1
|
Taffa DH, Brim E, Rücker KK, Hayes D, Lorenz J, Bisen O, Risch M, Harms C, Richards RM, Wark M. Influence of Annealing Temperature on the OER Activity of NiO(111) Nanosheets Prepared via Microwave and Solvothermal Synthesis Approaches. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39487042 DOI: 10.1021/acsami.4c14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Earth-abundant transition metal oxides are promising alternatives to precious metal oxides as electrocatalysts for the oxygen evolution reaction (OER) and are intensively investigated for alkaline water electrolysis. OER electrocatalysis, like most other catalytic reactions, is surface-initiated, and the catalyst performance is fundamentally determined by the surface properties. Most transition metal oxide catalysts show OER activities that depend on the predominantly exposed crystal facets/surface structure. Therefore, the design of synthetic strategies to obtain the most active crystal facets is of significant research interest. In this work, rock salt NiO OER catalysts with (111) predominantly exposed facets were synthesized by a solvothermal (ST) method either heated under supercritical or microwave-assisted (MW) conditions. Particular emphasis was placed on the influence of the post annealing temperature on the structural configuration and OER activity to compare their catalytic performances. The as-prepared electrocatalysts are pure α-Ni hydroxides which were converted to rock salt NiO (111) nanosheets with hexagonal pores after heat treatment at different temperatures. The OER activity of the electrodes has been evaluated in 0.1 M KOH using geometric and intrinsic current densities via normalization by the disk area and BET area, respectively. The lowest overpotential at a geometric current density of 10 mA/cm2 is found for samples pretreated by heating between 400 and 500 °C with a catalyst loading of 115 μg/cm2. Despite the very similar nature of the catalysts obtained from the two methods, the ST electrodes show a higher geometric and intrinsic current density for 500 °C pretreatment. The MW electrodes, however, achieve an optimal geometric current density for 400 °C pretreatment, while their intrinsic current density requires pretreatment over 600 °C. Interestingly, pretreated electrodes show consistently higher OER activity as compared to the poorly crystalline/less ordered hydroxide as-prepared electrocatalysts. Thus, our study highlights the importance of the synthesis method and pretreatment at an optimal temperature.
Collapse
Affiliation(s)
- Dereje H Taffa
- Institute of Chemistry, Chemical Technology I, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Elliot Brim
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
| | - Konstantin K Rücker
- Institute of Chemistry, Chemical Technology I, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Darius Hayes
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
| | - Julian Lorenz
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Omeshwari Bisen
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Corinna Harms
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Ryan M Richards
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
- Chemical and Material Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael Wark
- Institute of Chemistry, Chemical Technology I, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Yu M, Sui PF, Tang YF, Zhang T, Liu S, Fu XZ, Luo JL, Liu S. Visualizing Electrochemical CO 2 Conversion via the Emerging Scanning Electrochemical Microscope: Fundamentals, Applications and Perspectives. SMALL METHODS 2024:e2301778. [PMID: 38741551 DOI: 10.1002/smtd.202301778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Indexed: 05/16/2024]
Abstract
With the rapid development and maturity of electrochemical CO2 conversion involving cathodic CO2 reduction reaction (CO2RR) and anodic oxygen evolution reaction (OER), conventional ex situ characterizations gradually fall behind in detecting real-time products distribution, tracking intermediates, and monitoring structural evolution, etc. Nevertheless, advanced in situ techniques, with intriguing merits like good reproducibility, facile operability, high sensitivity, and short response time, can realize in situ detection and recording of dynamic data, and observe materials structural evolution in real time. As an emerging visual technique, scanning electrochemical microscope (SECM) presents local electrochemical signals on various materials surface through capturing micro-current caused by reactants oxidation and reduction. Importantly, SECM holds particular potentials in visualizing reactive intermediates at active sites and obtaining instantaneous morphology evolution images to reveal the intrinsic reactivity of active sites. Therefore, this review focuses on SECM fundamentals and its specific applications toward CO2RR and OER, mainly including electrochemical behavior observation on local regions of various materials, target products and onset potentials identification in real-time, reaction pathways clarification, reaction kinetics exploration under steady-state conditions, electroactive materials screening and multi-techniques coupling for a joint utilization. This review undoubtedly provides a leading guidance to extend various SECM applications to other energy-related fields.
Collapse
Affiliation(s)
- Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Peng-Fei Sui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Tong Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Shuo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jing-Li Luo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
4
|
Ivinskij V, Zinovicius A, Dzedzickis A, Subaciute-Zemaitiene J, Rozene J, Bucinskas V, Macerauskas E, Tolvaisiene S, Morkvenaite-Vilkonciene I. Fast detection of micro-objects using scanning electrochemical microscopy based on visual recognition and machine learning. Ultramicroscopy 2024; 259:113937. [PMID: 38359633 DOI: 10.1016/j.ultramic.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Scanning electrochemical microscopy (SECM) is a scanning probe microscope with an ultramicroelectrode (UME) as a probe. The technique is advantageous in the characterization of the electrochemical properties of surfaces. However, the limitations, such as slow imaging and many functions depending on the user, only allow us to use some of the possibilities. Therefore, we applied visual recognition and machine learning to detect micro-objects from the image and determine their electrochemical activity. The reconstruction of the image from several approach curves allows it to scan faster and detect active areas of the sample. Therefore, the scanning time and presence of the user is diminished. An automated scanning electrochemical microscope with visual recognition has been developed using commercially available modules, relatively low-cost components, design, software solutions proven in other fields, and an original control and data fusion algorithm.
Collapse
Affiliation(s)
- Vadimas Ivinskij
- Department of Electronics Engineering, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Antanas Zinovicius
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Andrius Dzedzickis
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Jurga Subaciute-Zemaitiene
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Juste Rozene
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Vytautas Bucinskas
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Eugenijus Macerauskas
- Department of Electronics Engineering, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Sonata Tolvaisiene
- Department of Electronics Engineering, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania
| | - Inga Morkvenaite-Vilkonciene
- Department of Electronics Engineering, Vilnius Gediminas Technical University, Plytinės g. 25, 10105 Vilnius, Lithuania.
| |
Collapse
|
5
|
Wang C, Yang W, Ding Y, Bai P, Zeng Z, Lv H, Li X, Wang H, Wang Z, Zeng M, Wu X, Fu L. Interlayer Biatomic Pair Bridging the van der Waals Gap for 100% Activation of 2D Layered Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308984. [PMID: 38271565 DOI: 10.1002/adma.202308984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/20/2023] [Indexed: 01/27/2024]
Abstract
2D layered materials are regarded as prospective catalyst candidates due to their advantageous atomic exposure ratio. Nevertheless, the predominant population of atoms residing on the basal plane with saturated coordination, exhibit inert behavior, while a mere fraction of atoms located at the periphery display reactivity. Here, a novel approach is reported to attain complete atom activation in 2D layered materials through the construction of an interlayer biatomic pair bridge. The atoms in question have been strategically optimized to achieve a highly favorable state for the adsorption of intermediates. This optimization results from the introduction of new gap states around the Fermi level. Moreover, the presence of the interlayer bridge facilitates the electron transfer across the van der Waals gap, thereby enhancing the reaction kinetics. The hydrogen evolution reaction exhibits an impressive ultrahigh current density of 2000 mA cm-2 at 397 mV, surpassing the pristine MoS2 by approximately two orders of magnitude (26 mA cm-2 at 397 mV). This study provides new insights for enhancing the efficacy of 2D layered catalysts.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxuan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiran Ding
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Pengfei Bai
- CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science. CAS Center for Excellence in Nanoscience and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Ziyue Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Haifeng Lv
- CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science. CAS Center for Excellence in Nanoscience and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhouyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230088, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Askarova G, Barman K, Mirkin MV. Quantitative Measurements of Electrocatalytic Reaction Rates with NanoSECM. Anal Chem 2024; 96:6089-6095. [PMID: 38574269 DOI: 10.1021/acs.analchem.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Scanning electrochemical microscopy (SECM) has been extensively used for mapping electrocatalytic surface reactivity; however, most of the studies were carried out using micrometer-sized tips, and no quantitative kinetic experiments on the nanoscale have yet been reported to date. As the diffusion-limited current density at a nanometer-sized electrode is very high, an inner-sphere electron-transfer process occurring at a nanotip typically produces a kinetic current at any attainable overpotential. Here, we develop a theory for substrate generation/tip collection (SG/TC) and feedback modes of SECM with a kinetic tip current and use it to evaluate the rates of hydrogen and oxygen evolution reactions in a neutral aqueous solution from the current-distance curves. The possibility of using chemically modified nanotips for kinetic measurements is also demonstrated. The effect of the substrate size on the shape of the current-distance curves in SG/TC mode SECM experiments is discussed.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
7
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
8
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Wang Z, Chen J, Ni C, Nie W, Li D, Ta N, Zhang D, Sun Y, Sun F, Li Q, Li Y, Chen R, Bu T, Fan F, Li C. Visualizing the role of applied voltage in non-metal electrocatalysts. Natl Sci Rev 2023; 10:nwad166. [PMID: 37565210 PMCID: PMC10411668 DOI: 10.1093/nsr/nwad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Understanding how applied voltage drives the electrocatalytic reaction at the nanoscale is a fundamental scientific problem, particularly in non-metallic electrocatalysts, due to their low intrinsic carrier concentration. Herein, using monolayer molybdenum disulfide (MoS2) as a model system of non-metallic catalyst, the potential drops across the basal plane of MoS2 (ΔVsem) and the electric double layer (ΔVedl) are decoupled quantitatively as a function of applied voltage through in-situ surface potential microscopy. We visualize the evolution of the band structure under liquid conditions and clarify the process of EF keeping moving deep into Ec, revealing the formation process of the electrolyte gating effect. Additionally, electron transfer (ET) imaging reveals that the basal plane exhibits high ET activity, consistent with the results of surface potential measurements. The potential-dependent behavior of kf and ns in the ET reaction are further decoupled based on the measurements of ΔVsem and ΔVedl. Comparing the ET and hydrogen evolution reaction imaging results suggests that the low electrocatalytic activity of the basal plane is mainly due to the absence of active sites, rather than its electron transfer ability. This study fills an experimental gap in exploring driving forces for electrocatalysis at the nanoscale and addresses the long-standing issue of the inability to decouple charge transfer from catalytic processes.
Collapse
Affiliation(s)
- Ziyuan Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Chenwei Ni
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Nie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Na Ta
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Deyun Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Fusai Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Yuran Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruotian Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiankai Bu
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Fengtao Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Peng Y, Gao C, Deng X, Zhao J, Chen Q. Elucidating the Geometric Active Sites for Oxygen Evolution Reaction on Crystalline Iron-Substituted Cobalt Hydroxide Nanoplates. Anal Chem 2023. [PMID: 37490501 DOI: 10.1021/acs.analchem.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Transition-metal (oxy)hydroxides are among the most active and studied catalysts for the oxygen evolution reaction in alkaline electrolytes. However, the geometric distribution of active sites is still elusive. Here, using the well-defined crystalline iron-substituted cobalt hydroxide as a model catalyst, we reported the scanning electrochemical cell microscopy (SECCM) study of single-crystalline nanoplates, where the oxygen evolution reaction at individual nanoplates was isolated and evaluated independently. With integrated prior- and post-SECCM scanning electron microscopy of the catalyst morphology, correlated structure-activity information of individual electrocatalysts was obtained. Our result reveals that while the active sites are largely located at the edges of the pristine Co(OH)2 nanoplates, the Fe lattice incorporation significantly promotes the basal plane activities. Our approach of correlative imaging provides new insights into the effect of iron incorporation on active site distribution across nano-electrocatalysts.
Collapse
Affiliation(s)
- Yu Peng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Cong Gao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaoli Deng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jiao Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
12
|
Jin R, Zhou W, Xu Y, Jiang D, Fang D. Electrochemical Visualization of Membrane Proteins in Single Cells at a Nanoscale Using Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37358933 DOI: 10.1021/acs.analchem.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The electrochemical visualization of proteins in the plasma membrane of single fixed cells was achieved with a spatial resolution of 160 nm using scanning electrochemical cell microscopy. The model protein, the carcinoembryonic antigen (CEA), is linked with a ruthenium complex (Ru(bpy)32+)-tagged antibody, which exhibits redox peaks in its cyclic voltammetry curves after a nanopipette tip contacts the cellular membrane. Based on the potential-resolved oxidation or reduction currents, an uneven distribution of membrane CEAs on the cells is electrochemically visualized, which could only be achieved previously using super-resolution optical microscopy. Compared with current electrochemical microscopy, the single-cell scanning electrochemical cell microscopy (SECCM) strategy not only improves the spatial resolution but also utilizes the potential-resolved current from the antibody-antigen complex to increase electrochemical imaging accuracy. Eventually, the electrochemical visualization of cellular proteins at the nanoscale enables the super-resolution study of cells to provide more biological information.
Collapse
Affiliation(s)
- Rong Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenting Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| |
Collapse
|
13
|
Dery S, Friedman B, Shema H, Gross E. Mechanistic Insights Gained by High Spatial Resolution Reactivity Mapping of Homogeneous and Heterogeneous (Electro)Catalysts. Chem Rev 2023; 123:6003-6038. [PMID: 37037476 PMCID: PMC10176474 DOI: 10.1021/acs.chemrev.2c00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The recent development of high spatial resolution microscopy and spectroscopy tools enabled reactivity analysis of homogeneous and heterogeneous (electro)catalysts at previously unattainable resolution and sensitivity. These techniques revealed that catalytic entities are more heterogeneous than expected and local variations in reaction mechanism due to divergences in the nature of active sites, such as their atomic properties, distribution, and accessibility, occur both in homogeneous and heterogeneous (electro)catalysts. In this review, we highlight recent insights in catalysis research that were attained by conducting high spatial resolution studies. The discussed case studies range from reactivity detection of single particles or single molecular catalysts, inter- and intraparticle communication analysis, and probing the influence of catalysts distribution and accessibility on the resulting reactivity. It is demonstrated that multiparticle and multisite reactivity analyses provide unique knowledge about reaction mechanism that could not have been attained by conducting ensemble-based, averaging, spectroscopy measurements. It is highlighted that the integration of spectroscopy and microscopy measurements under realistic reaction conditions will be essential to bridge the gap between model-system studies and real-world high spatial resolution reactivity analysis.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Jin Z. High-Spatiotemporal-Resolution Electrochemical Measurements of Electrocatalytic Reactivity. Anal Chem 2023; 95:6477-6489. [PMID: 37023363 DOI: 10.1021/acs.analchem.2c05755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The real-time measurement of the individual or local electrocatalytic reactivity of catalyst particles instead of ensemble behavior is considerably challenging but very critical to uncover fundamental insights into catalytic mechanisms. Recent remarkable efforts have been made to the development of high-spatiotemporal-resolution electrochemical techniques, which allow the imaging of the topography and reactivity of fast electron-transfer processes at the nanoscale. This Perspective summarizes emerging powerful electrochemical measurement techniques for studying various electrocatalytic reactions on different types of catalysts. Principles of scanning electrochemical microscopy, scanning electrochemical cell microscopy, single-entity measurement, and molecular probing technique have been discussed for the purpose of measuring important parameters in electrocatalysis. We further demonstrate recent advances in these techniques that reveal quantitative information about the thermodynamic and kinetic properties of catalysts for various electrocatalytic reactions associated with our perspectives. Future research on the next-generation electrochemical techniques is anticipated to be focused on the development of instrumentation, correlative multimodal techniques, and new applications, thus enabling new opportunities for elucidating structure-reactivity relationships and dynamic information at the single active-site level.
Collapse
Affiliation(s)
- Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
15
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
16
|
Gu C, Sun T, Wang Z, Jiang S, Wang Z. High Resolution Electrochemical Imaging for Sulfur Vacancies on 2D Molybdenum Disulfide. SMALL METHODS 2023; 7:e2201529. [PMID: 36683170 DOI: 10.1002/smtd.202201529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Molybdenum disulfide (MoS2 ) is considered as one of the most promising non-noble-metal catalysts for hydrogen evolution reaction (HER). To achieve practical application, introducing sulfur (S) vacancies on the inert basal plane of MoS2 is a widely accepted strategy to improve its HER activity. However, probing active sites at the nanoscale and quantitatively analyzing the related electrocatalytic activity in electrolyte aqueous solution are still great challenges. In this work, utilizing high-resolution scanning electrochemical microscopy, optimized electrodes and newly designed thermal drift calibration software, the HER activity of the S vacancies on an MoS2 inert surface is in situ imaged with less than 20-nm-radius sensitivity and the HER kinetic data for S vacancies, including Tafel plot and onset potential, are quantitatively measured. Additionally, the stability of S vacancies over the wide range of pH 0-13 is investigated. This study provides a viable strategy for obtaining the catalytic kinetics of nanoscale active sites on structurally complex electrocatalysts and evaluating the stability of defects in different environments for 2D material-based catalysts.
Collapse
Affiliation(s)
- Chaoqun Gu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenyu Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Sisi Jiang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
17
|
Garcia R. Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS NANO 2023; 17:51-69. [PMID: 36507725 PMCID: PMC10664075 DOI: 10.1021/acsnano.2c10215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The optical, electronic, and mechanical properties of graphite, few-layer, and two-dimensional (2D) materials have prompted a considerable number of applications. Biosensing, energy storage, and water desalination illustrate applications that require a molecular-scale understanding of the interfacial water structure on 2D materials. This review introduces the most recent experimental and theoretical advances on the structure of interfacial liquid water on graphite-like and 2D materials surfaces. On pristine conditions, atomic-scale resolution experiments revealed the existence of 1-3 hydration layers. Those layers were separated by ∼0.3 nm. The experimental data were supported by molecular dynamics simulations. However, under standard working conditions, atomic-scale resolution experiments revealed the presence of 2-3 hydrocarbon layers. Those layers were separated by ∼0.5 nm. Linear alkanes were the dominant molecular specie within the hydrocarbon layers. Paradoxically, the interface of an aged 2D material surface immersed in water does not have water molecules on its vicinity. Free-energy considerations favored the replacement of water by alkanes.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales
de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049Madrid, Spain
| |
Collapse
|
18
|
Chen R, Liu S, Zhang Y. A nanoelectrode-based study of water splitting electrocatalysts. MATERIALS HORIZONS 2023; 10:52-64. [PMID: 36485037 DOI: 10.1039/d2mh01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of low-cost and efficient catalytic materials for key reactions like water splitting, CO2 reduction and N2 reduction is crucial for fulfilling the growing energy consumption demands and the pursuit of renewable and sustainable energy. Conventional electrochemical measurements at the macroscale lack the potential to characterize single catalytic entities and nanoscale surface features on the surface of a catalytic material. Recently, promising results have been obtained using nanoelectrodes as ultra-small platforms for the study of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on innovative catalytic materials at the nanoscale. In this minireview, we summarize the recent progress in the nanoelectrode-based studies on the HER and OER on various nanostructured catalytic materials. These electrocatalysts can be generally categorized into two groups: 0-dimensional (0D) single atom/molecule/cluster/nanoparticles and 2-dimensional (2D) nanomaterials. Controlled growth as well as the electrochemical characterization of single isolated atoms, molecules, clusters and nanoparticles has been achieved on nanoelectrodes. Moreover, nanoelectrodes greatly enhanced the spatial resolution of scanning probe techniques, which enable studies at the surface features of 2D nanomaterials, including surface defects, edges and nanofacets at the boundary of a phase. Nanoelectrode-based studies on the catalytic materials can provide new insights into the reaction mechanisms and catalytic properties, which will facilitate the pursuit of sustainable energy and help to solve CO2 release issues.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
19
|
Wang R, Zheng JC. Promising transition metal decorated borophene catalyst for water splitting †. RSC Adv 2023; 13:9678-9685. [PMID: 36968026 PMCID: PMC10038188 DOI: 10.1039/d3ra00299c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Borophene has been recently reported to be a promising catalyst for water splitting. However, as a newly synthesized two-dimensional material, there are several issues that remain to be explored. In the present study, we investigate the catalytic performance of three kinds of pristine and decorated borophenes using first-principles calculations. Our calculations show that Ni-doped α borophene can be a highly active catalyst for water splitting. Doping or decorating with different transition metals such as Co or Ni at different sites shows a strong effect on the catalytic performance of α, β12 and χ3 borophenes. Ni-doped α borophene shows low Gibbs free energy of hydrogen adsorption (ΔGH ∼ 0.055 eV) for the hydrogen evolution reaction (HER) and promising overpotential (0.455 V) for the oxygen evolution reaction (OER). This study provides some critical insights into the catalytic activity of borophene for water splitting by selecting suitable decorated metal. Promising Ni metal decorated borophene catalyst for water splitting.![]()
Collapse
Affiliation(s)
- Rongzhi Wang
- Department of Physics, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen UniversityXiamen 361005China
| | - Jin-Cheng Zheng
- Department of Physics, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen UniversityXiamen 361005China
- Department of Physics and Department of New Energy Science and Engineering, Xiamen University MalaysiaSepang 43900Malaysia
| |
Collapse
|
20
|
Zhao X, Zhou XL, Yang SY, Min Y, Chen JJ, Liu XW. Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts. Nat Commun 2022; 13:7869. [PMID: 36550149 PMCID: PMC9780338 DOI: 10.1038/s41467-022-35633-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Studying the localized electrocatalytic activity of heterogeneous electrocatalysts is crucial for understanding electrocatalytic reactions and further improving their performance. However, correlating the electrocatalytic activity with the microscopic structure of two-dimensional (2D) electrocatalysts remains a great challenge due to the lack of in situ imaging techniques and methods of tuning structures with atomic precision. Here, we present a general method of probing the layer-dependent electrocatalytic activity of 2D materials in situ using a plasmonic imaging technique. Unlike the existing methods, this approach was used to visualize the surface charge density and electrocatalytic activity of single 2D MoS2 nanosheets, enabling the correlation of layer-dependent electrocatalytic activity with the surface charge density of single MoS2 nanosheets. This work provides insights into the electrocatalytic mechanisms of 2D transition metal dichalcogenides, and our approach can serve as a promising platform for investigating electrocatalytic reactions at the heterogeneous interface, thus guiding the rational design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xiaona Zhao
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Xiao-Li Zhou
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China ,grid.410579.e0000 0000 9116 9901School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Si-Yu Yang
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Yuan Min
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jie-Jie Chen
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Xian-Wei Liu
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China ,grid.59053.3a0000000121679639Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
21
|
Skaanvik SA, Stephens LI, Gateman SM, Geissler M, Mauzeroll J. Quantitative Feedback Referencing for Improved Kinetic Fitting of Scanning Electrochemical Microscopy Measurements. Anal Chem 2022; 94:13852-13859. [PMID: 36166706 DOI: 10.1021/acs.analchem.2c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scanning electrochemical microscopy (SECM) has matured as a technique for studying local electrochemical processes. The feedback mode is most commonly used for extracting quantitative kinetic information. However, approaching individual regions of interest, as is commonly done, does not take full advantage of the spatial resolution that SECM has to offer. Moreover, fitting of experimental approach curves remains highly subjective due to the manner of estimating the tip-to-substrate distance. We address these issues using negative or positive feedback currents as a reference to calculate the tip-to-substrate distance directly for quantitative kinetic fitting of approach curves and line profiles. The method was first evaluated by fitting simulated data and then tested experimentally by resolving negative feedback and intermediate kinetics behavior in a spatially controlled fashion using (i) a flat, binary substrate composed of Au and SiO2 segments and (ii) a dual-mediator system for live-cell measurements. The methodology developed herein, named quantitative feedback referencing (QFR), improves fitting accuracy, removes fitting subjectivity, and avoids substrate-microelectrode contact.
Collapse
Affiliation(s)
| | - Lisa Irene Stephens
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, Quebec J4B 6Y4, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
22
|
Gwon HJ, Lim D, Nam Y, Ahn HS. Quadruple nanoelectrode assembly for simultaneous analysis of multiple redox species and its application to multi-channel scanning electrochemical microscopy. Anal Chim Acta 2022; 1226:340287. [DOI: 10.1016/j.aca.2022.340287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
|
23
|
Wang Y, Li M, Ren H. Voltammetric Mapping of Hydrogen Evolution Reaction on Pt Locally via Scanning Electrochemical Cell Microscopy. ACS MEASUREMENT SCIENCE AU 2022; 2:304-308. [PMID: 36785572 PMCID: PMC9836041 DOI: 10.1021/acsmeasuresciau.2c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advancement in nanoscale electrochemical tools has offered the opportunity to better understand heterogeneity at electrochemical interfaces. Scanning electrochemical cell microscopy (SECCM) has been increasingly used for revealing local kinetics and the distribution of active sites in electrocatalysis. Constant-contact scanning and hopping scanning are the two commonly used modes. The former is intrinsically faster, whereas the latter enables full voltammetry at individual locations. Herein, we revisit a less used mode that combines the advantages of hopping and constant-contact scan, resulting in a faster voltammetric mapping. In this mode, the nanodroplet cell in SECCM maintains contact with the surface during the scanning and makes intermittent pauses for local voltammetry. The elimination of frequent retraction and approach greatly increases the speed of mapping. In addition, iR correction can be readily applied to the voltammetry, resulting in more accurate measurements of the electrode kinetics. This scanning mode is demonstrated in the oxidation of a ferrocene derivative on HOPG and hydrogen evolution reaction (HER) on polycrystalline Pt, serving as model systems for outer-sphere and inner-sphere electron transfer reactions, respectively. While the kinetics of the inner-sphere reaction is consistent spatially, heterogeneity is observed for the kinetics of HER, which is correlated with the crystal orientation of Pt.
Collapse
|
24
|
Niu HJ, Yan Y, Jiang S, Liu T, Sun T, Zhou W, Guo L, Li J. Interfaces Decrease the Alkaline Hydrogen-Evolution Kinetics Energy Barrier on NiCoP/Ti 3C 2T x MXene. ACS NANO 2022; 16:11049-11058. [PMID: 35796532 DOI: 10.1021/acsnano.2c03711] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heterointerfaces can adjust the adsorption energy with intermediates in the transition state for a much decreased kinetics energy barrier (Ea). One typical transition metal phosphide, NiCoP grains (∼5 nm in size), was anchored on a Ti3C2Tx MXene monolayer (∼1 nm in thickness) to boost the kinetics toward alkaline hydrogen evolution reaction (HER). General electrochemical experiments at different temperatures give a small Ea of 31.4 kJ mol-1, showing a 22.1% decrease compared to its counterpart NiCoP nanoparticles (40.3 kJ mol-1). Impressively, the overpotential of NiCoP@MXene dramatically decreases from 71 mV to 4 mV at 10 mA cm-2 when the temperature increases from 25 °C to 65 °C. On a single NiCoP@MXene sheet, scanning electrochemical microscopy (SECM) tests also give a very close value of Ea = 31.9 kJ mol-1, with a relative error of ∼1.6%. Density functional theory (DFT) calculations confirm the interface between NiCoP and MXene can effectively decrease the energy barrier of water dissociation by 16.0%. The three kinds of studies on macro, micro/nano, and atomic scales disclose the interfaces can reduce the kinetics energy barrier about 16.0-22.1%. Besides, the photothermal effect of MXenes can easily raise the catalyst temperature under vis-NIR light, which has been applied in practical scenarios under sunlight for energy savings.
Collapse
Affiliation(s)
- Hua-Jie Niu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yu Yan
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - SiSi Jiang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Tong Liu
- School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Wei Zhou
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
Han L, Ou P, Liu W, Wang X, Wang HT, Zhang R, Pao CW, Liu X, Pong WF, Song J, Zhuang Z, Mirkin MV, Luo J, Xin HL. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. SCIENCE ADVANCES 2022; 8:eabm3779. [PMID: 35648856 PMCID: PMC9159574 DOI: 10.1126/sciadv.abm3779] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Anion exchange membrane fuel cells are limited by the slow kinetics of alkaline hydrogen oxidation reaction (HOR). Here, we establish HOR catalytic activities of single-atom and diatomic sites as a function of *H and *OH binding energies to screen the optimal active sites for the HOR. As a result, the Ru-Ni diatomic one is identified as the best active center. Guided by the theoretical finding, we subsequently synthesize a catalyst with Ru-Ni diatomic sites supported on N-doped porous carbon, which exhibits excellent catalytic activity, CO tolerance, and stability for alkaline HOR and is also superior to single-site counterparts. In situ scanning electrochemical microscopy study validates the HOR activity resulting from the Ru-Ni diatomic sites. Furthermore, in situ x-ray absorption spectroscopy and computational studies unveil a synergistic interaction between Ru and Ni to promote the molecular H2 dissociation and strengthen OH adsorption at the diatomic sites, and thus enhance the kinetics of HOR.
Collapse
Affiliation(s)
- Lili Han
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Pengfei Ou
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Wei Liu
- Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiang Wang
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, Queens, NY 11367, USA
| | - Hsiao-Tsu Wang
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
- Corresponding author. (X.L.); (H.L.X.)
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, Queens, NY 11367, USA
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
- Corresponding author. (X.L.); (H.L.X.)
| |
Collapse
|
27
|
Wang Y, Wang D, Dong S, Qiao J, Zeng Z, Shao S. A visible-light-driven photoelectrochemical sensing platform based on the BiVO4/FeOOH photoanode for dopamine detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Li M, Ye KH, Qiu W, Wang Y, Ren H. Heterogeneity between and within Single Hematite Nanorods as Electrocatalysts for Oxygen Evolution Reaction. J Am Chem Soc 2022; 144:5247-5252. [PMID: 35298886 DOI: 10.1021/jacs.2c00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the structural nature of the active sites in electrocatalysis is central to discovering general design rules for better catalysts in fuel cells and electrolyzers. Nanostructures are widely used as electrocatalysts, but the location and structure of the active sites within the nanostructure are often unknown. This information is hidden in conventional bulk measurements due to ensemble averaging, hindering direct structure-activity correlation. Herein, we use a single-entity electrochemical approach to reveal the heterogeneity in electrocatalysts via scanning electrochemical cell microscopy (SECCM). Using hematite (α-Fe2O3) nanorods as the model catalyst for oxygen evolution reaction (OER), the electrocatalytic activity is measured at individual nanorods. Finer mapping within a single nanorod shows that the OER activity is consistently higher at the body portion vs the tip of the nanorod. Our results directly suggest the benefit of synthesizing longer hematite nanorods for better OER performance. The origin of the enhanced local activity is explained by the larger fraction of {001} facet exposed on the body compared to the tip. The finding goes beyond OER on hematite nanorods, highlighting the critical role of single-entity activity mapping and colocalized structural characterization in revealing active sites in electrocatalysis.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kai-Hang Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weitao Qiu
- School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, China
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Jaugstetter M, Blanc N, Kratz M, Tschulik K. Electrochemistry under confinement. Chem Soc Rev 2022; 51:2491-2543. [PMID: 35274639 DOI: 10.1039/d1cs00789k] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the term 'confinement' regularly appears in electrochemical literature, elevated by continuous progression in the research of nanomaterials and nanostructures, up until today the various aspects of confinement considered in electrochemistry are rather scattered individual contributions outside the established disciplines in this field. Thanks to a number of highly original publications and the growing appreciation of confinement as an overarching link between different exciting new research strategies, 'electrochemistry under confinement' is the process of forming a research discipline of its own. To aid the development a coherent terminology and joint basic concepts, as crucial factors for this transformation, this review provides an overview on the different effects on electrochemical processes known to date that can be caused by confinement. It also suggests where boundaries to other effects, such as nano-effects could be drawn. To conceptualize the vast amount of research activities revolving around the main concepts of confinement, we define six types of confinement and select two of them to discuss the state of the art and anticipated future developments in more detail. The first type concerns nanochannel environments and their applications for electrodeposition and for electrochemical sensing. The second type covers the rather newly emerging field of colloidal single entity confinement in electrochemistry. In these contexts, we will for instance address the influence of confinement on the mass transport and electric field distributions and will link the associated changes in local species concentration or in the local driving force to altered reaction kinetics and product selectivity. Highlighting pioneering works and exciting recent developments, this educational review does not only aim at surveying and categorizing the state-of-the-art, but seeks to specifically point out future perspectives in the field of confinement-controlled electrochemistry.
Collapse
Affiliation(s)
- Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus Kratz
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
30
|
Wang Z, Ke X, Sui M. Recent Progress on Revealing 3D Structure of Electrocatalysts Using Advanced 3D Electron Tomography: A Mini Review. Front Chem 2022; 10:872117. [PMID: 35355785 PMCID: PMC8959462 DOI: 10.3389/fchem.2022.872117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Electrocatalysis plays a key role in clean energy innovation. In order to design more efficient, durable and selective electrocatalysts, a thorough understanding of the unique link between 3D structures and properties is essential yet challenging. Advanced 3D electron tomography offers an effective approach to reveal 3D structures by transmission electron microscopy. This mini-review summarizes recent progress on revealing 3D structures of electrocatalysts using 3D electron tomography. 3D electron tomography at nanoscale and atomic scale are discussed, respectively, where morphology, composition, porous structure, surface crystallography and atomic distribution can be revealed and correlated to the performance of electrocatalysts. (Quasi) in-situ 3D electron tomography is further discussed with particular focus on its impact on electrocatalysts' durability investigation and post-treatment. Finally, perspectives on future developments of 3D electron tomography for eletrocatalysis is discussed.
Collapse
Affiliation(s)
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| |
Collapse
|
31
|
Jin R, Lu HY, Cheng L, Zhuang J, Jiang D, Chen HY. Highly spatial imaging of electrochemical activity on the wrinkles of graphene using all-solid scanning electrochemical cell microscopy. FUNDAMENTAL RESEARCH 2022; 2:193-197. [PMID: 38933173 PMCID: PMC11197576 DOI: 10.1016/j.fmre.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Here, all-solid scanning electrochemical cell microscopy (SECCM) is first established by filling polyacrylamide (PAM) into nanocapillaries as a solid electrolyte. A solid PAM nanoball at the tip of a nanocapillary contacts graphene and behaves as an electrochemical cell for simultaneously measuring the morphology and electrochemical activity. Compared with liquid droplet-based SECCM, this solid nanoball is stable and does not leave any electrolyte at the contact regions, which permits accurate and continuous scanning of the surface without any intervals. Accordingly, the resolutions in the lateral (x-y) and vertical (z) directions are improved to ∼10 nm. The complete scanning of the wrinkles on graphene records low currents at the two sidewalls of the wrinkles and a relatively high current at the center of the wrinkles. The heterogeneity in the electrochemical activity of the wrinkle illustrates different electron transfer features on surfaces with varied curvatures, which is hardly observed by the current electrochemical or optical methods. The successful establishment of this high spatial electrochemical microscopy overcomes the current challenges in investigating the electrochemical activity of materials at the nanoscale, which is significant for a better understanding of electron transfer in materials.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hong-yan Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Lei Cheng
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Jian Zhuang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
32
|
Modern applications of scanning electrochemical microscopy in the analysis of electrocatalytic surface reactions. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63948-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Lu X, Li M, Peng Y, Xi X, Li M, Chen Q, Dong A. Direct Probing of the Oxygen Evolution Reaction at Single NiFe 2O 4 Nanocrystal Superparticles with Tunable Structures. J Am Chem Soc 2021; 143:16925-16929. [PMID: 34612638 DOI: 10.1021/jacs.1c08592] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to the precisely controllable size, shape, and composition, self-assembled nanocrystal superlattices exhibit unique collective properties and find wide applications in catalysis and energy conversion. Identifying their intrinsic electrocatalytic activity is challenging, as their averaged properties on ensembles can hardly be dissected from binders or additives. We here report the direct measurement of the oxygen evolution reaction at single superparticles self-assembled from ∼8 nm NiFe2O4 and/or ∼4 nm Au nanocrystals using scanning electrochemical cell microscopy. Combined with coordinated scanning electron microscopy, it is found that the turnover frequency (TOF) estimated from single NiFe2O4 superparticles at 1.92 V vs RHE ranges from 0.2 to 11 s-1 and is sensitive to size only when it is smaller than ∼800 nm in diameter. After the incorporation of Au nanocrystals, the TOF increases by ∼6-fold and levels off with further increasing Au content. Our study demonstrates the first direct single entity electrochemical study on individual nanocrystal superlattices with tunable structures and unravels the intrinsic structure-activity relationship that is not accessible by other methods.
Collapse
Affiliation(s)
- Xiaoxi Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingzhong Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyun Xi
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Ju M, Cai R, Ren J, Chen J, Qi L, Long X, Yang S. Conductive Polymer Intercalation Tunes Charge Transfer and Sorption-Desorption Properties of LDH Enabling Efficient Alkaline Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37063-37070. [PMID: 34318664 DOI: 10.1021/acsami.1c08429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling and tuning surface properties of a catalyst have always been a prime challenge for efficient hydrogen production via water splitting. Here, we report a facile method for tuning both charger transfer and sorption-desorption properties of NiFe layered double hydroxide (LDH) by intercalating a conductive polymer of polypyrrole (ppy) via an interlayer confined polymerization synthesis (ICPS) process. Ex situ characterizations and in situ electrochemical quartz-crystal microbalance with dissipation (EQCM-D) tracking experiments showed that the intercalated ppy not only improved the charge transfer property of the resulting hybrid catalyst LDH-ppy but also made it more flexible and adaptive for quick and reversible sorption-desorption of reactants and intermediates during the oxygen evolution reaction (OER) process. Consequently, the as-prepared LDH-ppy exhibited a doubled catalytic current density over the bare LDH, as visualized by in situ scanning electrochemical microscopy (SECM) at the subnanometer scale. This work sheds light on orchestrating the charge and sorbate transfer abilities of catalysts for efficient water splitting by smartly combining inorganic and organic layers.
Collapse
Affiliation(s)
- Min Ju
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Rongming Cai
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jiazheng Ren
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jinxi Chen
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xia Long
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
35
|
Saha P, Rahman MM, Hill CM. Borohydride oxidation electrocatalysis at individual, shape‐controlled Au nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Partha Saha
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| | | | - Caleb M. Hill
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| |
Collapse
|
36
|
Iffelsberger C, Wert S, Matysik FM, Pumera M. Catalyst Formation and In Operando Monitoring of the Electrocatalytic Activity in Flow Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35777-35784. [PMID: 34283572 DOI: 10.1021/acsami.1c09127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flow reactors are of increasing importance and have become crucial devices due to their wide application in chemical synthesis, electrochemical hydrogen evolution reaction (HER), or electrochemical waste water treatment. In many of these applications, catalyst materials such as transition-metal chalcogenides (TMCs) for the HER, provide the desired electrochemical reactivity for the HER. Generally, the flow electrolyzers' performance is evaluated as the overall output, but the decrease in activity of the electrolyzer is due to localized failure of the catalyst. Herein, we present a method for the spatially resolved (tens of micrometers) In Operando analysis of the catalytic activity under real operation conditions as well as the localized deposition of the catalyst in an operating model flow reactor. For these purposes, scanning electrochemical microscopy was applied for MoSx catalyst deposition and for localized tracking of the TMC activity with a resolution of 25 μm. This approach offers detailed information about the catalytic performance and should find broad application for the characterization and optimization of flow reactor catalysis under real operational conditions.
Collapse
Affiliation(s)
- Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Stefan Wert
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
37
|
Thomele D, Baumann SO, Schneider J, Sternig AK, Shulda S, Richards RM, Schwab T, Zickler GA, Bourret GR, Diwald O. Cubes to Cubes: Organization of MgO Particles into One-Dimensional and Two-Dimensional Nanostructures. CRYSTAL GROWTH & DESIGN 2021; 21:4674-4682. [PMID: 34381312 PMCID: PMC8343528 DOI: 10.1021/acs.cgd.1c00535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Indexed: 05/29/2023]
Abstract
Developing simple, inexpensive, and environmentally benign approaches to integrate morphologically well-defined nanoscale building blocks into larger high surface area materials is a key challenge in materials design and processing. In this work, we investigate the fundamental surface phenomena between MgO and water (both adsorption and desorption) with particles prepared via a vapor-phase process (MgO nanocubes) and a modified aerogel process (MgO(111) nanosheets). Through these studies, we unravel a strategy to assemble individual MgO nanoparticles into extended faceted single-crystalline MgO nanosheets and nanorods with well-defined exposed surfaces and edges. This reorganization can be triggered by the presence of H2O vapor or bulk liquid water. Water adsorption and the progressive conversion of vapor-phase grown oxide particles into hydroxides give rise to either one-dimensional or two-dimensional (1D or 2D) structures of high dispersion and surface area. The resulting Mg(OH)2 lamella with a predominant (001) surface termination are well-suited precursor structures for their topotactic conversion into laterally extended and uniform MgO(111) grain surface configurations. To understand the potential of polar (111) surfaces for faceting and surface reconstruction effects associated with water desorption, we investigated the stability of MgO(111) nanosheets during vacuum annealing and electron beam exposure. The significant surface reconstruction of the MgO(111) surfaces observed shows that adsorbate-free (111)-terminated surfaces of unsupported MgO nanostructures reconstruct rather than remain as charged planes of either three-fold coordinated O2- ion or Mg2+ ions. Thus, here we demonstrate the role water can play in surface formation and reconstruction by bridging wet chemical and surface science inspired approaches.
Collapse
Affiliation(s)
- Daniel Thomele
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Stefan O. Baumann
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Johannes Schneider
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Andreas K. Sternig
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Sarah Shulda
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ryan M. Richards
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas Schwab
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| | - Gregor A. Zickler
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| | - Oliver Diwald
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| |
Collapse
|
38
|
Barman K, Wang X, Jia R, Mirkin MV. Mediated Charge Transfer at Nanoelectrodes: A New Approach to Electrochemical Reactivity Mapping and Nanosensing. J Am Chem Soc 2021; 143:8547-8551. [PMID: 34061516 DOI: 10.1021/jacs.1c02532] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Scanning electrochemical microscopy (SECM) is a powerful tool for mapping surface reactivity. Electrochemical mapping of electrocatalytic processes at the nanoscale is, however, challenging because the surface of a nanoelectrode tip is easily fouled by impurities and/or deactivated by products and intermediates of innersphere surface reactions. To overcome this difficulty, we introduce new types of SECM nanotips based on bimolecular electron transfer between the dissolved electroactive species and a redox mediator attached to the surface of a carbon nanoelectrode. A tris(2,2'-bipyridine)ruthenium complex, Ru(bpy)3, that undergoes reversible oxidation/reduction reactions at both positive and negative potentials was used to prepare the SECM nanoprobes for mapping a wide range of electrocatalytic processes through oxidation of H2, reduction of O2, and both oxidation and reduction of H2O2 at the tip. In addition to high-resolution reactivity mapping and localized kinetic measurements, chemically modified nanoelectrodes can serve as nanosensors for a number of important analytes such as reactive oxygen and nitrogen species and neurotransmitters.
Collapse
Affiliation(s)
- Koushik Barman
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Xiang Wang
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
39
|
Sarkar S, Wang X, Hesari M, Chen P, Mirkin MV. Scanning Electrochemical and Photoelectrochemical Microscopy on Finder Grids: Toward Correlative Multitechnique Imaging of Surfaces. Anal Chem 2021; 93:5377-5382. [PMID: 33769032 DOI: 10.1021/acs.analchem.1c00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Scanning electrochemical microscopy (SECM) is a powerful technique for mapping surface reactivity and investigating heterogeneous processes on the nanoscale. Despite significant advances in high-resolution SECM and photo-SECM imaging, they cannot provide atomic scale structural information about surfaces. By correlating the SECM images with atomic scale structural and bonding information obtained by transmission electron microscopy (TEM) techniques with one-to-one correspondence, one can elucidate the nature of the active sites and understand the origins of heterogeneous surface reactivity. To enable multitechnique imaging of the same nanoscale portion of the electrode surface, we develop a methodology for using a TEM finder grid as a conductive support in SECM and photo-SECM experiments. In this paper, we present the results of our first nanoscale SECM and photo-SECM experiments on carbon TEM grids, including imaging of semiconductor nanorods.
Collapse
Affiliation(s)
- Sujoy Sarkar
- Department of Chemistry, Queens College, City University of New York, 6530 Kissena Boulevard Flushing, New York 11367, United States
| | - Xiang Wang
- Department of Chemistry, Queens College, City University of New York, 6530 Kissena Boulevard Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael V Mirkin
- Department of Chemistry, Queens College, City University of New York, 6530 Kissena Boulevard Flushing, New York 11367, United States
| |
Collapse
|
40
|
Cui C, Jin R, Jiang D, Zhang J, Zhu J. Visualization of an Accelerated Electrochemical Reaction under an Enhanced Electric Field. RESEARCH (WASHINGTON, D.C.) 2021; 2021:1742919. [PMID: 33681811 PMCID: PMC7907821 DOI: 10.34133/2021/1742919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/22/2020] [Indexed: 11/06/2022]
Abstract
Locally enhanced electric fields produced by high-curvature structures have been reported to boost the charge transport process and improve the relevant catalytic activity. However, no visual evidence has been achieved to support this new electrochemical mechanism. Here, accelerated electrochemiluminescence (ECL) reactions emitting light are visualized for the first time at the heterogeneous interfaces between microbowls and the supporting electrode surface. The simulation result shows that the electric intensity at the interface with a high curvature is 40-fold higher than that at the planar surface. Consequently, local high electric fields concentrate reactive species to the heterogeneous interfaces and efficiently promote the charge transport reactions, which directly leads to the enhancement of ECL emission surrounding the microbowls. Additionally, the potential to induce visual ECL from a ruthenium complex drops to 0.9 V, which further illustrates the promotion of an electrochemical reaction with the aid of an enhanced electric field. This important visualization of electric field boosted electrochemical reactions helps to establish the proposed electron transfer mechanism and provide an alternative strategy to improve electrocatalytic efficiency.
Collapse
Affiliation(s)
- Chen Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junjie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. NANOSCALE 2020; 12:15128-15136. [PMID: 32657309 DOI: 10.1039/d0nr03799k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
43
|
Strelcov E, Arble C, Guo H, Hoskins BD, Yulaev A, Vlassiouk IV, Zhitenev NB, Tselev A, Kolmakov A. Nanoscale Mapping of the Double Layer Potential at the Graphene-Electrolyte Interface. NANO LETTERS 2020; 20:1336-1344. [PMID: 31990570 DOI: 10.1021/acs.nanolett.9b04823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrical double layer (EDL) governs the operation of multiple electrochemical devices, determines reaction potentials, and conditions ion transport through cellular membranes in living organisms. The few existing methods of EDL probing have low spatial resolution, usually only providing spatially averaged information. On the other hand, traditional Kelvin probe force microscopy (KPFM) is capable of mapping potential with nanoscale lateral resolution but cannot be used in electrolytes with concentrations higher than several mmol/L. Here, we resolve this experimental impediment by combining KPFM with graphene-capped electrolytic cells to quantitatively measure the potential drop across the EDL in aqueous electrolytes of decimolar and molar concentrations with a high lateral resolution. The surface potential of graphene in contact with deionized water and 0.1 mol/L solutions of CuSO4 and MgSO4 as a function of counter electrode voltage is reported. The measurements are supported by numerical modeling to reveal the role of the graphene membrane in potential screening and to determine the EDL potential drop. The proposed approach proves to be especially useful for imaging spatially inhomogeneous systems, such as nanoparticles submerged in an electrolyte solution. It could be suitable for in operando and in vivo measurements of the potential drop in the EDL on the surfaces of nanocatalysts and biological cells in equilibrium with liquid solutions.
Collapse
Affiliation(s)
- Evgheni Strelcov
- Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
- Maryland NanoCenter , University of Maryland , College Park , Maryland 20742 , United States
| | - Christopher Arble
- Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Hongxuan Guo
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education , Southeast University , Nanjing 210096 , China
| | - Brian D Hoskins
- Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Alexander Yulaev
- Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Ivan V Vlassiouk
- Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Nikolai B Zhitenev
- Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Alexander Tselev
- Department of Physics and CICECO-Aveiro Institute of Materials , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Andrei Kolmakov
- Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|