shootward plasma membrane (PM) of root tip epidermal cells. SAV4 directly interacts with the PIN2 hydrophilic region (PIN2HL) and regulates PIN2 abundance on the PM. Vacuolar degradation of PIN2 is suppressed by ethylene, which was weakened in sav4 mutant. Furthermore, SAV4 affects the formation of PIN2 clusters and its lateral diffusion on the PM. In summary, we identified SAV4 as a novel regulator of PIN2 that enhances PIN2 membrane clustering and stability through direct protein-protein interactions. Our study revealed a new layer of regulation on PIN2 dynamics.
Collapse
Affiliation(s)
- Peirui Chen
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Yanhua Ge
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Liying Chen
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Fenglian Yan
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Lingling Cai
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Hongli Zhao
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Deshun Lei
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Jinxi Jiang
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Meiling Wang
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Yi Tao
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| |
Collapse
|
31
|
Abstract
Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall-related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.
Collapse
Affiliation(s)
- Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls University, Tübingen, Germany;
| |
Collapse
|
32
|
An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots. Sci Rep 2022; 12:6947. [PMID: 35484296 PMCID: PMC9051118 DOI: 10.1038/s41598-022-10458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) are the first enzymes that commit phosphatidylinositol into the phosphoinositide pathway. Here, we show that Arabidopsis thaliana seedlings deficient in PI4Kβ1 and β2 have several developmental defects including shorter roots and unfinished cytokinesis. The pi4kβ1β2 double mutant was insensitive to exogenous auxin concerning inhibition of root length and cell elongation; it also responded more slowly to gravistimulation. The pi4kß1ß2 root transcriptome displayed some similarities to a wild type plant response to auxin. Yet, not all the genes displayed such a constitutive auxin-like response. Besides, most assessed genes did not respond to exogenous auxin. This is consistent with data with the transcriptional reporter DR5-GUS. The content of bioactive auxin in the pi4kß1ß2 roots was similar to that in wild-type ones. Yet, an enhanced auxin-conjugating activity was detected and the auxin level reporter DII-VENUS did not respond to exogenous auxin in pi4kß1ß2 mutant. The mutant exhibited altered subcellular trafficking behavior including the trapping of PIN-FORMED 2 protein in rapidly moving vesicles. Bigger and less fragmented vacuoles were observed in pi4kß1ß2 roots when compared to the wild type. Furthermore, the actin filament web of the pi4kß1ß2 double mutant was less dense than in wild-type seedling roots, and less prone to rebuilding after treatment with latrunculin B. A mechanistic model is proposed in which an altered PI4K activity leads to actin filament disorganization, changes in vesicle trafficking, and altered auxin homeostasis and response resulting in a pleiotropic root phenotypes.
Collapse
|
33
|
Zhang Z, Niu M, Li W, Ding C, Xie P, Li Y, Chen L, Lan X, Liu C, Yan X, Fu X, Liu Y, Liu Y, Cao D, Dai J, Hong X, Liu C. Steered polymorphic nanodomains in TiO 2 to boost visible-light photocatalytic oxidation. RSC Adv 2022; 12:9660-9670. [PMID: 35424931 PMCID: PMC8959444 DOI: 10.1039/d2ra00782g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
A breakthrough in enhancing visible-light photocatalysis of wide-bandgap semiconductors such as prototypical titania (TiO2) via cocatalyst decoration is still challenged by insufficient heterojunctions and inevitable interfacial transport issues. Herein, we report a novel TiO2-based composite material composed of in situ generated polymorphic nanodomains including carbon nitride (C3N4) and (001)/(101)-faceted anatase nanocrystals. The introduction of ultrafine C3N4 results in the generation of many oxygen vacancies in the TiO2 lattice, and simultaneously induces the exposure and growth of anatase TiO2(001) facets with high surface energy. The photocatalytic performance of C3N4-induced TiO2 for degradation of 2,4-dichlorophenol under visible-light irradiation was tested, its apparent rate being up to 1.49 × 10-2 min-1, almost 3.8 times as high as that for the pure TiO2 nanofibers. More significantly, even under low operation temperature and after a long-term photocatalytic process, the composite still exhibits exceptional degradation efficiency and stability. The normalized degradation efficiency and effective lifespan of the composite photocatalyst are far superior to other reported modified photocatalysts.
Collapse
Affiliation(s)
- Zeju Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Mang Niu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Wei Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Chenfeng Ding
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha Kunigami-gun, Onna-son Okinawa 904-0495 Japan
- Foshan (Southern China) Institute for New Materials Foshan 528200 China
| | - Peitao Xie
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Yongxin Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Lili Chen
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Xiaopeng Lan
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Chunlei Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Xuewei Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 Sichuan China
| | - Yaochun Liu
- Foshan (Southern China) Institute for New Materials Foshan 528200 China
| | - Yuan Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Foshan (Southern China) Institute for New Materials Foshan 528200 China
| | - Dapeng Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Jingjie Dai
- School of Mechanical and Electronic Engineering, Qingdao Binhai University Qingdao 266555 Shandong China
| | - Xiaofen Hong
- Zhejiang Rich Environmental Protection Technology Co., Ltd Hangzhou 310000 China
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| |
Collapse
|
34
|
Ovečka M, Sojka J, Tichá M, Komis G, Basheer J, Marchetti C, Šamajová O, Kuběnová L, Šamaj J. Imaging plant cells and organs with light-sheet and super-resolution microscopy. PLANT PHYSIOLOGY 2022; 188:683-702. [PMID: 35235660 PMCID: PMC8825356 DOI: 10.1093/plphys/kiab349] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
The documentation of plant growth and development requires integrative and scalable approaches to investigate and spatiotemporally resolve various dynamic processes at different levels of plant body organization. The present update deals with vigorous developments in mesoscopy, microscopy and nanoscopy methods that have been translated to imaging of plant subcellular compartments, cells, tissues and organs over the past 3 years with the aim to report recent applications and reasonable expectations from current light-sheet fluorescence microscopy (LSFM) and super-resolution microscopy (SRM) modalities. Moreover, the shortcomings and limitations of existing LSFM and SRM are discussed, particularly for their ability to accommodate plant samples and regarding their documentation potential considering spherical aberrations or temporal restrictions prohibiting the dynamic recording of fast cellular processes at the three dimensions. For a more comprehensive description, advances in living or fixed sample preparation methods are also included, supported by an overview of developments in labeling strategies successfully applied in plants. These strategies are practically documented by current applications employing model plant Arabidopsis thaliana (L.) Heynh., but also robust crop species such as Medicago sativa L. and Hordeum vulgare L. Over the past few years, the trend towards designing of integrative microscopic modalities has become apparent and it is expected that in the near future LSFM and SRM will be bridged to achieve broader multiscale plant imaging with a single platform.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Sojka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Cintia Marchetti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lenka Kuběnová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Author for communication:
| |
Collapse
|
35
|
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, Zhao B, Park SJ, Landry MP. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. NATURE NANOTECHNOLOGY 2022. [PMID: 34811553 DOI: 10.1101/2021.03.17.435888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Bin Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
36
|
Duan Y, Wang L, Li X, Wang W, Wang J, Liu X, Zhong Y, Cao N, Tong M, Ge W, Guo Y, Li R. Arabidopsis SKU5 Similar 11 and 12 play crucial roles in pollen tube integrity, growth and guidance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:598-614. [PMID: 34775642 DOI: 10.1111/tpj.15580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Pollen tube integrity, growth and guidance are crucial factors in plant sexual reproduction. Members of the plant Skewed5 (SKU5) Similar (SKS) family show strong similarity to multicopper oxidases (MCOs), but they lack conserved histidines in MCO active sites. The functions of most SKS family members are unknown. Here, we show that Arabidopsis pollen-expressed SKS11 and SKS12 play important roles in pollen tube integrity, growth and guidance. The sks11sks12 mutant exhibited significantly reduced male fertility. Most of the pollen from sks11sks12 plants burst when germinated, and the pollen tubes grew slowly and exhibited defective growth along the funiculus and micropyle. SKS11-GFP and SKS12-mCherry were detected at the cell wall in pollen tubes. The contents of several cell wall polysaccharides and arabinogalactans were decreased in the pollen tube cell walls of sks11sks12 plants. Staining with a reactive oxygen species (ROS)-sensitive dye and use of the H2 O2 sensor HyPer revealed that the ROS content in the pollen tubes of sks11sks12 plants was remarkably reduced. SKS11444His-Ala , in which the last conserved histidine was mutated, could restore the mutant phenotypes of sks11sks12. Thus, SKS11/12 are required for pollen tube integrity, growth and guidance possibly by regulating the ROS level and cell wall polysaccharide deposition or remodeling in pollen tubes.
Collapse
Affiliation(s)
- Yazhou Duan
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Limin Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Xueling Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Jing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Yangyang Zhong
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Nana Cao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Mengjuan Tong
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Weina Ge
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| |
Collapse
|
37
|
Codjoe JM, Miller K, Haswell ES. Plant cell mechanobiology: Greater than the sum of its parts. THE PLANT CELL 2022; 34:129-145. [PMID: 34524447 PMCID: PMC8773992 DOI: 10.1093/plcell/koab230] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 05/04/2023]
Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.
Collapse
Affiliation(s)
- Jennette M Codjoe
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Kari Miller
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | | |
Collapse
|
38
|
Gronnier J, Franck CM, Stegmann M, DeFalco TA, Abarca A, von Arx M, Dünser K, Lin W, Yang Z, Kleine-Vehn J, Ringli C, Zipfel C. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. eLife 2022; 11:74162. [PMID: 34989334 PMCID: PMC8791635 DOI: 10.7554/elife.74162] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID-INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.
Collapse
Affiliation(s)
- Julien Gronnier
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Christina M Franck
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Martin Stegmann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Alicia Abarca
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Michelle von Arx
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia, Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia, Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Christoph Ringli
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
39
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
40
|
Marhava P. Recent developments in the understanding of PIN polarity. THE NEW PHYTOLOGIST 2022; 233:624-630. [PMID: 34882802 DOI: 10.1111/nph.17867] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/05/2021] [Indexed: 05/20/2023]
Abstract
Polar localization of PIN-FORMED proteins (PINs) at the plasma membrane is essential for plant development as they direct the transport of phytohormone auxin between cells. PIN polar localization to certain sides of a given cell is dynamic, strictly regulated and provides directionality to auxin flow. Signals that act upstream to control subcellular PIN localization modulate auxin distribution, thereby regulating diverse aspects of plant development. Here I summarize the current understanding of mechanisms by which PIN polarity is established, maintained and rearranged to provide a glimpse into the complexity of PIN polarity.
Collapse
Affiliation(s)
- Petra Marhava
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
41
|
McKenna JF. Quantifying the Organization and Dynamics of the Plant Plasma Membrane Across Scales Using Light Microscopy. Methods Mol Biol 2022; 2457:233-251. [PMID: 35349144 DOI: 10.1007/978-1-0716-2132-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant cell surface continuum is composed of the cell wall, plasma membrane, and cytoskeleton. Plasmodesmata are specialized channels in the cell wall allowing intercellular communication and resource distribution. Proteins within these organelles play fundamental roles in development, perception of the external environment, and resource acquisition. Therefore, an understanding of protein dynamics and organization within the membrane and plasmodesmata is of fundamental importance to understanding both how plants develop as well as perceive the myriad of external stimuli they experience and initiate appropriate downstream responses. In this chapter, I will describe protocols for quantifying the dynamics and organization of the plasma membrane and plasmodesmata proteins across scales. The protocols described below allow researchers to determine bulk protein mobility within the membrane using fluorescence recovery after photobleaching (FRAP), imaging, and quantification of nanodomain size (with Airyscan confocal microscopy) and determining the dynamics of these nanodomains at the single particle level using total internal reflection (TIRF) single particle imaging.
Collapse
Affiliation(s)
- Joseph F McKenna
- School of Life Sciences, University of Warwick, Coventry, UK.
- Oxford Brookes University, Gypsy Lane, UK.
| |
Collapse
|
42
|
Martinière A, Zelazny E. Membrane nanodomains and transport functions in plant. PLANT PHYSIOLOGY 2021; 187:1839-1855. [PMID: 35235669 PMCID: PMC8644385 DOI: 10.1093/plphys/kiab312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.
Collapse
Affiliation(s)
| | - Enric Zelazny
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
43
|
Gorelova V, Sprakel J, Weijers D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. NATURE PLANTS 2021; 7:1548-1559. [PMID: 34887521 DOI: 10.1038/s41477-021-01021-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
How reproducible body patterns emerge from the collective activity of individual cells is a key question in developmental biology. Plant cells are encaged in their walls and unable to migrate. Morphogenesis thus relies on directional cell division, by precise positioning of division planes, and anisotropic cellular growth, mediated by regulated mechanical inhomogeneity of the walls. Both processes require the prior establishment of cell polarity, marked by the formation of polar domains at the plasma membrane, in a number of developmental contexts. The establishment of cell polarity involves biochemical cues, but increasing evidence suggests that mechanical forces also play a prominent instructive role. While evidence for mutual regulation between cell polarity and tissue mechanics is emerging, the nature of this bidirectional feedback remains unclear. Here we review the role of cell polarity at the interface of tissue mechanics and morphogenesis. We also aim to integrate biochemistry-centred insights with concepts derived from physics and physical chemistry. Lastly, we propose a set of questions that will help address the fundamental nature of cell polarization and its mechanistic basis.
Collapse
Affiliation(s)
- Vera Gorelova
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
44
|
Gigli-Bisceglia N, Testerink C. Fighting salt or enemies: shared perception and signaling strategies. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102120. [PMID: 34856479 DOI: 10.1016/j.pbi.2021.102120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plants react to a myriad of biotic and abiotic environmental signals through specific cellular mechanisms required for survival under stress. Although pathogen perception has been widely studied and characterized, salt stress perception and signaling remain largely elusive. Recent observations, obtained in the model plant Arabidopsis thaliana, show that perception of specific features of pathogens also allows plants to mount salt stress resilience pathways, highlighting the possibility that salt sensing and pathogen perception mechanisms partially overlap. We discuss these overlapping strategies and examine the emerging role of A. thaliana cell wall and plasma membrane components in activating both salt- and pathogen-induced responses, as part of exquisite mechanisms underlying perception of damage and danger. This knowledge helps understanding the complexity of plant responses to pathogens and salinity, leading to new hypotheses that could explain why plants evolved similar strategies to respond to these, at first sight, very different types of stimuli.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands.
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands.
| |
Collapse
|
45
|
Guan P, Shi W, Riemann M, Nick P. Dissecting the membrane-microtubule sensor in grapevine defence. HORTICULTURE RESEARCH 2021; 8:260. [PMID: 34848701 PMCID: PMC8632924 DOI: 10.1038/s41438-021-00703-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Specific populations of plant microtubules cooperate with the plasma membrane to sense and process abiotic stress signals, such as cold stress. The current study derived from the question, to what extent this perception system is active in biotic stress signalling. The experimental system consisted of grapevine cell lines, where microtubules or actin filaments are visualised by GFP, such that their response became visible in vivo. We used the bacterial elicitors harpin (inducing cell-death related defence), or flg22 (inducing basal immunity) in combination with modulators of membrane fluidity, or microtubules. We show that DMSO, a membrane rigidifier, can cause microtubule bundling and trigger defence responses, including activation of phytoalexin transcripts. However, DMSO inhibited the gene expression in response to harpin, while promoting the gene expression in response to flg22. Treatment with DMSO also rendered microtubules more persistent to harpin. Paradoxically, Benzylalcohol (BA), a membrane fluidiser, acted in the same way as DMSO. Neither GdCl3, nor diphenylene iodonium were able to block the inhibitory effect of membrane rigidification on harpin-induced gene expression. Treatment with taxol stabilised microtubule against harpin but amplified the response of PAL transcripts. Therefore, the data support implications of a model that deploys specific responses to pathogen-derived signals.
Collapse
Affiliation(s)
- Pingyin Guan
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Wenjing Shi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
46
|
Li Z, Sela A, Fridman Y, Garstka L, Höfte H, Savaldi-Goldstein S, Wolf S. Optimal BR signalling is required for adequate cell wall orientation in the Arabidopsis root meristem. Development 2021; 148:273348. [PMID: 34739031 PMCID: PMC8627601 DOI: 10.1242/dev.199504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Plant brassinosteroid hormones (BRs) regulate growth in part through altering the properties of the cell wall, the extracellular matrix of plant cells. Conversely, feedback signalling from the wall connects the state of cell wall homeostasis to the BR receptor complex and modulates BR activity. Here, we report that both pectin-triggered cell wall signalling and impaired BR signalling result in altered cell wall orientation in the Arabidopsis root meristem. Furthermore, both depletion of endogenous BRs and exogenous supply of BRs triggered these defects. Cell wall signalling-induced alterations in the orientation of newly placed walls appear to occur late during cytokinesis, after initial positioning of the cortical division zone. Tissue-specific perturbations of BR signalling revealed that the cellular malfunction is unrelated to previously described whole organ growth defects. Thus, tissue type separates the pleiotropic effects of cell wall/BR signals and highlights their importance during cell wall placement. Summary: Both increased and reduced BR signalling strength results in altered cell wall orientation in the Arabidopsis root, uncoupled from whole-root growth control.
Collapse
Affiliation(s)
- Zhenni Li
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ayala Sela
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Fridman
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lucía Garstka
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Herman Höfte
- Department of Development, Signalling, and Modelling, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sebastian Wolf
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
47
|
Garnelo Gómez B, Holzwart E, Shi C, Lozano-Durán R, Wolf S. Phosphorylation-dependent routing of RLP44 towards brassinosteroid or phytosulfokine signalling. J Cell Sci 2021; 134:272537. [PMID: 34569597 PMCID: PMC8572011 DOI: 10.1242/jcs.259134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants rely on cell surface receptors to integrate developmental and environmental cues into behaviour adapted to the conditions. The largest group of these receptors, leucine-rich repeat receptor-like kinases, form a complex interaction network that is modulated and extended by receptor-like proteins. This raises the question of how specific outputs can be generated when receptor proteins are engaged in a plethora of promiscuous interactions. RECEPTOR-LIKE PROTEIN 44 (RLP44) acts to promote both brassinosteroid and phytosulfokine signalling, which orchestrate diverse cellular responses. However, it is unclear how these activities are coordinated. Here, we show that RLP44 is phosphorylated in its highly conserved cytosolic tail and that this post-translational modification governs its subcellular localization. Whereas phosphorylation is essential for brassinosteroid-associated functions of RLP44, its role in phytosulfokine signalling is not affected by phospho-status. Detailed mutational analysis suggests that phospho-charge, rather than modification of individual amino acids determines routing of RLP44 to its target receptor complexes, providing a framework to understand how a common component of different receptor complexes can get specifically engaged in a particular signalling pathway.
Collapse
Affiliation(s)
- Borja Garnelo Gómez
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Eleonore Holzwart
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
48
|
Stelate A, Tihlaříková E, Schwarzerová K, Neděla V, Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules 2021; 11:1407. [PMID: 34680040 PMCID: PMC8533460 DOI: 10.3390/biom11101407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.
Collapse
Affiliation(s)
- Ayoub Stelate
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| | - Eva Tihlaříková
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic; (E.T.); (V.N.)
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic; (E.T.); (V.N.)
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| |
Collapse
|
49
|
Lee DH, Lee HS, Belkhadir Y. Coding of plant immune signals by surface receptors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102044. [PMID: 33979769 DOI: 10.1016/j.pbi.2021.102044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
| |
Collapse
|
50
|
Liu S, Jobert F, Rahneshan Z, Doyle SM, Robert S. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:525-550. [PMID: 34143651 DOI: 10.1146/annurev-arplant-080720-081920] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The plant epidermis serves many essential functions, including interactions with the environment, protection, mechanical strength, and regulation of tissue and organ growth. To achieve these functions, specialized epidermal cells develop into particular shapes. These include the intriguing interdigitated jigsaw puzzle shape of cotyledon and leaf pavement cells seen in many species, the precise functions of which remain rather obscure. Although pavement cell shape regulation is complex and still a long way from being fully understood, the roles of the cell wall, mechanical stresses, cytoskeleton, cytoskeletal regulatory proteins, and phytohormones are becoming clearer. Here, we provide a review of this current knowledge of pavement cell morphogenesis, generated from a wealth of experimental evidence and assisted by computational modeling approaches. We also discuss the evolution and potential functions of pavement cell interdigitation. Throughout the review, we highlight some of the thought-provoking controversies and creative theories surrounding the formation of the curious puzzle shape of these cells.
Collapse
Affiliation(s)
- Sijia Liu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Zahra Rahneshan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Siamsa M Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| |
Collapse
|