1
|
Zhang Y, Qi F, Chen P, Liu BF, Li Y. Spatially defined microenvironment for engineering organoids. BIOPHYSICS REVIEWS 2024; 5:041302. [PMID: 39679203 PMCID: PMC11646138 DOI: 10.1063/5.0198848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024]
Abstract
In the intricately defined spatial microenvironment, a single fertilized egg remarkably develops into a conserved and well-organized multicellular organism. This observation leads us to hypothesize that stem cells or other seed cell types have the potential to construct fully structured and functional tissues or organs, provided the spatial cues are appropriately configured. Current organoid technology, however, largely depends on spontaneous growth and self-organization, lacking systematic guided intervention. As a result, the structures replicated in vitro often emerge in a disordered and sparse manner during growth phases. Although existing organoids have made significant contributions in many aspects, such as advancing our understanding of development and pathogenesis, aiding personalized drug selection, as well as expediting drug development, their potential in creating large-scale implantable tissue or organ constructs, and constructing multicomponent microphysiological systems, together with functioning at metabolic levels remains underutilized. Recent discoveries have demonstrated that the spatial definition of growth factors not only induces directional growth and migration of organoids but also leads to the formation of assembloids with multiple regional identities. This opens new avenues for the innovative engineering of higher-order organoids. Concurrently, the spatial organization of other microenvironmental cues, such as physical stresses, mechanical loads, and material composition, has been minimally explored. This review delves into the burgeoning field of organoid engineering with a focus on potential spatial microenvironmental control. It offers insight into the molecular principles, expected outcomes, and potential applications, envisioning a future perspective in this domain.
Collapse
Affiliation(s)
- Yilan Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, Jiang S. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications. MATERIALS HORIZONS 2024; 11:5843-5873. [PMID: 39221699 DOI: 10.1039/d4mh00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc., which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
Collapse
Affiliation(s)
- Minmin Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Chen JM, Huang QY, Chen WH, Wu JX, Zheng LT, You HJ, Shi YC, Lin S, Shi QR. Transcriptomics of tissue exosomes to investigate miR-195-5p's amelioration of endometrial fibrosis via the YAP-Smad7 pathway: an animal study. J Transl Med 2024; 22:1050. [PMID: 39574130 PMCID: PMC11580480 DOI: 10.1186/s12967-024-05871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND A significant research gap exists regarding the role of tissue exosomes in intrauterine adhesions (IUAs). This study aims to investigate the involvement of miR-195-5p and its regulatory network in IUAs through the analysis of tissue exosomes. METHODS Exosomes from rat uterine tissue with intrauterine adhesions were analyzed via transcriptomics to identify downstream target genes of miR-195-5p, cross-referencing with the human endometrial transcriptomics database GSE224093. Dual luciferase labeling confirmed miRNA-target gene interactions. The therapeutic efficacy of a miR-195-5p agonist was assessed in vivo through HE staining, Masson staining, and mating tests. The mechanisms underlying extracellular matrix (ECM) deposition and myofibroblast transdifferentiation in endometrial fibrosis were investigated both in vitro and in vivo using RT-PCR, Western Blot, immunofluorescence, and immunohistochemistry. Migration ability of endometrial stromal cells was evaluated using CCK8, scratch tests, and Transwell assays. Finally, the clinical potential of miR-195-5p was compared with autologous adipose-derived mesenchymal stem cells. RESULTS The expression of miR-195-5p in uterine tissue exosomes from intrauterine adhesions was found to be decreased. Treatment with a miR-195-5p agonist resulted in improved endometrial health, reduced fibrosis, increased glandular density, and enhanced birth rates in rats. Both in vivo and in vitro experiments confirmed that miR-195-5p decreased ECM deposition, reduced myofibroblast transdifferentiation, and inhibited the migration of endometrial stromal cells. This was achieved through the downregulation of YAP expression in the Hippo pathway and the upregulation of Smad7. Notably, the therapeutic efficacy of miR-195-5p agonists was comparable to that of stem cell therapy, offering promising avenues for clinical application. CONCLUSIONS Differential expression of miR-195-5p in tissue exosomes can reduce ECM deposition and myofibroblast transdifferentiation, improving endometrial fibrosis by regulating the YAP-Smad7 pathway in the Hippo signaling cascade.
Collapse
Affiliation(s)
- Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Jin-Xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Ling-Tao Zheng
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Hui-Jie You
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Yan-Chuan Shi
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, 999029, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 999029, Australia
| | - Shu Lin
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, 999029, Australia.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| | - Qi-Rong Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
4
|
Zhang K, Zhang C, Zhou H, Yang Y, Wen Y, Jiao X, Yao M, Wen Y. Elastic Nanofibrous Dressings with Mesenchymal Stem Cell-Recruiting and Protecting Characteristics for Promoting Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41869-41880. [PMID: 39101935 DOI: 10.1021/acsami.4c07369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Diabetic wounds that do not heal for a long time challenge global healthcare. Mesenchymal stem cell (MSC) therapy has positive significance in promoting diabetic wound healing. However, traditional MSC therapy involves exogenous MSCs, which brings many limitations and unsatisfactory treatment. Moreover, the maintenance of MSC viability and function is difficult because of the high level of reactive oxygen species (ROS) in diabetic wounds. Therefore, we developed a nanofibrous dressing to recruit and protect endogenous MSCs while avoiding the inherent disadvantages of exogenous MSCs. Ceria nanoparticles capable of ROS scavenging are integrated into the nanofibrous dressings, together with Apt19S, a DNA aptamer with affinity and selectivity for MSCs. In addition, the homogenization and freeze-drying technology give the nanofibrous dressings good elasticity, which protects the wound from external pressure. Further experiments in diabetic mice show that the dressing has excellent endogenous MSC recruitment and anti-inflammatory properties, thereby synergistically promoting diabetic wound healing. This study is expected to explore an efficient method of stem cell therapy, providing a new way to construct high-performance wound dressings.
Collapse
Affiliation(s)
- Kexin Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Chenyu Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Huanxin Zhou
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yan Yang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yanzhen Wen
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Mingze Yao
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Gao Y, Li H, Chao S, Wang Y, Hou L, Bai T, Bai J, Man X, Cui Z, Wang N, Li Z, Zhao Y. Zebra-Patterned Stretchable Helical Yarn for Triboelectric Self-Powered Multifunctional Sensing. ACS NANO 2024; 18:16958-16966. [PMID: 38907712 DOI: 10.1021/acsnano.4c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Smart textiles capable of both energy harvesting and multifunctional sensing are highly desirable for next-generation portable electronics. However, there are still challenges that need to be conquered, such as the innovation of an energy-harvesting model and the optimization of interface bonding between fibers and active materials. Herein, inspired by the spiral structure of natural vines, a highly stretchable triboelectric helical yarn (TEHY) was manufactured by twisting the carbon nanotube/polyurethane nanofiber (CNT/PU NF) Janus membrane. The TEHY had a zebra-stripe-like design that was composed of black interval conductive CNTs and white insulative PU NFs. Due to the different electron affinity, the zebra-patterned TEHY realized a self-frictional triboelectric effect because the numerous microscopic CNT/PU triboelectric interfaces generated an alternating current in the external conductive circuit without extra external friction layers. The helical geometry combined with the elastic PU matrix endowed TEHY with superelastic stretchability and outstanding output stability after 1000 cycles of the stretch-release test. By virtue of the robust mechanical and electrical stability, the TEHY can not only be used as a high-entropy mechanical energy harvester but also serve as a self-powered sensor to monitor the stretching or deforming stimuli and human physiological activities in real time. These merits manifested the versatile applications of TEHY in smart fabrics, wearable power supplies, and human-machine interactions.
Collapse
Affiliation(s)
- Yuan Gao
- School of Machinery and Automation, Weifang University, Weifang 261061, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Hu Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Shengyu Chao
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqiong Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Tonghua Bai
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jie Bai
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, P. R. China
| | - Xingkun Man
- Center of Soft Matter Physics and Its Applications, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, P. R. China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, P. R. China
| |
Collapse
|
6
|
Li P, Chen P, Qi F, Shi J, Zhu W, Li J, Zhang P, Xie H, Li L, Lei M, Ren X, Wang W, Zhang L, Xiang X, Zhang Y, Gao Z, Feng X, Du W, Liu X, Xia L, Liu BF, Li Y. High-throughput and proteome-wide discovery of endogenous biomolecular condensates. Nat Chem 2024; 16:1101-1112. [PMID: 38499848 DOI: 10.1038/s41557-024-01485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.
Collapse
Affiliation(s)
- Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinyun Shi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenjie Zhu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiashuo Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mengcheng Lei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xueqing Ren
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenhui Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liang Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhaolong Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Limin Xia
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
7
|
Zhan L, Chen S, Xin Y, Lv J, Fu H, Gao D, Jiang F, Zhou X, Wang N, Lee PS. Dual-Responsive MXene-Functionalized Wool Yarn Artificial Muscles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402196. [PMID: 38650164 PMCID: PMC11220689 DOI: 10.1002/advs.202402196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/25/2024]
Abstract
Fiber-based artificial muscles are promising for smart textiles capable of sensing, interacting, and adapting to environmental stimuli. However, the application of current artificial muscle-based textiles in wearable and engineering fields has largely remained a constraint due to the limited deformation, restrictive stimulation, and uncomfortable. Here, dual-responsive yarn muscles with high contractile actuation force are fabricated by incorporating a very small fraction (<1 wt.%) of Ti3C2Tx MXene/cellulose nanofibers (CNF) composites into self-plied and twisted wool yarns. They can lift and lower a load exceeding 3400 times their own weight when stimulated by moisture and photothermal. Furthermore, the yarn muscles are coiled homochirally or heterochirally to produce spring-like muscles, which generated over 550% elongation or 83% contraction under the photothermal stimulation. The actuation mechanism, involving photothermal/moisture-mechanical energy conversion, is clarified by a combination of experiments and finite element simulations. Specifically, MXene/CNF composites serve as both photothermal and hygroscopic agents to accelerate water evaporation under near-infrared (NIR) light and moisture absorption from ambient air. Due to their low-cost facile fabrication, large scalable dimensions, and robust strength coupled with dual responsiveness, these soft actuators are attractive for intelligent textiles and devices such as self-adaptive textiles, soft robotics, and wearable information encryption.
Collapse
Affiliation(s)
- Liuxiang Zhan
- Shanghai Frontier Science Research Center for Advanced TextilesCollege of TextilesDonghua UniversityShanghai201620China
- Engineering Research Center of Technical TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Shaohua Chen
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Yangyang Xin
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Jian Lv
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Hongbo Fu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Dace Gao
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Feng Jiang
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Xinran Zhou
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Ni Wang
- Shanghai Frontier Science Research Center for Advanced TextilesCollege of TextilesDonghua UniversityShanghai201620China
- Engineering Research Center of Technical TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Pooi See Lee
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
8
|
Liu S, Yang M, Smarr C, Zhang G, Barton H, Xu W. Engineered Living Structures with Shape-Morphing Capability Enabled by 4D Printing with Functional Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:3247-3257. [PMID: 38648508 DOI: 10.1021/acsabm.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Engineered living structures with the incorporation of functional bacteria have been explored extensively in recent years and have shown promising potential applications in biosensing, environmental remediation, and biomedicine. However, it is still rare and challenging to achieve multifunctional capabilities such as material production, shape transformation, and sensing in a single-engineered living structure. In this study, we demonstrate bifunctional living structures by synergistically integrating cellulose-generating bacteria with pH-responsive hydrogels, and the entire structures can be precisely fabricated by three-dimensional (3D) printing. Such 3D-printed bifunctional living structures produce cellulose nanofibers in ambient conditions and have reversible and controlled shape-morphing properties (usually referred to as four-dimensional printing). Those functionalities make them biomimetic versions of silkworms in the sense that both can generate nanofibers and have body motion. We systematically investigate the processing-structure-property relationship of the bifunctional living structures. The on-demand separation of 3D cellulose structures from the hydrogel template and the living nature of the bacteria after processing and shape transformation are also demonstrated.
Collapse
Affiliation(s)
- Shan Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Muxuan Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Cade Smarr
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hazel Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
9
|
Li X, Lin Y, Cui L, Li C, Yang Z, Zhao S, Hao T, Wang G, Heo JY, Yu JC, Chang YW, Zhu J. Stretchable and Lithography-Compatible Interconnects Enabled by Self-Assembled Nanofilms with Interlocking Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56233-56241. [PMID: 37988740 DOI: 10.1021/acsami.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Stretchable interconnects with miniature widths are vital for the high-density integration of deformable electronic components on a single substrate for targeted data logic or storage functions. However, it is still challenging to attain high-resolution patternability of stretchable conductors with robust circuit fabrication capability. Here, we report a self-assembled silver nanofilm firmly interlocked by an elastomeric nanodielectric that can be photolithographically patterned into microscale features while preserving high stretchability and conductivity. Both silver and dielectric nanofilms are fabricated by layer-by-layer assembly, ensuring wafer-scale uniformity and meticulous control of thicknesses. Without any thermal annealing, the as-fabricated nanofilms from silver nanoparticles (AgNPs) exhibit conductivity of 1.54 × 106 S m-1 and stretchability of ∼200%, which is due to the impeded crack propagation by the underlying PU nanodielectrics. Furthermore, it is revealed that AgNP microstrips defined by photolithography show higher stretchability when their widths are downscaled to 100 μm owing to confined cracks. However, further scaling restricts the stretchability, following the early development of cracks cutting across the strip. In addition, the resistance change of these silver interconnects can be decreased using serpentine architectures. As a demonstration, these self-assembled interconnects are used as stretchable circuit boards to power LEDs.
Collapse
Affiliation(s)
- Xiang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Chenning Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Zhenhua Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Sanchuan Zhao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Tailang Hao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Guoqi Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Jae-Young Heo
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
| | - Jae-Chul Yu
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
- R&D Center, Hepce Chem Co., Ltd., Siheung, Gyeonggi 15588, Korea
| | - Young-Wook Chang
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
- Laboratory for Rare Earth Materials and Applications, and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
10
|
Park K, Frey MW. Designing an Effective and Scalable UV-Protective Cooling Textile with Nanoporous Fibers. NANO LETTERS 2023; 23:10398-10405. [PMID: 37931913 PMCID: PMC10683759 DOI: 10.1021/acs.nanolett.3c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Although radiative cooling concepts guarantee reduction of air conditioning energy consumption by maximizing the scattering of solar radiation and dissipation of thermal radiation of a human body or building, large-scale implementation is challenging due to the need of radical adaptation in manufacturing processes, materials, and design. Here, we introduce an extremely thin layer of nanoporous microfibers without any additional materials or post-treatments. The optical and thermal effectiveness of porous fibers are presented to report a nondisruptive method of preventing the transmission of energy-intensive radiation such as ultraviolet radiation (UV) through textiles. Results show ∼1.4 °C cooling by adding 1 g/m2 (GSM) of porous fibers on a 160 GSM cotton t-shirt, and 91% of UV was prevented with 7.5 GSM of a porous fiber mat. This minimalistic additive approach would widen the scope of optical and radiative cooling research and accelerate both functional and sustainable materials research to be more accessible.
Collapse
Affiliation(s)
- Kyuin Park
- Department of Human Centered
Design, College of Human Ecology, Cornell
University, Ithaca, New York 14850, United States
| | - Margaret W. Frey
- Department of Human Centered
Design, College of Human Ecology, Cornell
University, Ithaca, New York 14850, United States
| |
Collapse
|
11
|
Shi S, Ou X, Cheng D. How Advancing is Peripheral Nerve Regeneration Using Nanofiber Scaffolds? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:6763-6779. [PMID: 38026517 PMCID: PMC10657550 DOI: 10.2147/ijn.s436871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Peripheral nerve injuries present significant challenges in regenerative medicine, primarily due to inherent limitations in the body's natural healing processes. In response to these challenges and with the aim of enhancing peripheral nerve regeneration, nanofiber scaffolds have emerged as a promising and advanced intervention. However, a deeper understanding of the underlying mechanistic foundations that drive the favorable contributions of nanofiber scaffolds to nerve regeneration is essential. In this comprehensive review, we make an exploration of the latent potential of nanofiber scaffolds in augmenting peripheral nerve regeneration. This exploration includes a detailed introduction to the fabrication methods of nanofibers, an analysis of the intricate interactions between these scaffolds and cellular entities, an examination of strategies related to the controlled release of bioactive agents, an assessment of the prospects for clinical translation, an exploration of emerging trends, and thorough considerations regarding biocompatibility and safety. By comprehensively elucidating the intricate structural attributes and multifaceted functional capacities inherent in nanofiber scaffolds, we aim to offer a prospective and effective strategy for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
12
|
Götz A, Senz V, Schmidt W, Koper D, Grabow N, Illner S. Detection of acoustic emission from nanofiber nonwovens under tensile strain - An ultrasonic test setup for critical medical device components. J Mech Behav Biomed Mater 2023; 140:105720. [PMID: 36801776 DOI: 10.1016/j.jmbbm.2023.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
In the biomedical field, nanofiber materials are gaining increasing application. For material characterization of nanofiber fabrics, tensile testing and scanning electron microscopy (SEM) are established standards. However, tensile tests provide information about the entire sample without information about single fibers. Conversely, SEM images examine individual fibers, but cover only a small section near the surface of the sample. To gain information on failure at the fiber level under tensile stress, recording of acoustic emission (AE) is a promising method, but challenging due to weak signal intensity. Using AE recording, beneficial findings can be obtained even on "invisible" material failure without affecting tensile tests. In this work, a technology for recording weak ultrasonic AE of tearing nanofiber nonwovens is presented, which uses a highly sensitive sensor. Functional proof of the method using biodegradable PLLA nonwoven fabrics is provided. The potential benefit is demonstrated by unmasking significant AE intensity in an almost imperceptible bend in the stress-strain curve of a nonwoven fabric. AE recording has not yet been performed on standard tensile tests of unembedded nanofiber material intended for safety-related medical applications. The technology has the potential to enrich the spectrum of testing methods, even those not confined to medical field.
Collapse
Affiliation(s)
- Andreas Götz
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119, Rostock, Germany.
| | - Volkmar Senz
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119, Rostock, Germany.
| | - Wolfram Schmidt
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119, Rostock, Germany.
| | - Daniela Koper
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119, Rostock, Germany.
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119, Rostock, Germany.
| | - Sabine Illner
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119, Rostock, Germany.
| |
Collapse
|
13
|
Zhang Y, Xue Y, Ren Y, Li X, Liu Y. Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers (Basel) 2023; 15:polym15061566. [PMID: 36987348 PMCID: PMC10054061 DOI: 10.3390/polym15061566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair has certain limitations. Biodegradable polymer electrospinning technology with good biocompatibility and degradability can effectively repair tendons, and its mechanical properties can be achieved by adjusting the fiber diameter and fiber spacing. Here, this review first briefly introduces the structure and function of the tendon and the repair process after injury. Then, different kinds of biodegradable natural polymers for tendon repair are summarized. Then, the advantages and disadvantages of three-dimensional (3D) electrospun products in tendon repair and regeneration are summarized, as well as the optimization of electrospun fiber scaffolds with different bioactive materials and the latest application in tendon regeneration engineering. Bioactive molecules can optimize the structure of these products and improve their repair performance. Importantly, we discuss the application of the 3D electrospinning scaffold's superior structure in different stages of tendon repair. Meanwhile, the combination of other advanced technologies has greater potential in tendon repair. Finally, the relevant patents of biodegradable electrospun scaffolds for repairing damaged tendons, as well as their clinical applications, problems in current development, and future directions are summarized. In general, the use of biodegradable electrospun fibers for tendon repair is a promising and exciting research field, but further research is needed to fully understand its potential and optimize its application in tissue engineering.
Collapse
Affiliation(s)
- Yiming Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| | - Yueguang Xue
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yan Ren
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Li
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Liu
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
14
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
16
|
Ma B, Zhang J, Chen G, Chen Y, Xu C, Lei L, Liu H. Shape-Programmable Liquid Metal Fibers. BIOSENSORS 2022; 13:bios13010028. [PMID: 36671863 PMCID: PMC9856024 DOI: 10.3390/bios13010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Conductive and stretchable fibers are the cornerstone of intelligent textiles and imperceptible electronics. Among existing fiber conductors, gallium-based liquid metals (LMs) featuring high conductivity, fluidity, and self-healing are excellent candidates for highly stretchable fibers with sensing, actuation, power generation, and interconnection functionalities. However, current LM fibers fabricated by direct injection or surface coating have a limitation in shape programmability. This hinders their applications in functional fibers with tunable electromechanical response and miniaturization. Here, we reported a simple and efficient method to create shape-programmable LM fibers using the phase transition of gallium. Gallium metal wires in the solid state can be easily shaped into a 3D helical structure, and the structure can be preserved after coating the wire with polyurethane and liquifying the metal. The 3D helical LM fiber offered enhanced stretchability with a high breaking strain of 1273% and showed invariable conductance over 283% strain. Moreover, we can reduce the fiber diameter by stretching the fiber during the solidification of polyurethane. We also demonstrated applications of the programmed fibers in self-powered strain sensing, heart rate monitoring, airflow, and humidity sensing. This work provided simple and facile ways toward functional LM fibers, which may facilitate the broad applications of LM fibers in e-skins, wearable computation, soft robots, and smart fabrics.
Collapse
|
17
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Han W, Wang L, Li Q, Ma B, He C, Guo X, Nie J, Ma G. A Review: Current Status and Emerging Developments on Natural Polymer‐Based Electrospun Fibers. Macromol Rapid Commun 2022; 43:e2200456. [DOI: 10.1002/marc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Weisen Han
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Qin Li
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bomou Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Xuefeng Guo
- Changzhou Vocational Institute of Textile and Garment School of Textile 53 Gehu Middle Road Changzhou Jiangsu 213164 P.R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
19
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
20
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Zhang X, Chen G, Wang Y, Fan L, Zhao Y. Arrowhead Composite Microneedle Patches with Anisotropic Surface Adhesion for Preventing Intrauterine Adhesions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104883. [PMID: 35187857 PMCID: PMC9036003 DOI: 10.1002/advs.202104883] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/06/2022] [Indexed: 05/16/2023]
Abstract
Biomedical patches are considered as a promising strategy to help tissue repair and regeneration, prevent tissue adhesion, and reduce neighboring friction. Here, novel arrowhead composite microneedle patches (MNPs) are presented with anisotropic surface adhesion and growth factor encapsulation using a heterogeneous template replication approach for endometrium repair and intrauterine adhesions (IUAs) prevention. The arrowhead structures bring about interlocking between the microneedle (MN) tips and tissues, allowing these MNPs to steadily adhere to the tissues. Besides, benefitting from the cytoadhesive needle-tip material and the antiadhesive base material, these MNPs possess anisotropic surface adhesion and can facilitate cell adhesion on one surface to repair damaged tissues while restrain tissue contact on the other to prevent adverse adhesion. In the meanwhile, the encapsulated growth factor can be delivered through the MNs to the deep tissue, further accelerating tissue repair. Additionally, as the bases are soft and their patterns are highly tunable, the MNPs can change their shapes flexibly to adjust to the irregular morphology of uteri. It is demonstrated that these MNPs show good performances in treating injured endometrium and preventing IUAs of a rat model, indicating their great potential in versatile postoperative adhesion prevention and other clinical applications.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Guopu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| | - Yuetong Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lu Fan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijing100101China
| |
Collapse
|
22
|
Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210029. [PMID: 37324581 PMCID: PMC10191062 DOI: 10.1002/exp.20210029] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
Electrospinning (e-spin) technique has emerged as a versatile and feasible pathway for constructing diverse polymeric fabric structures, which show potential applications in many biological and biomedical fields. Owing to the advantages of adjustable mechanics, designable structures, versatile surface multi-functionalization, and biomimetic capability to natural tissue, remarkable progress has been made in flexible bioelectronics and tissue engineering for the sensing and therapeutic purposes. In this perspective, we review recent works on design of the hierarchically structured e-spin fibers, as well as, the fabrication strategies from one-dimensional individual fiber (1D) to three-dimensional (3D) fiber arrangements adaptive to specific applications. Then, we focus on the most cutting-edge progress of their applications in flexible bioelectronics and tissue engineering. Finally, we propose future challenges and perspectives for promoting electrospun fiber-based products toward industrialized, intelligent, multifunctional, and safe applications.
Collapse
Affiliation(s)
- Xingyi Wan
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| |
Collapse
|
23
|
Zhao X, Hu J, Li Y, Guo M. Volumetric compression develops noise-driven single-cell heterogeneity. Proc Natl Acad Sci U S A 2021; 118:e2110550118. [PMID: 34916290 PMCID: PMC8713786 DOI: 10.1073/pnas.2110550118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
Recent studies have revealed that extensive heterogeneity of biological systems arises through various routes ranging from intracellular chromosome segregation to spatiotemporally varying biochemical stimulations. However, the contribution of physical microenvironments to single-cell heterogeneity remains largely unexplored. Here, we show that a homogeneous population of non-small-cell lung carcinoma develops into heterogeneous subpopulations upon application of a homogeneous physical compression, as shown by single-cell transcriptome profiling. The generated subpopulations stochastically gain the signature genes associated with epithelial-mesenchymal transition (EMT; VIM, CDH1, EPCAM, ZEB1, and ZEB2) and cancer stem cells (MKI67, BIRC5, and KLF4), respectively. Trajectory analysis revealed two bifurcated paths as cells evolving upon the physical compression, along each path the corresponding signature genes (epithelial or mesenchymal) gradually increase. Furthermore, we show that compression increases gene expression noise, which interplays with regulatory network architecture and thus generates differential cell-fate outcomes. The experimental observations of both single-cell sequencing and single-molecule fluorescent in situ hybridization agrees well with our computational modeling of regulatory network in the EMT process. These results demonstrate a paradigm of how mechanical stimulations impact cell-fate determination by altering transcription dynamics; moreover, we show a distinct path that the ecology and evolution of cancer interplay with their physical microenvironments from the view of mechanobiology and systems biology, with insight into the origin of single-cell heterogeneity.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jiliang Hu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
24
|
Chi J, Sun L, Cai L, Fan L, Shao C, Shang L, Zhao Y. Chinese herb microneedle patch for wound healing. Bioact Mater 2021; 6:3507-3514. [PMID: 33817424 PMCID: PMC7988348 DOI: 10.1016/j.bioactmat.2021.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Traditional Chinese medicine and Chinese herbs have a demonstrated value for disease therapy and sub-health improvement. Attempts in this area tend to develop new forms to make their applications more convenient and wider. Here, we propose a novel Chinese herb microneedle (CHMN) patch by integrating the herbal extracts, Premna microphylla and Centella asiatica, with microstructure of microneedle for wound healing. Such path is composed of sap extracted from the herbal leaves via traditional kneading method and solidified by plant ash derived from the brine induced process of tofu in a well-designed mold. Because the leaves of the Premna microphylla are rich in pectin and various amino acids, the CHMN could be imparted with medicinal efficacy of heat clearing, detoxicating, detumescence and hemostatic. Besides, with the excellent pharmaceutical activity of Asiatic acid extracted from Centella asiatica, the CHMN is potential in promoting relevant growth factor genes expression in fibroblasts and showing excellent performance in anti-oxidant, anti-inflammatory and anti-bacterial activity. Taking advantages of these pure herbal compositions, we have demonstrated that the derived CHMN was with dramatical achievement in anti-bacteria, inhibiting inflammatory, collagen deposition, angiogenesis and tissue reconstruction during the wound closure. These results indicate that the integration of traditional Chinese herbs with progressive technologies will facilitate the development and promotion of traditional Chinese medicine in modern society.
Collapse
Affiliation(s)
- Junjie Chi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Lingyu Sun
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lu Fan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Changmin Shao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Zhongshan-Xuhui Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
25
|
Zhang X, Fu X, Chen G, Wang Y, Zhao Y. Versatile Ice Microneedles for Transdermal Delivery of Diverse Actives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101210. [PMID: 34218532 PMCID: PMC8425882 DOI: 10.1002/advs.202101210] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Indexed: 05/24/2023]
Abstract
Microneedles are regarded as an emerging and promising transdermal drug delivery strategy. Great efforts are devoted to getting rid of their material restrictions and imparting them with abilities to carry various drugs. Here, inspired by ice formation in nature and based on characteristics of different frozen materials, the authors present novel ice microneedles made from versatile soft materials using a simple freezing template-based fabrication stratagem for effective transdermal delivery of diverse actives. Their strategy can convert microneedles with almost all water-containing components from softness into hardness for guaranteeing satisfactory penetration, thus removing their material component limitations. As all fabrication procedures are mild and actives can maintain activity during these processes, the ice microneedles can carry and deliver various actives from small molecules and macromolecules to even living organisms. They have demonstrated that these ice microneedles can easily penetrate mouse and swine skins using a microneedle injector, with their active-carried tips left inside after their ice base melts. Thus, by loading heparin, erythropoietin, or biosafe Bacillus subtilis (B. subtilis) inside the ice microneedles to treat mouse models, the practical values of these microneedles are well displayed, indicating their bright prospects in universal drug delivery systems.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Xiao Fu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Guopu Chen
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Yuetong Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
26
|
Zhao X, Ou G, Lei M, Zhang Y, Li L, Ge A, Wang Y, Li Y, Liu BF. Rapid generation of hybrid biochemical/mechanical cues in heterogeneous droplets for high-throughput screening of cellular responses. LAB ON A CHIP 2021; 21:2691-2701. [PMID: 34165109 DOI: 10.1039/d1lc00209k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cells in their native microenvironment are subjected to varying combinations of biochemical cues and mechanical cues in a wide range. Although many signaling pathways have been found to be responsive for extracellular cues, little is known about how biochemical cues crosstalk with mechanical cues in a complex microenvironment. Here, we introduced heterogeneous droplets on a microchip, which were rapidly assembled by combining wettability-patterned microchip and programmed droplet manipulations, for a high-throughput cell screening of the varying combinations of biochemical cues and mechanical cues. This platform constructed a heterogeneous droplet/microgel array with orthogonal gradual chemicals and materials, which was further applied to analyze the cellular Wnt/β-catenin signaling in response to varying combinations of Wnt ligands and substrate stiffness. Thus, this device provides a powerful multiplexed bioassay platform for drug development, tissue engineering, and stem cell screening.
Collapse
Affiliation(s)
- Xing Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Gaozhi Ou
- School of Sports, China University of Geosciences, Wuhan, 430074, China
| | - Mengcheng Lei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518100, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Anle Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yachao Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
27
|
Li Y, Tang W, Guo M. The Cell as Matter: Connecting Molecular Biology to Cellular Functions. MATTER 2021; 4:1863-1891. [PMID: 35495565 PMCID: PMC9053450 DOI: 10.1016/j.matt.2021.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viewing cell as matter to understand the intracellular biomolecular processes and multicellular tissue behavior represents an emerging research area at the interface of physics and biology. Cellular material displays various physical and mechanical properties, which can strongly affect both intracellular and multicellular biological events. This review provides a summary of how cells, as matter, connect molecular biology to cellular and multicellular scale functions. As an impact in molecular biology, we review recent progresses in utilizing cellular material properties to direct cell fate decisions in the communities of immune cells, neurons, stem cells, and cancer cells. Finally, we provide an outlook on how to integrate cellular material properties in developing biophysical methods for engineered living systems, regenerative medicine, and disease treatments.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenhui Tang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Wang Z, Yang J, Dai X, Guo J, Li S, Sherazi TA, Zhang S. An integrated Janus porous membrane with controllable under-oil directional water transport and fluid gating property for oil/water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Li Y, Mao AS, Seo BR, Zhao X, Gupta SK, Chen M, Han YL, Shih TY, Mooney DJ, Guo M. Generation of the Compression-induced Dedifferentiated Adipocytes (CiDAs) Using Hypertonic Medium. Bio Protoc 2021; 11:e3920. [PMID: 33732807 PMCID: PMC7952959 DOI: 10.21769/bioprotoc.3920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 11/02/2022] Open
Abstract
Current methods to obtain mesenchymal stem cells (MSCs) involve sampling, culturing, and expanding of primary MSCs from adipose, bone marrow, and umbilical cord tissues. However, the drawbacks are the limited numbers of total cells in MSC pools, and their decaying stemness during in vitro expansion. As an alternative resource, recent ceiling culture methods allow the generation of dedifferentiated fat cells (DFATs) from mature adipocytes. Nevertheless, this process of spontaneous dedifferentiation of mature adipocytes is laborious and time-consuming. This paper describes a modified protocol for in vitro dedifferentiation of adipocytes by employing an additional physical stimulation, which takes advantage of augmenting the stemness-related Wnt/β-catenin signaling. Specifically, this protocol utilizes a polyethylene glycol (PEG)-containing hypertonic medium to introduce extracellular physical stimulation to obtain higher efficiency and introduce a simpler procedure for adipocyte dedifferentiation.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angelo S. Mao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Xing Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satish Kumar Gupta
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maorong Chen
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Guo J, Yu Y, Zhang D, Zhang H, Zhao Y. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin. RESEARCH (WASHINGTON, D.C.) 2021; 2021:7065907. [PMID: 33763650 PMCID: PMC7953990 DOI: 10.34133/2021/7065907] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 04/13/2023]
Abstract
Electronic skins with distinctive features have attracted remarkable attention from researchers because of their promising applications in flexible electronics. Here, we present novel morphologically conductive hydrogel microfibers with MXene encapsulation by using a multi-injection coflow glass capillary microfluidic chip. The coaxial flows in microchannels together with fast gelation between alginate and calcium ions ensure the formation of hollow straight as well as helical microfibers and guarantee the in situ encapsulation of MXene. The resultant hollow straight and helical MXene hydrogel microfibers were with highly controllable morphologies and package features. Benefiting from the easy manipulation of the microfluidics, the structure compositions and the sizes of MXene hydrogel microfibers could be easily tailored by varying different flow rates. It was demonstrated that these morphologically conductive MXene hydrogel microfibers were with outstanding capabilities of sensitive responses to motion and photothermal stimulations, according to their corresponding resistance changes. Thus, we believe that our morphologically conductive MXene hydrogel microfibers with these excellent features will find important applications in smart flexible electronics especially electronic skins.
Collapse
Affiliation(s)
- Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dagan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
31
|
Yang X, Wang J, Guo H, Liu L, Xu W, Duan G. Structural design toward functional materials by electrospinning: A review. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0068] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractElectrospinning as one of the most versatile technologies have attracted a lot of scientists’ interests in past decades due to its great diversity of fabricating nanofibers featuring high aspect ratio, large specific surface area, flexibility, structural abundance, and surface functionality. Remarkable progress has been made in terms of the versatile structures of electrospun fibers and great functionalities to enable a broad spectrum of applications. In this article, the electrospun fibers with different structures and their applications are reviewed. First, several kinds of electrospun fibers with different structures are presented. Then the applications of various structural electrospun fibers in different fields, including catalysis, drug release, batteries, and supercapacitors, are reviewed. Finally, the application prospect and main challenges of electrospun fibers are discussed. We hope that this review will provide readers with a comprehensive understanding of the structural design and applications of electrospun fibers in different fields.
Collapse
Affiliation(s)
- Xiuling Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongtao Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhui Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
33
|
Reid G, Magarotto F, Marsano A, Pozzobon M. Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering (Basel) 2020; 7:E118. [PMID: 33007935 PMCID: PMC7711907 DOI: 10.3390/bioengineering7040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity of natural skeletal muscle. Tissue engineering offers a promising alternative treatment strategy, aiming to achieve an engineered tissue close to natural tissue composition and function, able to induce long-term, functional regeneration after in vivo implantation. This review aims to summarize the latest approaches of tissue engineering skeletal muscle, with specific attention toward fabrication, neuro-angiogenesis, multicellularity and the biochemical cues that adjuvate the regeneration process.
Collapse
Affiliation(s)
- Gregory Reid
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fabio Magarotto
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| | - Anna Marsano
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
34
|
Li D, Tao L, Shen Y, Sun B, Xie X, Ke Q, Mo X, Deng B. Fabrication of Multilayered Nanofiber Scaffolds with a Highly Aligned Nanofiber Yarn for Anisotropic Tissue Regeneration. ACS OMEGA 2020; 5:24340-24350. [PMID: 33015450 PMCID: PMC7528211 DOI: 10.1021/acsomega.0c02554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 05/18/2023]
Abstract
Nanofibrous scaffolds were widely studied to construct scaffold for various fields of tissue engineering due to their ability to mimic a native extracellular matrix (ECM). However, generally, an electrospun nanofiber exhibited a two-dimensional (2D) membrane form with a densely packed structure, which inhibited the formation of a bulk tissue in a three-dimensional (3D) structure. The appearance of a nanofiber yarn (NFY) made it possible to further process the electrospun nanofiber into the desired fabric for specific tissue regeneration. Here, poly(l-lactic acid) (PLLA) NFYs composed of a highly aligned nanofiber were prepared via a dual-nozzle electrospinning setup. Afterward, a noobing technique was applied to fabricate multilayered scaffolds with three orthogonal sets of PLLA NFYs, without interlacing them. Thus the constituent NFYs of the fabric were free of any crimp, apart from the binding yarn, which was used to maintain the integrity of the noobing scaffold. Remarkably, the highly aligned PLLA NFY expressed strengthened mechanical properties than that of a random film, which also promoted the cell adhesion on the NFY scaffold with unidirectional topography and less spreading bodies. In vitro experiments indicated that cells cultured on a noobing NFY scaffold showed a higher proliferation rate during long culture period. The controllable pore structure formed by the vertically arrayed NFY could allow the cell to penetrate through the thickness of the 3D scaffold, distributed uniformly in each layer. The topographic clues guided the orientation of H9C2 cells, forming tissues on different layers in two perpendicular directions. With NFY as the building blocks, noobing and/or 3D weaving methods could be applied in the fabrication of more complex 3D scaffolds applied in anisotropic tissues or organs regeneration.
Collapse
Affiliation(s)
- Dawei Li
- Key
Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
- Engineering
Research Center of Technical Textiles, Ministry of Education, College
of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Ling Tao
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Ying Shen
- Key
Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Binbin Sun
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Xianrui Xie
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Qinfei Ke
- Engineering
Research Center of Technical Textiles, Ministry of Education, College
of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
- Shanghai
Institute of Technology, No. 100 Haiquan Road, Fengxian, Shanghai 201416, China
| | - Xiumei Mo
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Bingyao Deng
- Key
Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Brüggemann D, Michel J, Suter N, Grande de Aguiar M, Maas M. Wet-spinning of magneto-responsive helical chitosan microfibers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:991-999. [PMID: 32704461 PMCID: PMC7356321 DOI: 10.3762/bjnano.11.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 05/02/2023]
Abstract
Helical structures can be found in nature at various length scales ranging from the molecular level to the macroscale. Due to their ability to store mechanical energy and to optimize the accessible surface area, helical shapes contribute particularly to motion-driven processes and structural reinforcement. Due to these special features, helical fibers have become highly attractive for biotechnological and tissue engineering applications. However, there are only a few methods available for the production of biocompatible helical microfibers. Given that, we present here a simple technique for the fabrication of helical chitosan microfibers with embedded magnetic nanoparticles. Composite fibers were prepared by wet-spinning and coagulation in an ethanol bath. Thereby, no toxic components were introduced into the wet-spun chitosan fibers. After drying, the helical fibers had a diameter of approximately 130 µm. Scanning electron microscopy analysis of wet-spun helices revealed that the magnetic nanoparticles agglomerated into clusters inside the fiber matrix. The helical constructs exhibited a diameter of approximately 500 µm with one to two windings per millimeter. Due to their ferromagnetic properties they are easily attracted to a permanent magnet. The results from the tensile testing show that the helical chitosan microfibers exhibited an average Young's modulus of 14 MPa. By taking advantage of the magnetic properties of the feedstock solution, the production of the helical fibers could be automated. The fabrication of the helical fibers was achieved by utilizing the magnetic properties of the feedstock solution and winding the emerging fiber around a rotating magnetic collector needle upon coagulation. In summary, our helical chitosan microfibers are very attractive for future use in magnetic tissue engineering or for the development of biocompatible actuator systems.
Collapse
Affiliation(s)
- Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Johanna Michel
- Department of Biomimetics, Hochschule Bremen - City University of Applied Sciences, Neustadtswall 30, 28199 Bremen, Germany
| | - Naiana Suter
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | | | - Michael Maas
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| |
Collapse
|
36
|
Yu Y, Guo J, Wang Y, Shao C, Wang Y, Zhao Y. Bioinspired Helical Micromotors as Dynamic Cell Microcarriers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16097-16103. [PMID: 32181642 DOI: 10.1021/acsami.0c01264] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micromotors have exhibited great potential in multidisciplinary nanotechnology, environmental science, and especially biomedical engineering due to their advantages of controllable motion, long lifetime, and high biocompatibility. Marvelous efforts focusing on endowing micromotors with novel characteristics and functionalities to promote their applications in biomedical engineering have been taken in recent years. Here, inspired by the flagellar motion of Escherichia coli, we present helical micromotors as dynamic cell microcarriers using simple microfluidic spinning technology. The morphologies of micromotors can be easily tailored because of the highly controllable and feasible fabrication process including microfluidic generation and manual dicing. Benefiting from the biocompatibility of the materials, the resultant helical micromotors could be ideal cell microcarriers that are suitable for cell seeding and further cultivation; the magnetic nanoparticle encapsulation imparts the helical micromotors with kinetic characteristics in response to mobile magnetic fields. Thus, the helical micromotors could be applied as dynamic cell culture blocks and further assembled to complex geometrical structures. The constructed structures out of cell-seeded micromotors could find practical potential in biomedical applications as the stack-shaped assembly embedded in the hydrogel may be used for tissue repairing and the tube-shaped assembly due to its resemblance to vascular structures in the microchannel for organ-on-a-chip study or blood vessel regeneration. These features manifest the possibility to broaden the biomedical application scope for micromotors.
Collapse
Affiliation(s)
- Yunru Yu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
37
|
Nguyen PK, Baek K, Deng F, Criscione JD, Tuan RS, Kuo CK. Tendon Tissue-Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Li Y, Mao AS, Seo BR, Zhao X, Gupta SK, Chen M, Han YL, Shih TY, Mooney DJ, Guo M. Compression-induced dedifferentiation of adipocytes promotes tumor progression. SCIENCE ADVANCES 2020; 6:eaax5611. [PMID: 32010780 PMCID: PMC6976290 DOI: 10.1126/sciadv.aax5611] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/25/2019] [Indexed: 04/14/2023]
Abstract
Dysregulated physical stresses are generated during tumorigenesis that affect the surrounding compliant tissues including adipocytes. However, the effect of physical stressors on the behavior of adipocytes and their cross-talk with tumor cells remain elusive. Here, we demonstrate that compression of cells, resulting from various types of physical stresses, can induce dedifferentiation of adipocytes via mechanically activating Wnt/β-catenin signaling. The compression-induced dedifferentiated adipocytes (CiDAs) have a distinct transcriptome profile, long-term self-renewal, and serial clonogenicity, but do not form teratomas. We then show that CiDAs notably enhance human mammary adenocarcinoma proliferation both in vitro and in a xenograft model, owing to myofibrogenesis of CiDAs in the tumor-conditioned environment. Collectively, our results highlight unique physical interplay in the tumor ecosystem; tumor-induced physical stresses stimulate de novo generation of CiDAs, which feedback to tumor growth.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angelo S. Mao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Xing Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satish Kumar Gupta
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maorong Chen
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
39
|
Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wågberg L, Söderberg LD. Ion-Specific Assembly of Strong, Tough, and Stiff Biofibers. Angew Chem Int Ed Engl 2019; 58:18562-18569. [PMID: 31600016 PMCID: PMC6916401 DOI: 10.1002/anie.201910603] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Designing engineering materials with high stiffness and high toughness is challenging as stiff materials tend to be brittle. Many biological materials realize this objective through multiscale (i.e., atomic- to macroscale) mechanisms that are extremely difficult to replicate in synthetic materials. Inspired from the architecture of such biological structures, we here present flow-assisted organization and assembly of renewable native cellulose nanofibrils (CNFs), which yields highly anisotropic biofibers characterized by a unique combination of high strength (1010 MPa), high toughness (62 MJ m-3 ) and high stiffness (57 GPa). We observed that properties of the fibers are primarily governed by specific ion characteristics such as hydration enthalpy and polarizability. A fundamental facet of this study is thus to elucidate the role of specific anion binding following the Hofmeister series on the mechanical properties of wet fibrillar networks, and link this to the differences in properties of dry nanostructured fibers. This knowledge is useful for rational design of nanomaterials and is critical for validation of specific ion effect theories. The bioinspired assembly demonstrated here is relevant example for designing high-performance materials with absolute structural control.
Collapse
Affiliation(s)
- Nitesh Mittal
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Tobias Benselfelt
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - Farhan Ansari
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305-2205USA
| | - Korneliya Gordeyeva
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - Stephan V. Roth
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Deutsches Elektronen-Synchrotron (DESY)22607HamburgGermany
| | - Lars Wågberg
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - L. Daniel Söderberg
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| |
Collapse
|
40
|
Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wågberg L, Söderberg LD. Ion‐Specific Assembly of Strong, Tough, and Stiff Biofibers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nitesh Mittal
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Department of Chemical EngineeringMassachusetts Institute of Technology Cambridge MA 02142 USA
| | - Tobias Benselfelt
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| | - Farhan Ansari
- Department of Materials Science and EngineeringStanford University Stanford CA 94305-2205 USA
| | - Korneliya Gordeyeva
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| | - Stephan V. Roth
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Deutsches Elektronen-Synchrotron (DESY) 22607 Hamburg Germany
| | - Lars Wågberg
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| | - L. Daniel Söderberg
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| |
Collapse
|