1
|
Huang W, Bates R, Appana B, Mohammed T, Cao L. Development of an adipose-tropic AAV capsid ablating liver tropism. iScience 2024; 27:110930. [PMID: 39398244 PMCID: PMC11467673 DOI: 10.1016/j.isci.2024.110930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
AAV vectors are mainstream delivery platforms in gene therapy, yet AAV-mediated gene transfer to adipose tissue is underdeveloped due to low efficiency of natural AAVs. We previously demonstrated that an engineered capsid Rec2 displayed improved adipo-tropism but with the caveat of liver transduction. To generate highly adipo-tropic capsid, we modified Rec2 capsid by site-specific mutagenesis and found the variant V7 with F503Y, Y708D and K709I substitution to harbor highly selective adipo-tropism while diminishing liver transduction. Intraperitoneal injection favored transduction to visceral fat while intravenous administration favored subcutaneous fat. Intraperitoneal administration of V7 vector harboring human leptin and adiponectin as single transcript normalized the metabolic dysfunction of ob/ob mice at a low dose. Moreover, introducing the same mutagenesis to AAV8 capsid diminished liver transduction suggesting F503, Y708 and K709 critical for liver transduction. The Rec2.V7 vector may provide a powerful tool for basic research and potent vehicle for adipose-targeting gene therapy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rhiannon Bates
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bhavya Appana
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Tawfiq Mohammed
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Rivest JF, Carter S, Goupil C, Antérieux P, Cyr D, Ung RV, Dal Soglio D, Mac-Way F, Waters PJ, Paganelli M, Doyon Y. In vivo dissection of the mouse tyrosine catabolic pathway with CRISPR-Cas9 identifies modifier genes affecting hereditary tyrosinemia type 1. Genetics 2024; 228:iyae139. [PMID: 39178380 PMCID: PMC11457941 DOI: 10.1093/genetics/iyae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Hereditary tyrosinemia type 1 is an autosomal recessive disorder caused by mutations (pathogenic variants) in fumarylacetoacetate hydrolase, an enzyme involved in tyrosine degradation. Its loss results in the accumulation of toxic metabolites that mainly affect the liver and kidneys and can lead to severe liver disease and liver cancer. Tyrosinemia type 1 has a global prevalence of approximately 1 in 100,000 births but can reach up to 1 in 1,500 births in some regions of Québec, Canada. Mutating functionally related "modifier' genes (i.e. genes that, when mutated, affect the phenotypic impacts of mutations in other genes) is an emerging strategy for treating human genetic diseases. In vivo somatic genome editing in animal models of these diseases is a powerful means to identify modifier genes and fuel treatment development. In this study, we demonstrate that mutating additional enzymes in the tyrosine catabolic pathway through liver-specific genome editing can relieve or worsen the phenotypic severity of a murine model of tyrosinemia type 1. Neonatal gene delivery using recombinant adeno-associated viral vectors expressing Staphylococcus aureus Cas9 under the control of a liver-specific promoter led to efficient gene disruption and metabolic rewiring of the pathway, with systemic effects that were distinct from the phenotypes observed in whole-body knockout models. Our work illustrates the value of using in vivo genome editing in model organisms to study the direct effects of combining pathological mutations with modifier gene mutations in isogenic settings.
Collapse
Affiliation(s)
- Jean-François Rivest
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Sophie Carter
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Claudia Goupil
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Pénélope Antérieux
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Denis Cyr
- Medical Genetics Service, Dept. Laboratory Medicine and Dept. Pediatrics, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Roth-Visal Ung
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
| | - Dorothée Dal Soglio
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Fabrice Mac-Way
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
| | - Paula J Waters
- Medical Genetics Service, Dept. Laboratory Medicine and Dept. Pediatrics, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Massimiliano Paganelli
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Xu L, Yao S, Ding YE, Xie M, Feng D, Sha P, Tan L, Bei F, Yao Y. Designing and optimizing AAV-mediated gene therapy for neurodegenerative diseases: from bench to bedside. J Transl Med 2024; 22:866. [PMID: 39334366 PMCID: PMC11429861 DOI: 10.1186/s12967-024-05661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as an attractive tool for gene delivery, and demonstrated tremendous promise in gene therapy and gene editing-therapeutic modalities with potential "one-and-done" treatment benefits compared to conventional drugs. Given their tropisms for the central nervous system (CNS) across various species including humans, rAAVs have been extensively investigated in both pre-clinical and clinical studies targeting neurodegenerative disease. However, major challenges remain in the application of rAAVs for CNS gene therapy, such as suboptimal vector design, low CNS transduction efficiency and specificity, and therapy-induced immunotoxicity. Therefore, continuing efforts are being made to optimize the rAAV vectors from their "core" genetic payloads to their "coat" or capsid structure. In this review, we describe current approaches for rAAV vector design tailored for transgene expression in the CNS, summarize the development of CNS-targeting AAV serotypes, and highlight recent advancements in AAV capsid engineering, aimed at generating a new generation of rAAVs with improved CNS tropism. Additionally, we discuss various administration routes for delivering rAAVs to the CNS and provide an overview of AAV-mediated gene therapies currently under investigation in clinical trials for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Xu
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yifan Evan Ding
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingqi Feng
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Rallabandi R, Sharp B, Majerus S, Royster A, Hoffer S, Ikeda M, Devaux P. Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2024; 32:101290. [PMID: 39070290 PMCID: PMC11283025 DOI: 10.1016/j.omtm.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus, measles virus (MeV), as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency, in this study, we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally, the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells, capable of incorporating new technologies as they are developed.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Spencer Majerus
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Austin Royster
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarrianna Hoffer
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mia Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
La Bella T, Bertin B, Mihaljevic A, Nozi J, Vidal P, Imbeaud S, Nault JC, Zucman-Rossi J, Ronzitti G. Predictive power of deleterious single amino acid changes to infer on AAV2 and AAV2-13 capsids fitness. Mol Ther Methods Clin Dev 2024; 32:101327. [PMID: 39286333 PMCID: PMC11403266 DOI: 10.1016/j.omtm.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Adeno-associated virus (AAV) is the most widely used vector for in vivo gene transfer. A major limitation of capsid engineering is the incomplete understanding of the consequences of multiple amino acid variations on AAV capsid stability resulting in high frequency of non-viable capsids. In this context, the study of natural AAV variants can provide valuable insights into capsid regions that exhibit greater tolerance to mutations. Here, the characterization of AAV2 variants and the analysis of two public capsid libraries highlighted common features associated with deleterious mutations, suggesting that the impact of mutations on capsid viability is strictly dependent on their 3D location within the capsid structure. We developed a novel prediction method to infer the fitness of AAV2 variants containing multiple amino acid variations with 98% sensitivity, 98% accuracy, and 95% specificity. This novel approach might streamline the development of AAV vector libraries enriched in viable capsids, thus accelerating the identification of therapeutic candidates among engineered capsids.
Collapse
Affiliation(s)
- Tiziana La Bella
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Bérangère Bertin
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Ante Mihaljevic
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Justine Nozi
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Patrice Vidal
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, 75000 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, 75000 Paris, France
- Avicenne Hospital, Paris-Seine-Saint-Denis University Hospital, APHP, 93000 Bobigny, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, 75000 Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, 75000 Paris, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
6
|
Walkey CJ, Snow KJ, Bulcha J, Cox AR, Martinez AE, Ljungberg MC, Lanza DG, Giorgi MD, Chuecos MA, Alves-Bezerra M, Suarez CF, Hartig SM, Hilsenbeck SG, Hsu CW, Saville E, Gaitan Y, Duryea J, Hannigan S, Dickinson ME, Mirochnitchenko O, Wang D, Lutz CM, Heaney JD, Gao G, Murray SA, Lagor WR. A Comprehensive Atlas of AAV Tropism in the Mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612279. [PMID: 39314496 PMCID: PMC11418986 DOI: 10.1101/2024.09.10.612279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Gene therapy with Adeno-Associated Viral (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence. Cre-driven activation of tdTomato fluorescence offered superior sensitivity for transduced cells. All serotypes except AAV3B and AAV4 had high liver tropism. Fluorescence activation revealed transduction of unexpected tissues, including adrenals, testes and ovaries. Rare transduced cells within tissues were also readily visualized. Biodistribution of AAV genomes correlated with fluorescence, except in immune tissues. AAV4 was found to have a pan-endothelial tropism while also targeting pancreatic beta cells. This public resource enables selection of the best AAV serotypes for basic science and preclinical applications in mice.
Collapse
|
7
|
Xie M, Wang L, Deng Y, Ma K, Yin H, Zhang X, Xiang X, Tang J. Sustained and Efficient Delivery of Antivascular Endothelial Growth Factor by the Adeno-associated Virus for the Treatment of Corneal Neovascularization: An Outlook for Its Clinical Translation. J Ophthalmol 2024; 2024:5487973. [PMID: 39286553 PMCID: PMC11405113 DOI: 10.1155/2024/5487973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Corneal diseases represent 5.1% of all eye defects and are the fourth leading cause of blindness globally. Corneal neovascularization can arise from all conditions of chronic irritation or hypoxia, which disrupts the immune-privileged state of the healthy cornea, increases the risk of rejection after keratoplasty, and leads to opacity. In the past decades, significant progress has been made for neovascular diseases of the retina and choroid, with plenty of drugs getting commercialized. In addition, to overcome the barriers of the short duration and inadequate penetration of conventional formulations of antivascular endothelial growth factor (VEGF), multiple novel drug delivery systems, including adeno-associated virus (AAV)-mediated transfer have gone through the full process of bench-to-bedside translation. Like retina neovascular diseases, corneal neovascularization also suffers from chronicity and a high risk of recurrence, necessitating sustained and efficient delivery across the epithelial barrier to reach deep layers of the corneal stroma. Among the explored methods, adeno-associated virus-mediated delivery of anti-VEGF to treat corneal neovascularization is the most extensively researched and most promising strategy for clinical translation although currently although, it remains predominantly at the preclinical stage. This review comprehensively examines the necessity, benefits, and risks of applying AAV vectors for anti-VEGF drug delivery in corneal vascularization, including its current progress and challenges in clinical translation.
Collapse
Affiliation(s)
- Mengzhen Xie
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
- Beijing Institute of Ophthalmology Beijing Tongren Eye Center Beijing Tongren Hospital Capital Medical University Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Lixiang Wang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Yingping Deng
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Ke Ma
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Hongbo Yin
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xiaolan Zhang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xingye Xiang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, China
- Georgia State University, Atlanta, GA 30302, USA
| | - Jing Tang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Kumar B, Mishra M, Cashman S, Kumar-Singh R. Retinal Penetrating Adeno-Associated Virus. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39172462 PMCID: PMC11346080 DOI: 10.1167/iovs.65.10.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose The most common method of delivery of genes to the outer retina uses recombinant adeno-associated virus (AAV) injected into the subretinal space using a surgical procedure. In contrast, most drugs are delivered to the retina using an intravitreal approach in an office setting. The objective of the current study was to develop AAV vectors that can reach the outer retina via intravitreal injection. Methods Recently, we described a molecular chaperone (Nuc1) that enhanced the penetration of small and large molecules, including AAV, into the retina. The Nuc1 amino acid sequence or a truncated version of Nuc1 (IKV) was genetically incorporated into an exposed loop of AAV2/9 VP1 protein. These novel recombinant AAV vectors expressing green fluorescent protein (GFP) or nuclear factor erythroid 2 p45-related factor 2 (Nrf2) were injected into the vitreous of C57Bl/6J or Nrf2 knockout mice, respectively. The amount of GFP expression or oxidative stress as measured by 8-Hydroxy-2'-deoxyguanosine staining in C57Bl/6J or Nrf2 knockout mice, respectively, was quantified. Results Incorporation of Nuc1 into AAV2/9 did not lead to significant expression of GFP in the murine retina. However, incorporation of IKV into AAV2/9 led to robust expression of GFP in photoreceptors and retinal pigment epithelium (RPE) via the intravitreal and subretinal routes of delivery. Furthermore, expression of Nrf2 using an IKV vector led to a reduction in oxidative stress in the retina of C57Bl/6J and Nrf2 knockout mice. Conclusions We have developed a novel AAV vector that enables delivery of transgenes to the outer retina of mice, including photoreceptors and RPE following intravitreal injection.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Manish Mishra
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Siobhan Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Zheng Y, Wang Y, Xiong X, Zhang L, Zhu J, Huang B, Liu X, Liu J, Zhu Z, Yang G, Qu H, Zheng H. CD9 Counteracts Liver Steatosis and Mediates GCGR Agonist Hepatic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400819. [PMID: 38837628 PMCID: PMC11304330 DOI: 10.1002/advs.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Glucagon receptor (GCGR) agonism offers potentially greater effects on the mitigation of hepatic steatosis. However, its underlying mechanism is not fully understood. Here, it screened tetraspanin CD9 might medicate hepatic effects of GCGR agonist. CD9 is decreased in the fatty livers of patients and upregulated upon GCGR activation. Deficiency of CD9 in the liver exacerbated diet-induced hepatic steatosis via complement factor D (CFD) regulated fatty acid metabolism. Specifically, CD9 modulated hepatic fatty acid synthesis and oxidation genes through regulating CFD expression via the ubiquitination-proteasomal degradation of FLI1. In addition, CD9 influenced body weight by modulating lipogenesis and thermogenesis of adipose tissue through CFD. Moreover, CD9 reinforcement in the liver alleviated hepatic steatosis, and blockage of CD9 abolished the remission of hepatic steatosis induced by cotadutide treatment. Thus, CD9 medicates the hepatic beneficial effects of GCGR signaling, and may server as a promising therapeutic target for hepatic steatosis.
Collapse
Affiliation(s)
- Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Bangliang Huang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jinbo Liu
- Department of EndocrinologyQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinologythe Third Affiliated Hospital of Army Medical UniversityChongqing400042China
| | - Gangyi Yang
- Department of Endocrinologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
10
|
Zhou X, Liu J, Xiao S, Liang X, Li Y, Mo F, Xin X, Yang Y, Gao C. Adeno-Associated Virus Engineering and Load Strategy for Tropism Modification, Immune Evasion and Enhanced Transgene Expression. Int J Nanomedicine 2024; 19:7691-7708. [PMID: 39099791 PMCID: PMC11296317 DOI: 10.2147/ijn.s459905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Gene therapy aims to add, replace or turn off genes to help treat disease. To date, the US Food and Drug Administration (FDA) has approved 14 gene therapy products. With the increasing interest in gene therapy, feasible gene delivery vectors are necessary for inserting new genes into cells. There are different kinds of gene delivery vectors including viral vectors like lentivirus, adenovirus, retrovirus, adeno-associated virus et al, and non-viral vectors like naked DNA, lipid vectors, polymer nanoparticles, exosomes et al, with viruses being the most commonly used. Among them, the most concerned vector is adeno-associated virus (AAV) because of its safety, natural ability to efficiently deliver gene into cells and sustained transgene expression in multiple tissues. In addition, the AAV genome can be engineered to generate recombinant AAV (rAAV) containing transgene sequences of interest and has been proven to be a safe gene vector. Recently, rAAV vectors have been approved for the treatment of various rare diseases. Despite these approvals, some major limitations of rAAV remain, namely nonspecific tissue targeting and host immune response. Additional problems include neutralizing antibodies that block transgene delivery, a finite transgene packaging capacity, high viral titer used for per dose and high cost. To deal with these challenges, several techniques have been developed. Based on differences in engineering methods, this review proposes three strategies: gene engineering-based capsid modification (capsid modification), capsid surface tethering through chemical conjugation (surface tethering), and other formulations loaded with AAV (virus load). In addition, the major advantages and limitations encountered in rAAV engineering strategies are summarized.
Collapse
Affiliation(s)
- Xun Zhou
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuang Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoqing Liang
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Fengzhen Mo
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Chunsheng Gao
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Bu Z, Lou J, Xu W, Zhang L, Tang Y. Human umbilical cord mesenchymal stem cell-based gene therapy for hemophilia B using scAAV-DJ/8-LP1-hFIXco transduction. Stem Cell Res Ther 2024; 15:210. [PMID: 39020429 PMCID: PMC11256413 DOI: 10.1186/s13287-024-03824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Hemophilia B is an X-linked bleeding disorder caused by a mutation in the gene responsible for encoding coagulation factor IX (FIX). Gene therapy offers promising potential for curing this disease. However, the current method of relatively high dosage of virus injection carries inherent risks. The purpose of this study was to introduce a novel scAAV-DJ/8-LP1-hFIXco vector transduced human umbilical cord blood derived mesenchymal stem cells (HUCMSCs) as an alternative cell-based gene therapy to conventional gene therapy for Hemophilia B. METHODS The LP1-hFIXco gene structure was designed by us through searching the literature from NCBI and the scAAV-DJ/8-LP1-hFIXco vector was constructed by a commercial company. The HUCMSCs were cultivated in routine approach and transduced with scAAV-DJ/8-LP1-hFIXco vector. The human FIX activation system was employed for detection of hFIXco activity. The RNA and protein expression levels of the hFIXco were evaluated using PCR and western blot techniques. In animal studies, both NSG and F9-KO mice were used for the experiment, in which clotting time was utilized as a parameter for bleeding assessment. The immunohistochemical analysis was used to assess the distribution of HUCMSCs in mouse tissue sections. The safety for tumorigenicity of this cell-based gene therapy was evaluated by pathological observation after hematoxylin-eosin staining. RESULTS The transduction of HUCMSCs with the scAAV-DJ/8-LP1-hFIXco vector results in consistent and sustainable secretion of human FIXco during 5 months period both in vitro and in mouse model. The secretion level (hFIXco activity: 97.1 ± 2.3% at day 7 to 48.8 ± 4.5% at 5 months) was comparable to that observed following intravenous injection with a high dose of the viral vector (hFIXco activity: 95.2 ± 2.2% to 40.8 ± 4.3%). After a 5-month observation period, no clonal expansions of the transduced cells in tissues were observed in any of the mice studied. CONCLUSIONS We have discovered a novel and safer HUCMSCs mediated approach potentially effective for gene therapy in hemophilia B.
Collapse
Affiliation(s)
- Zibin Bu
- Division/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang Hangzhou, 310003, PR China
| | - Jintu Lou
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang Hangzhou, 310003, PR China
| | - Weiqun Xu
- Division/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang Hangzhou, 310003, PR China
| | - Lingyan Zhang
- Division/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang Hangzhou, 310003, PR China
| | - Yongmin Tang
- Division/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang Hangzhou, 310003, PR China.
| |
Collapse
|
12
|
Esposito F, Dell'Aquila F, Rhiel M, Auricchio S, Chmielewski KO, Andrieux G, Ferla R, Horrach PS, Padmanabhan A, Di Cunto R, Notaro S, Santeularia ML, Boerries M, Dell'Anno M, Nusco E, Padula A, Nutarelli S, Cornu TI, Sorrentino NC, Piccolo P, Trapani I, Cathomen T, Auricchio A. Safe and effective liver-directed AAV-mediated homology-independent targeted integration in mouse models of inherited diseases. Cell Rep Med 2024; 5:101619. [PMID: 38897206 PMCID: PMC11293346 DOI: 10.1016/j.xcrm.2024.101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Liver-directed adeno-associated viral (AAV) vector-mediated homology-independent targeted integration (AAV-HITI) by CRISPR-Cas9 at the highly transcribed albumin locus is under investigation to provide sustained transgene expression following neonatal treatment. We show that targeting the 3' end of the albumin locus results in productive integration in about 15% of mouse hepatocytes achieving therapeutic levels of systemic proteins in two mouse models of inherited diseases. We demonstrate that full-length HITI donor DNA is preferentially integrated upon nuclease cleavage and that, despite partial AAV genome integrations in the target locus, no gross chromosomal rearrangements or insertions/deletions at off-target sites are found. In line with this, no evidence of hepatocellular carcinoma is observed within the 1-year follow-up. Finally, AAV-HITI is effective at vector doses considered safe if directly translated to humans providing therapeutic efficacy in the adult liver in addition to newborn. Overall, our data support the development of this liver-directed AAV-based knockin strategy.
Collapse
Affiliation(s)
- Federica Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Fabio Dell'Aquila
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefano Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Kay Ole Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; PhD Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Arjun Padmanabhan
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberto Di Cunto
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Simone Notaro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Agnese Padula
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sofia Nutarelli
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Gene Therapy Joint lab, Dept. of Advanced Biomedical Sciences and Dept. of Translational Medicine, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
13
|
Chernyi N, Gavrilova D, Saruhanyan M, Oloruntimehin ES, Karabelsky A, Bezsonov E, Malogolovkin A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules 2024; 14:854. [PMID: 39062568 PMCID: PMC11274510 DOI: 10.3390/biom14070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
One of the well-known X-linked genetic disorders is hemophilia, which could be hemophilia A as a result of a mutation in the F8 (factor VIII) gene or hemophilia B as a result of a mutation in the F9 (factor IX) gene, leading to insufficient levels of the proteins essential for blood coagulation cascade. In patients with severe hemophilia, factor VIII or factor IX activities in the blood plasma are considerably low, estimated to be less than 1%. This is responsible for spontaneous or post-traumatic bleeding episodes, or both, leading to disease complications and death. Current treatment of hemophilia relies on the prevention of bleeding, which consists of expensive lifelong replacement infusion therapy of blood plasma clotting factors, their recombinant versions, or therapy with recombinant monoclonal antibodies. Recently emerged gene therapy approaches may be a potential game changer that could reshape the therapeutic outcomes of hemophilia A or B using a one-off vector in vivo delivery and aim to achieve long-term endogenous expression of factor VIII or IX. This review examines both traditional approaches to the treatment of hemophilia and modern methods, primarily focusing on gene therapy, to update knowledge in this area. Recent technological advances and gene therapeutics in the pipeline are critically reviewed and summarized. We consider gene therapy to be the most promising method as it may overcome the problems associated with more traditional treatments, such as the need for constant and expensive infusions and the presence of an immune response to the antibody drugs used to treat hemophilia.
Collapse
Affiliation(s)
- Nikita Chernyi
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Darina Gavrilova
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia
| | - Mane Saruhanyan
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Ezekiel S. Oloruntimehin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Alexander Karabelsky
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia
| | - Evgeny Bezsonov
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia
| | - Alexander Malogolovkin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia
| |
Collapse
|
14
|
Shih FH, Chang HH, Wang YC. Utilizing adeno-associated virus as a vector in treating genetic disorders or human cancers. IUBMB Life 2024. [PMID: 38970351 DOI: 10.1002/iub.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Clinical data from over two decades, involving more than 3000 treated patients, demonstrate that adeno-associated virus (AAV) gene therapy is a safe, effective, and well-tolerated therapeutic method. Clinical trials using AAV-mediated gene delivery to accessible tissues have led to successful treatments for numerous monogenic disorders and advancements in tissue engineering. Although the US Food and Drug Administration (FDA) has approved AAV for clinical use, systemic administration remains a significant challenge. In this review, we delve into AAV biology, focusing on current manufacturing technologies and transgene engineering strategies. We examine the use of AAVs in ongoing clinical trials for ocular, neurological, and hematological disorders, as well as cancers. By discussing recent advancements and current challenges in the field, we aim to provide valuable insights for researchers and clinicians navigating the evolving landscape of AAV-based gene therapy.
Collapse
Affiliation(s)
- Fu-Hsuan Shih
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsiung-Hao Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
15
|
Mouro Pinto R, Murtha R, Azevedo A, Douglas C, Kovalenko M, Ulloa J, Crescenti S, Burch Z, Oliver E, Vitalo A, Mota-Silva E, Riggs MJ, Correia K, Elezi E, Demelo B, Carroll JB, Gillis T, Gusella JF, MacDonald ME, Wheeler VC. Identification of genetic modifiers of Huntington's disease somatic CAG repeat instability by in vivo CRISPR-Cas9 genome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597823. [PMID: 38895438 PMCID: PMC11185783 DOI: 10.1101/2024.06.08.597823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Huntington's disease (HD), one of >50 inherited repeat expansion disorders (Depienne and Mandel, 2021), is a dominantly-inherited neurodegenerative disease caused by a CAG expansion in HTT (The Huntington's Disease Collaborative Research Group, 1993). Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the property driving disease is the CAG length-dependent propensity of the repeat to further expand in brain (Swami et al ., 2009; GeM-HD, 2015; Hensman Moss et al ., 2017; Ciosi et al ., 2019; GeM-HD, 2019; Hong et al ., 2021). Routes to slowing somatic CAG expansion therefore hold great promise for disease-modifying therapies. Several DNA repair genes, notably in the mismatch repair (MMR) pathway, modify somatic expansion in HD mouse models (Wheeler and Dion, 2021). To identify novel modifiers of somatic expansion, we have used CRISPR-Cas9 editing in HD knock-in mice to enable in vivo screening of expansion-modifier candidates at scale. This has included testing of HD onset modifier genes emerging from human genome-wide association studies (GWAS), as well as interactions between modifier genes, thereby providing new insight into pathways underlying CAG expansion and potential therapeutic targets.
Collapse
|
16
|
Owusu-Yaw BS, Zhang Y, Garrett L, Yao A, Shing K, Batista AR, Sena-Esteves M, Upadhyay J, Kegel-Gleason K, Todd N. Focused Ultrasound-Mediated Disruption of the Blood-Brain Barrier for AAV9 Delivery in a Mouse Model of Huntington's Disease. Pharmaceutics 2024; 16:710. [PMID: 38931834 PMCID: PMC11206648 DOI: 10.3390/pharmaceutics16060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat expansion in the HTT gene. There are no cures for HD, but the genetic basis of this disorder makes gene therapy a viable approach. Adeno-associated virus (AAV)-miRNA-based therapies have been demonstrated to be effective in lowering HTT mRNA; however, the blood-brain barrier (BBB) poses a significant challenge for gene delivery to the brain. Delivery strategies include direct injections into the central nervous system, which are invasive and can result in poor diffusion of viral particles through the brain parenchyma. Focused ultrasound (FUS) is an alternative approach that can be used to non-invasively deliver AAVs by temporarily disrupting the BBB. Here, we investigate FUS-mediated delivery of a single-stranded AAV9 bearing a cDNA for GFP in 2-month-old wild-type mice and the zQ175 HD mouse model at 2-, 6-, and 12-months. FUS treatment improved AAV9 delivery for all mouse groups. The delivery efficacy was similar for all WT and HD groups, with the exception of the zQ175 12-month cohort, where we observed decreased GFP expression. Astrocytosis did not increase after FUS treatment, even within the zQ175 12-month group exhibiting higher baseline levels of GFAP expression. These findings demonstrate that FUS can be used to non-invasively deliver an AAV9-based gene therapy to targeted brain regions in a mouse model of Huntington's disease.
Collapse
Affiliation(s)
- Bernie S. Owusu-Yaw
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (N.T.)
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (N.T.)
| | - Lilyan Garrett
- College of Science, Northeastern University, Boston, MA 02115, USA;
| | - Alvin Yao
- Department of Engineering, Harvard University, Cambridge, MA 02138, USA;
| | - Kai Shing
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (K.S.); (K.K.-G.)
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (A.R.B.); (M.S.-E.)
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (A.R.B.); (M.S.-E.)
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Kimberly Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (K.S.); (K.K.-G.)
| | - Nick Todd
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (N.T.)
| |
Collapse
|
17
|
Krause F, Schmidtke K, de Vasconcelos MF, Schmidt D, Cansiz B, Theisen F, Mark MD, Rybarski MO. A shedding analysis after AAV8 CNS injection revealed fragmented viral DNA without evidence of functional AAV particles in mice. Gene Ther 2024; 31:345-351. [PMID: 38467879 PMCID: PMC11090812 DOI: 10.1038/s41434-024-00447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Adeno-associated viruses (AAV) are commonly used in the scientific field due to their diverse application range. However, AAV shedding, the release of virions from the host organism, can impact the safety of AAV-based approaches. An increasing number of authorities require the characterization of vector shedding in clinical trials. Recently, shedding of transduced laboratory animals has also gained attention regarding the necessary disposal measures of their waste products. However, no explicit international regulations for AAV-shedding waste exist. Generating insights into shedding dynamics becomes increasingly relevant to help authorities develop adequate regulations. To date, knowledge of AAV vector shedding in mice is very limited. Moreover, confirmation of functional shed AAV particles in mice is missing. Therefore, we examined feces, urine, and saliva of mice after CNS injection with AAV2/8. It revealed the presence of viral DNA fragments via qPCR for up to 4 days after injection. To examine AAV functionality we performed nested PCR and could not detect full-length viral genomes in any but two collected feces samples. Furthermore, a functional infection assay did not reveal evidence of intact AAV particles. Our findings are supposed to contribute murine shedding data as a foundation to help establish still lacking adequate biosafety regulations in the context of AAV shedding.
Collapse
Affiliation(s)
- Felix Krause
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | - Katja Schmidtke
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | - Mailton Franca de Vasconcelos
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | - David Schmidt
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | - Beyza Cansiz
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | - Franziska Theisen
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | - Melanie D Mark
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany.
| | - Max O Rybarski
- Department of Behavioral Neuroscience, ND7/31, Ruhr-University Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
18
|
Werner MS, Aras S, Morgan AR, Roamer J, Param NJ, Olagbegi K, Lamontagne RJ, Greig JA, Wilson JM. Adeno-associated virus-mediated trastuzumab delivery to the central nervous system for human epidermal growth factor receptor 2+ brain metastasis. Cancer Gene Ther 2024; 31:766-777. [PMID: 38480976 DOI: 10.1038/s41417-024-00751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 05/19/2024]
Abstract
Trastuzumab improves overall survival for HER2+ breast cancer, but its short half-life in the cerebrospinal fluid (~2-4 days) and delivery limitations restrict the ability to target HER2+ central nervous system (CNS) disease. We developed an adeno-associated virus (AAV) vector expressing a codon-optimized, ubiquitin C (UbC)-promoter-driven trastuzumab sequence (AAV9.UbC.trastuzumab) for intrathecal administration. Transgene expression was evaluated in adult Rag1 knockout mice and rhesus nonhuman primates (NHPs) after a single intracerebroventricular (ICV) or intra-cisterna magna (ICM) AAV9.UbC.trastuzumab injection, respectively, using real-time PCR, ELISA, Western blot, in situ hybridization, single-nucleus RNA sequencing, and liquid chromatography-mass spectrometry; antitumor efficacy was evaluated in brain xenografts using HER2+ breast cancer cell lines (BT-474, MDA-MB-453). Transgene expression was detected in brain homogenates of Rag1 knockout mice following a single ICV injection of AAV9.UbC.trastuzumab (1 × 1011 vector genome copies [GC]/mouse) and tumor progression was inhibited in xenograft models of breast-to-brain metastasis. In NHPs, ICM delivery of AAV9.UbC.trastuzumab (3 × 1013 GC/animal) was well tolerated (36-37 days in-life) and resulted in transgene expression in CNS tissues and cerebrospinal fluid at levels sufficient to induce complete tumor remission in MDA-MB-453 brain xenografts. With AAV9's proven clinical safety record, this gene therapy may represent a viable approach for targeting HER2 + CNS malignancies.
Collapse
Affiliation(s)
- Marcela S Werner
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shweta Aras
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashleigh R Morgan
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jillian Roamer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nesteene J Param
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kanyin Olagbegi
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Jason Lamontagne
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Kurashina Y, Kurihara S, Kubota T, Takatsuka S, Hirabayashi M, Shimmura H, Miyahara H, Hioki A, Matsushita Y, Muramatsu J, Ogawa Y, Fujioka M, Okano HJ, Onoe H. Adeno-Associated Virus-Encapsulated Alginate Microspheres Loaded in Collagen Gel Carriers for Localized Gene Transfer. Adv Healthc Mater 2024; 13:e2303546. [PMID: 38224572 DOI: 10.1002/adhm.202303546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 01/17/2024]
Abstract
This work reports localized in vivo gene transfer by biodegradation of the adeno-associated virus-encapsulating alginate microspheres (AAV-AMs) loaded in collagen gel carriers. AAV-AMs are centrifugally synthesized by ejecting a mixed pre-gel solution of alginate and AAV to CaCl2 solution to form an ionically cross-linked hydrogel microsphere immediately. The AAV-AMs are able to preserve the AAV without diffusing out even after spreading them on the cells, and the AAV is released and transfected by the degradation of the alginate microsphere. In addition, AAV-AMs can be stored by cryopreservation until use. By implanting this highly convenient AAV-encapsulated hydrogel, AAV-AMs can be loaded into collagen gel carriers to fix the position of the implanted AAV-AMs and achieve localized gene transfer in vivo. In vivo experiments show that the AAV-AMs loaded in collagen gel carriers are demonstrated to release the encapsulated AAV for gene transfer in the buttocks muscles of mice. While conventional injections caused gene transfer to the entire surrounding tissue, the biodegradation of AAV-AMs shows that gene transfer is achieved locally to the muscles. This means that the proposed AAV-loaded system is shown to be a superior method for selective gene transfer.
Collapse
Affiliation(s)
- Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Takeshi Kubota
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shuhei Takatsuka
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Motoki Hirabayashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hajime Shimmura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hideo Miyahara
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Aiki Hioki
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yutaka Matsushita
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Jumpei Muramatsu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuki Ogawa
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
- Clinical and Translational Research Center, Keio University Hospital, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirotaka J Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
20
|
Yao Y, Holdcraft RW, Hagness SC, Booske JH. Electric pulse exposure reduces AAV8 dosage required to transduce HepG2 cells. PLoS One 2024; 19:e0298866. [PMID: 38687720 PMCID: PMC11060518 DOI: 10.1371/journal.pone.0298866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 05/02/2024] Open
Abstract
We demonstrate that applying electric field pulses to hepatocytes, in vitro, in the presence of enhanced green fluorescent protein (EGFP)-expressing adeno-associated virus (AAV8) vectors reduces the viral dosage required for a given transduction level by more than 50-fold, compared to hepatocytes exposed to AAV8-EGFP vectors without electric field pulse exposure. We conducted 48 experimental observations across 8 exposure conditions in standard well plates. The electric pulse exposures involved single 80-ms pulses with 375 V/cm field intensity. Our study suggests that electric pulse exposure results in enhanced EGFP expression in cells, indicative of increased transduction efficiency. The enhanced transduction observed in our study, if translated successfully to an in vivo setting, would be a promising indication of potential reduction in the required dose of AAV vectors. Understanding the effects of electric field pulses on AAV transduction in vitro is an important preliminary step.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert W. Holdcraft
- Translational Core Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Susan C. Hagness
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John H. Booske
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
De Carluccio G, Fusco V, di Bernardo D. Engineering a synthetic gene circuit for high-performance inducible expression in mammalian systems. Nat Commun 2024; 15:3311. [PMID: 38632224 PMCID: PMC11024104 DOI: 10.1038/s41467-024-47592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Inducible gene expression systems can be used to control the expression of a gene of interest by means of a small-molecule. One of the most common designs involves engineering a small-molecule responsive transcription factor (TF) and its cognate promoter, which often results in a compromise between minimal uninduced background expression (leakiness) and maximal induced expression. Here, we focus on an alternative strategy using quantitative synthetic biology to mitigate leakiness while maintaining high expression, without modifying neither the TF nor the promoter. Through mathematical modelling and experimental validations, we design the CASwitch, a mammalian synthetic gene circuit based on combining two well-known network motifs: the Coherent Feed-Forward Loop (CFFL) and the Mutual Inhibition (MI). The CASwitch combines the CRISPR-Cas endoribonuclease CasRx with the state-of-the-art Tet-On3G inducible gene system to achieve high performances. To demonstrate the potentialities of the CASwitch, we apply it to three different scenarios: enhancing a whole-cell biosensor, controlling expression of a toxic gene and inducible production of Adeno-Associated Virus (AAV) vectors.
Collapse
Affiliation(s)
- Giuliano De Carluccio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Virginia Fusco
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy.
| |
Collapse
|
22
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
23
|
Muczynski V, Nathwani AC. AAV mediated gene therapy for haemophilia B: From the early attempts to modern trials. Thromb Res 2024; 236:242-249. [PMID: 38383218 DOI: 10.1016/j.thromres.2020.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 02/23/2024]
Abstract
Early gene therapy clinical trials for the treatment of Haemophilia B have been instrumental to our global understanding of gene therapy and have significantly contributed to the rapid expansion of the field. The use of adeno-associated viruses (AAVs) as vectors for gene transfer has successfully led to therapeutic expression of coagulation factor IX (FIX) in severe haemophilia B patients. Expression of FIX has remained stable following a single administration of vector for up to 8 years at levels that are clinically relevant to reduce the incidence of spontaneous bleeds and have permitted a significant change in the disease management with reduction or elimination of the need for coagulation factor concentrates. These trials have also shed light on several concerns around AAV-mediated gene transfer such as the high prevalence of pre-existing immunity against the vector capsid as well as the elevation of liver transaminases that is associated with a loss of FIX transgene expression in some patients. However, this field is advancing very rapidly with the development of increasingly more efficient strategies to overcome some of these obstacles and importantly raise the possibility of a functional cure, which has been long sought after. This review overviews the evolution of gene therapy for haemophilia B over the last two decades.
Collapse
Affiliation(s)
- Vincent Muczynski
- Department of Haematology, University College London - Cancer Institute, United Kingdom of Great Britain and Northern Ireland
| | - Amit C Nathwani
- Department of Haematology, University College London - Cancer Institute, United Kingdom of Great Britain and Northern Ireland; Katharine Dormandy Haemophilia and Thrombosis Unit, Royal Free London NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland; Freeline Therapeutics Ltd., United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
24
|
Kulkarni A, Chen T, Sidransky E, Han TU. Advancements in Viral Gene Therapy for Gaucher Disease. Genes (Basel) 2024; 15:364. [PMID: 38540423 PMCID: PMC10970163 DOI: 10.3390/genes15030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Gaucher disease, an autosomal recessively inherited lysosomal storage disorder, results from biallelic mutations in the GBA1 gene resulting in deficient activity of the enzyme glucocerebrosidase. In Gaucher disease, the reduced levels and activity of glucocerebrosidase lead to a disparity in the rates of formation and breakdown of glucocerebroside and glucosylsphingosine, resulting in the accumulation of these lipid substrates in the lysosome. This gives rise to the development of Gaucher cells, engorged macrophages with a characteristic wrinkled tissue paper appearance. There are both non-neuronopathic (type 1) and neuronopathic (types 2 and 3) forms of Gaucher disease, associated with varying degrees of severity. The visceral and hematologic manifestations of Gaucher disease respond well to both enzyme replacement therapy and substrate reduction therapy. However, these therapies do not improve the neuronopathic manifestations, as they cannot cross the blood-brain barrier. There is now an established precedent for treating lysosomal storage disorders with gene therapy strategies, as many have the potential to cross into the brain. The range of the gene therapies being employed is broad, but this review aimed to discuss the progress, advances, and challenges in developing viral gene therapy as a treatment for Gaucher disease.
Collapse
Affiliation(s)
| | | | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, Building 35A, Room 1E623, 35A Convent Drive, MSC 3708, Bethesda, MD 20892-3708, USA; (A.K.); (T.C.); (T.-U.H.)
| | | |
Collapse
|
25
|
Davis JR, Banskota S, Levy JM, Newby GA, Wang X, Anzalone AV, Nelson AT, Chen PJ, Hennes AD, An M, Roh H, Randolph PB, Musunuru K, Liu DR. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol 2024; 42:253-264. [PMID: 37142705 PMCID: PMC10869272 DOI: 10.1038/s41587-023-01758-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 05/06/2023]
Abstract
Realizing the promise of prime editing for the study and treatment of genetic disorders requires efficient methods for delivering prime editors (PEs) in vivo. Here we describe the identification of bottlenecks limiting adeno-associated virus (AAV)-mediated prime editing in vivo and the development of AAV-PE vectors with increased PE expression, prime editing guide RNA stability and modulation of DNA repair. The resulting dual-AAV systems, v1em and v3em PE-AAV, enable therapeutically relevant prime editing in mouse brain (up to 42% efficiency in cortex), liver (up to 46%) and heart (up to 11%). We apply these systems to install putative protective mutations in vivo for Alzheimer's disease in astrocytes and for coronary artery disease in hepatocytes. In vivo prime editing with v3em PE-AAV caused no detectable off-target effects or significant changes in liver enzymes or histology. Optimized PE-AAV systems support the highest unenriched levels of in vivo prime editing reported to date, facilitating the study and potential treatment of diseases with a genetic component.
Collapse
Affiliation(s)
- Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Xiao Wang
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Andrew T Nelson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Andrew D Hennes
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Heejin Roh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Dhungel BP, Winburn I, Pereira CDF, Huang K, Chhabra A, Rasko JEJ. Understanding AAV vector immunogenicity: from particle to patient. Theranostics 2024; 14:1260-1288. [PMID: 38323309 PMCID: PMC10845199 DOI: 10.7150/thno.89380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024] Open
Abstract
Gene therapy holds promise for patients with inherited monogenic disorders, cancer, and rare genetic diseases. Naturally occurring adeno-associated virus (AAV) offers a well-suited vehicle for clinical gene transfer due to its lack of significant clinical pathogenicity and amenability to be engineered to deliver therapeutic transgenes in a variety of cell types for long-term sustained expression. AAV has been bioengineered to produce recombinant AAV (rAAV) vectors for many gene therapies that are approved or in late-stage development. However, ongoing challenges hamper wider use of rAAV vector-mediated therapies. These include immunity against rAAV vectors, limited transgene packaging capacity, sub-optimal tissue transduction, potential risks of insertional mutagenesis and vector shedding. This review focuses on aspects of immunity against rAAV, mediated by anti-AAV neutralizing antibodies (NAbs) arising after natural exposure to AAVs or after rAAV vector administration. We provide an in-depth analysis of factors determining AAV seroprevalence and examine clinical approaches to managing anti-AAV NAbs pre- and post-vector administration. Methodologies used to quantify anti-AAV NAb levels and strategies to overcome pre-existing AAV immunity are also discussed. The broad adoption of rAAV vector-mediated gene therapies will require wider clinical appreciation of their current limitations and further research to mitigate their impact.
Collapse
Affiliation(s)
- Bijay P. Dhungel
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | | | | | | | | | - John E. J. Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
27
|
Daci R, Flotte TR. Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders. Int J Mol Sci 2024; 25:1050. [PMID: 38256124 PMCID: PMC10816966 DOI: 10.3390/ijms25021050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Genetic disorders of the central nervous system (CNS) comprise a significant portion of disability in both children and adults. Several preclinical animal models have shown effective adeno-associated virus (AAV) mediated gene transfer for either treatment or prevention of autosomal recessive genetic disorders. Owing to the intricacy of the human CNS and the blood-brain barrier, it is difficult to deliver genes, particularly since the expression of any given gene may be required in a particular CNS structure or cell type at a specific time during development. In this review, we analyzed delivery methods for AAV-mediated gene therapy in past and current clinical trials. The delivery routes analyzed were direct intraparenchymal (IP), intracerebroventricular (ICV), intra-cisterna magna (CM), lumbar intrathecal (IT), and intravenous (IV). The results demonstrated that the dose used in these routes varies dramatically. The average total doses used were calculated and were 1.03 × 1013 for IP, 5.00 × 1013 for ICV, 1.26 × 1014 for CM, and 3.14 × 1014 for IT delivery. The dose for IV delivery varies by patient weight and is 1.13 × 1015 IV for a 10 kg infant. Ultimately, the choice of intervention must weigh the risk of an invasive surgical procedure to the toxicity and immune response associated with a high dose vector.
Collapse
Affiliation(s)
- Rrita Daci
- Department of Neurosurgery, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA;
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA
| |
Collapse
|
28
|
Martinez M, Harding CO, Schwank G, Thöny B. State-of-the-art 2023 on gene therapy for phenylketonuria. J Inherit Metab Dis 2024; 47:80-92. [PMID: 37401651 PMCID: PMC10764640 DOI: 10.1002/jimd.12651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Phenylketonuria (PKU) or hyperphenylalaninemia is considered a paradigm for an inherited (metabolic) liver defect and is, based on murine models that replicate all human pathology, an exemplar model for experimental studies on liver gene therapy. Variants in the PAH gene that lead to hyperphenylalaninemia are never fatal (although devastating if untreated), newborn screening has been available for two generations, and dietary treatment has been considered for a long time as therapeutic and satisfactory. However, significant shortcomings of contemporary dietary treatment of PKU remain. A long list of various gene therapeutic experimental approaches using the classical model for human PKU, the homozygous enu2/2 mouse, witnesses the value of this model to develop treatment for a genetic liver defect. The list of experiments for proof of principle includes recombinant viral (AdV, AAV, and LV) and non-viral (naked DNA or LNP-mRNA) vector delivery methods, combined with gene addition, genome, gene or base editing, and gene insertion or replacement. In addition, a list of current and planned clinical trials for PKU gene therapy is included. This review summarizes, compares, and evaluates the various approaches for the sake of scientific understanding and efficacy testing that may eventually pave the way for safe and efficient human application.
Collapse
Affiliation(s)
- Michael Martinez
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children’s Hospital Zurich and Children’s Research Centre, Zurich, Switzerland
| |
Collapse
|
29
|
Li J, Wang X, Shi L, Liu B, Sheng Z, Chang S, Cai X, Shan G. A Mammalian Conserved Circular RNA CircLARP1B Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305902. [PMID: 37953462 PMCID: PMC10787103 DOI: 10.1002/advs.202305902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiaolin Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Liang Shi
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Boqiang Liu
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Zhiyong Sheng
- School of Life ScienceBengbu Medical CollegeBengbu233030China
| | - Shuhui Chang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiujun Cai
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Ge Shan
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
30
|
Zhao L, Yang Z, Zheng M, Shi L, Gu M, Liu G, Miao F, Chang Y, Huang F, Tang N. Recombinant adeno-associated virus 8 vector in gene therapy: Opportunities and challenges. Genes Dis 2024; 11:283-293. [PMID: 37588223 PMCID: PMC10425794 DOI: 10.1016/j.gendis.2023.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 02/08/2023] [Indexed: 04/09/2023] Open
Abstract
In recent years, significant breakthroughs have been made in the field of gene therapy. Adeno-associated virus (AAV) is one of the most promising gene therapy vectors and a powerful tool for delivering the gene of interest. Among the AAV vectors, AAV serotype 8 (AAV8) has attracted much attention for its efficient and stable gene transfection into specific tissues. Currently, recombinant AAV8 has been widely used in gene therapy research on a variety of diseases, including genetic diseases, cancers, autoimmune diseases, and viral diseases. This paper reviewed the applications and challenges of using AAV8 as a vector for gene therapy, with the aim of providing a valuable resource for those pursuing the application of viral vectors in gene therapy.
Collapse
Affiliation(s)
- Liyuan Zhao
- Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230000, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Zixuan Yang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Minhui Zheng
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Lei Shi
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Mengyun Gu
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Gang Liu
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Feng Miao
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Yan Chang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Fanghua Huang
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Naping Tang
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
31
|
Chang H, Du A, Jiang J, Ren L, Liu N, Zhou X, Liang J, Gao G, Wang D. Non-canonical amino acid incorporation into AAV5 capsid enhances lung transduction in mice. Mol Ther Methods Clin Dev 2023; 31:101129. [PMID: 37886602 PMCID: PMC10597788 DOI: 10.1016/j.omtm.2023.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) relies on safe, efficient, and precise in vivo gene delivery that is largely dependent on the AAV capsid. The proteinaceous capsid is highly amenable to engineering using a variety of approaches, and most resulting capsids carry substitutions or insertions comprised of natural amino acids. Here, we incorporated a non-canonical amino acid (ncAA), Nε-2-azideoethyloxycarbonyl-L-lysine (also known as NAEK), into the AAV5 capsid using genetic code expansion, and serendipitously found that several NAEK-AAV5 vectors transduced various cell lines more efficiently than the parental rAAV5. Furthermore, one NAEK-AAV5 vector showed lung-specific transduction enhancement following systemic or intranasal delivery in mice. Structural modeling suggests that the long side chain of NAEK may impact on the 3-fold protrusion on the capsid surface that plays a key role in tropism, thereby modulating vector transduction. Recent advances in genetic code expansion have generated synthetic proteins carrying an increasing number of ncAAs that possess diverse biological properties. Our study suggests that ncAA incorporation into the AAV capsid may confer novel vector properties, opening a new and complementary avenue to gene therapy vector discovery.
Collapse
Affiliation(s)
- Hao Chang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jun Jiang
- GeneLeap Bio, Luye Life Sciences, Woburn, MA 01801, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xuntao Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
32
|
Jiang F, Zhang C, Liu W, Liu F, Huang H, Tan Y, Qin B. Bibliometric analysis of global research trends in adeno-associated virus vector for gene therapy (1991-2022). Front Cell Infect Microbiol 2023; 13:1301915. [PMID: 38145048 PMCID: PMC10739348 DOI: 10.3389/fcimb.2023.1301915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Background Gene therapy involves introducing and editing foreign genes in the body to treat and prevent genetic diseases. Adeno-associated virus (AAV) vector has become a widely used tool in gene therapy due to its high safety and transfection efficiency. Methods This study employs bibliometric analysis to explore the foundation and current state of AAV vector application in gene therapy research. A total of 6,069 publications from 1991 to 2022 were analyzed, retrieved from the Science Citation Index Expanded (SCI-E) within the Web of Science Core Collection (WoSCC) of Clarivate Analytics. Institutions, authors, journals, references, and keywords were analyzed and visualized by using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. Results The global literature on AAV vector and gene therapy exhibited consistent growth, with the United States leading in productivity, contributing 3,868 papers and obtaining the highest H-index. Noteworthy authors like Wilson JM, Samulski RJ, Hauswirth WW, and Mingozzi F were among the top 10 most productive and co-cited authors. The journal "Human Gene Therapy" published the most papers (n = 485) on AAV vector and gene therapy. Current research focuses on "gene editing," "gene structure," "CRISPR," and "AAV gene therapy for specific hereditary diseases." Conclusion The application of AAV vector in gene therapy has shown continuous growth, fostering international cooperation among countries and institutions. The intersection of gene editing, gene structure, CRISPR, and AAV gene therapy for specific hereditary diseases and AAV vector represents a prominent and prioritized focus in contemporary gene therapy research. This study provides valuable insights into the trends and characteristics of AAV gene therapy research, facilitating further advancements in the field.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Bo Qin
- Jinan University, Guangzhou, China
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| |
Collapse
|
33
|
Yost SA, Firlar E, Glenn JD, Carroll HB, Foltz S, Giles AR, Egley JM, Firnberg E, Cho S, Nguyen T, Henry WM, Janczura KJ, Bruder J, Liu Y, Danos O, Karumuthil-Melethil S, Pannem S, Yost V, Engelson Y, Kaelber JT, Dimant H, Smith JB, Mercer AC. Characterization and biodistribution of under-employed gene therapy vector AAV7. J Virol 2023; 97:e0116323. [PMID: 37843374 PMCID: PMC10688378 DOI: 10.1128/jvi.01163-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The use of adeno-associated viruses (AAVs) as gene delivery vectors has vast potential for the treatment of many severe human diseases. Over one hundred naturally existing AAV capsid variants have been described and classified into phylogenetic clades based on their sequences. AAV8, AAV9, AAVrh.10, and other intensively studied capsids have been propelled into pre-clinical and clinical use, and more recently, marketed products; however, less-studied capsids may also have desirable properties (e.g., potency differences, tissue tropism, reduced immunogenicity, etc.) that have yet to be thoroughly described. These data will help build a broader structure-function knowledge base in the field, present capsid engineering opportunities, and enable the use of novel capsids with unique properties.
Collapse
Affiliation(s)
- Samantha A. Yost
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Emre Firlar
- Institute of Quantitative Biomedicine and Rutgers CryoEM & Nanoimaging Facility, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Justin D. Glenn
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Hayley B. Carroll
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Steven Foltz
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - April R. Giles
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Jenny M. Egley
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Elad Firnberg
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Sungyeon Cho
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Trang Nguyen
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - William M. Henry
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | | | - Joseph Bruder
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ye Liu
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | | | | | | | | | - Jason T. Kaelber
- Institute of Quantitative Biomedicine and Rutgers CryoEM & Nanoimaging Facility, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hemi Dimant
- Invicro LLC, Needham, Massachusetts, USA
- Emit Imaging, Baltimore, Maryland, USA
| | - Jared B. Smith
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Andrew C. Mercer
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| |
Collapse
|
34
|
Dubner AM, Lu S, Jolly AJ, Noble T, Hinthorn T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MCM. Confounding Effects of Tamoxifen: Cautionary and Practical Considerations for the Use of Tamoxifen-Inducible Mouse Models in Atherosclerosis Research-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2223-2230. [PMID: 37706321 PMCID: PMC10615862 DOI: 10.1161/atvbaha.123.319922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In recent years, fate-mapping lineage studies in mouse models have led to major advances in vascular biology by allowing investigators to track specific cell populations in vivo. One of the most frequently used lineage tracing approaches involves tamoxifen-inducible CreERT-LoxP systems. However, tamoxifen treatment can also promote effects independent of Cre recombinase activation, many of which have not been fully explored. METHODS To elucidate off-target effects of tamoxifen, male and female mice were either unmanipulated or injected with tamoxifen or corn oil. All mice received PCSK9 (proprotein convertase subtilisin/kexin type 9)-AAV (adeno-associated virus) injections and a modified Western diet to induce hypercholesterolemia. After 2 weeks, serum cholesterol and liver morphology were assessed. To determine the duration of any tamoxifen effects in long-term atherosclerosis experiments, mice received either 12 days of tamoxifen at baseline or 12 days plus 2 sets of 5-day tamoxifen boosters; all mice received PCSK9-AAV injections and a modified Western diet to induce hypercholesterolemia. After 24 weeks, serum cholesterol and aortic sinus plaque burden were measured. RESULTS After 2 weeks of atherogenic treatment, mice injected with tamoxifen demonstrated significantly reduced serum cholesterol levels compared with uninjected- or corn oil-treated mice. However, there were no differences in PCSK9-mediated knockdown of LDL (low-density lipoprotein) receptors between the groups. Additionally, tamoxifen-treated mice exhibited significantly increased hepatic lipid accumulation compared with the other groups. Finally, the effects of tamoxifen remained for at least 8 weeks after completion of injections, with mice demonstrating persistent decreased serum cholesterol and impaired atherosclerotic plaque formation. CONCLUSIONS In this study, we establish that tamoxifen administration results in decreased serum cholesterol, decreased plaque formation, and increased hepatic lipid accumulation. These alterations represent significant confounding variables in atherosclerosis research, and we urge future investigators to take these findings into consideration when planning and executing their own atherosclerosis experiments.
Collapse
Affiliation(s)
- Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tysen Noble
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Tyler Hinthorn
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen S Moulton
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | - Mary CM Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
35
|
Chou SC, Hsu YC, Lin SW. Gene therapy for hemophilia, a clinical viewpoint. J Formos Med Assoc 2023; 122:1101-1110. [PMID: 37210312 DOI: 10.1016/j.jfma.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023] Open
Abstract
Gene therapy for hemophilia has been investigated for decades but no breakthroughs were made until Nathwani et al. achieved a significant and sustainable factor IX increase in hemophilia B patients in 2011. About eleven years later, in August 2022, the first hemophilia A gene therapy product was approved by the European Commission and hemophilia treatment entered a new era. This review does not focus on the newest advances but rather the practical aspects of gene therapy aiming to provide an overview for physicians who treat hemophiliacs who did not participate in the clinical trials. The current status of gene therapy, focusing particularly on products likely to be clinically available soon, are reviewed and summarized. Currently, possible limitations of gene therapy are pre-existing neutralizing antibodies toward the vector, liver health, age, and inhibitor status. Possible safety concerns include infusion reactions, liver damage, and adverse effects from immune suppressants or steroids. In summary, generally speaking, gene therapy is effective, at least for several years, but the exact effect may be unpredictable and intensive monitoring for several months is needed. It can also be considered safe with careful practice on selected patients. In its current form, gene therapy will not replace all hemophilia treatments. Advances in non-factor therapy will also improve hemophilia care greatly in the future. We envisage that gene therapy may be included in multiple novel therapies for hemophilia and benefit some hemophilia patients while novel non-factor therapies may benefit others, together fulfilling the unmet needs of all hemophilia patients.
Collapse
Affiliation(s)
- Sheng-Chieh Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chen Hsu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention and Treatment Research Foundation, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Hsi J, Mietzsch M, Chipman P, Afione S, Zeher A, Huang R, Chiorini J, McKenna R. Structural and antigenic characterization of the avian adeno-associated virus capsid. J Virol 2023; 97:e0078023. [PMID: 37702486 PMCID: PMC10617571 DOI: 10.1128/jvi.00780-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE AAVs are extensively studied as promising therapeutic gene delivery vectors. In order to circumvent pre-existing antibodies targeting primate-based AAV capsids, the AAAV capsid was evaluated as an alternative to primate-based therapeutic vectors. Despite the high sequence diversity, the AAAV capsid was found to bind to a common glycan receptor, terminal galactose, which is also utilized by other AAVs already being utilized in gene therapy trials. However, contrary to the initial hypothesis, AAAV was recognized by approximately 30% of human sera tested. Structural and sequence comparisons point to conserved epitopes in the fivefold region of the capsid as the reason determinant for the observed cross-reactivity.
Collapse
Affiliation(s)
- Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sandra Afione
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Epidemiology, Bloomberg School for Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - John Chiorini
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
37
|
Chan C, Harris KK, Zolotukhin S, Keeler GD. Rational Design of AAV-rh74, AAV3B, and AAV8 with Limited Liver Targeting. Viruses 2023; 15:2168. [PMID: 38005848 PMCID: PMC10675213 DOI: 10.3390/v15112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have become one of the leading gene therapies for treating a variety of diseases. One factor contributing to rAAVs' success is the fact that a wide variety of tissue types can be transduced by different serotypes. However, one commonality amongst most serotypes is the high propensity for liver transduction when rAAVs are administered peripherally. One of the few exceptions is the naturally occurring clade F AAV hematopoietic stem cell 16 (AAVHSC16). AAVHSC16 represents an interesting capsid in that it shows minimal liver transduction when injected peripherally. For capsids other than AAVHSC16, targeting non-liver tissues via peripheral AAV injection represents a challenge due to the high liver transduction. Thus, there is a demand for liver-de-targeted rAAV vectors. The rational design of rAAV capsids relies on current knowledge to design improved capsids and represents one means of developing capsids with reduced liver transduction. Here, we utilized data from the AAVHSC16 capsid to rationally design four non-clade F rAAV capsids that result in reduced liver transduction following peripheral injection.
Collapse
Affiliation(s)
| | | | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Geoffrey D. Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
38
|
Aerts-Kaya F, van Til NP. Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics 2023; 15:2522. [PMID: 38004502 PMCID: PMC10675548 DOI: 10.3390/pharmaceutics15112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber's amaurosis, epidermolysis bullosa, Duchenne's muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100 Ankara, Turkey;
- Advanced Technologies Application and Research Center, Hacettepe University, 06800 Ankara, Turkey
| | - Niek P. van Til
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Zhang P, Li H, Zhang A, Wang X, Song Q, Li Z, Wang W, Xu J, Hou Y, Zhang Y. Mechanism of myocardial fibrosis regulation by IGF-1R in atrial fibrillation through the PI3K/Akt/FoxO3a pathway. Biochem Cell Biol 2023; 101:432-442. [PMID: 37018819 DOI: 10.1139/bcb-2022-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Huilin Li
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - An Zhang
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - Xiao Wang
- Department of Health Management Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Qiyuan Song
- Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University. Ji'nan City, Shandong Province, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yong Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| |
Collapse
|
40
|
Hendrikx T, Lang S, Rajcic D, Wang Y, McArdle S, Kim K, Mikulski Z, Schnabl B. Hepatic pIgR-mediated secretion of IgA limits bacterial translocation and prevents ethanol-induced liver disease in mice. Gut 2023; 72:1959-1970. [PMID: 36690432 PMCID: PMC10841342 DOI: 10.1136/gutjnl-2022-328265] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Alcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease. DESIGN pIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/- ) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes. RESULTS Livers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation. CONCLUSION Our results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.
Collapse
Affiliation(s)
- Tim Hendrikx
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Sonja Lang
- University Hospital of Cologne, Clinic for Gastroenterology and Hepatology, Cologne, Germany
| | - Dragana Rajcic
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Yanhan Wang
- Medicine, University of California, La Jolla, California, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Bernd Schnabl
- Medicine, University of California, La Jolla, California, USA
| |
Collapse
|
41
|
Moço PD, Xu X, Silva CAT, Kamen AA. Production of adeno-associated viral vector serotype 6 by triple transfection of suspension HEK293 cells at higher cell densities. Biotechnol J 2023; 18:e2300051. [PMID: 37337925 DOI: 10.1002/biot.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
In recent years, the use of adeno-associated viruses (AAVs) as vectors for gene and cell therapy has increased, leading to a rise in the amount of AAV vectors required during pre-clinical and clinical trials. AAV serotype 6 (AAV6) has been found to be efficient in transducing different cell types and has been successfully used in gene and cell therapy protocols. However, the number of vectors required to effectively deliver the transgene to one single cell has been estimated at 106 viral genomes (VG), making large-scale production of AAV6 necessary. Suspension cell-based platforms are currently limited to low cell density productions due to the widely reported cell density effect (CDE), which results in diminished production at high cell densities and decreased cell-specific productivity. This limitation hinders the potential of the suspension cell-based production process to increase yields. In this study, we investigated the improvement of the production of AAV6 at higher cell densities by transiently transfecting HEK293SF cells. The results showed that when the plasmid DNA was provided on a cell basis, the production could be carried out at medium cell density (MCD, 4 × 106 cells mL-1 ) resulting in titers above 1010 VG mL-1 . No detrimental effects on cell-specific virus yield or cell-specific functional titer were observed at MCD production. Furthermore, while medium supplementation alleviated the CDE in terms of VG/cell at high cell density (HCD, 10 × 106 cells mL-1 ) productions, the cell-specific functional titer was not maintained, and further studies are necessary to understand the observed limitations for AAV production in HCD processes. The MCD production method reported here lays the foundation for large-scale process operations, potentially solving the current vector shortage in AAV manufacturing.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Xingge Xu
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Cristina A T Silva
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
42
|
Huang X, Wang X, Li L, Wang Q, Xu W, Wu W, Xie X, Diao Y. MiR133b-mediated inhibition of EGFR-PTK pathway promotes rAAV2 transduction by facilitating intracellular trafficking and augmenting second-strand synthesis. J Cell Mol Med 2023; 27:2714-2729. [PMID: 37469226 PMCID: PMC10494303 DOI: 10.1111/jcmm.17858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is an extremely attractive vector in the in vivo delivery of gene therapy as it is safe and its genome is simple. However, challenges including low permissiveness to specific cells and restricted tissue specificity have hindered its clinical application. Based on the previous studies, epidermal growth factor receptor-protein tyrosine kinase (EGFR-PTK) negatively regulated rAAV transduction, and EGFR-positive cells were hardly permissive to rAAV transduction. We constructed a novel rAAV-miRNA133b vector, which co-expressed miRNA133b and transgene, and investigated its in vivo and in vitro transduction efficiency. Confocal microscopy, live-cell imaging, pharmacological reagents and labelled virion tracking were used to analyse the effect of miRNA133b on rAAV2 transduction and the underlying mechanisms. The results demonstrated that miRNA133b could promote rAAV2 transduction and the effects were limited to EGFR-positive cells. The increased transduction was found to be a direct result of decreased rAAV particles degradation in the cytoplasm and enhanced second-strand synthesis. ss-rAAV2-miRNA133b vector specifically increased rAAV2 transduction in EGFR-positive cells or tissues, while ss-rAAV2-Fluc-miRNA133b exerted an antitumor effect. rAAV-miRNA133b vector might emerge as a promising platform for delivering various transgene to treat EGFR-positive cell-related diseases, such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Qizhao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yong Diao
- School of MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
43
|
Yao X, Wang Q, Han C, Nie J, Chang Y, Xu L, Wu B, Yan J, Chen Z, Kong W, Shi Y, Shan Y. Combined Nano-Vector Mediated-Transfer to Suppress HIV-1 Infection with Targeted Antibodies in-vitro. Int J Nanomedicine 2023; 18:4635-4645. [PMID: 37605734 PMCID: PMC10440090 DOI: 10.2147/ijn.s412915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Introduction Broadly neutralizing antibodies (bNAbs) have the ability to neutralize a considerable breadth of genetically diverse human immunodeficiency virus (HIV) strains. Passive immunization can potentially provide protection against HIV infection in animal models. However, the direct antibody infusion effect is limited due to the short half-life and deficient immunogenicity of the antibody. As an alternative strategy, we propose the use of nano viral vectors, specifically the adeno-associated virus (AAV), to continuously and systematically produce bNAbs against HIV. Methods Plasmids expressing bNAbs PG9, PG16, 10E8, and NIH45-46 antibodies were constructed, targeting three different epitopes of HIV. Additionally, the bNAbs gene mediated by rAAV8 was administered to generate long-term expression with a single injection. We established both single and combined immunization groups. The neutralizing activity of antibodies expressed in mice sera was subsequently evaluated. Results The expression of bNAbs in BALB/c mice can last for >24 weeks after a single intramuscular injection of rAAV8. Further studies show that neutralization of the HIV pseudovirus by sera from co-immunized mice with rAAV8 expressing 10E8 and PG16 was enhanced compared with mice immunized with 10E8 or PG16 alone. Conclusion The prolonged expression of neutralizing antibodies can be maintained over long periods in BALB/c mice. This combined immunization is a promising candidate strategy for HIV treatment.
Collapse
Affiliation(s)
- Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Changge Han
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Yaotian Chang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Lipeng Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Bingya Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Jingtian Yan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Zhiyuan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| |
Collapse
|
44
|
Kavita U, Sun K, Braun M, Lembke W, Mody H, Kamerud J, Yang TY, Braun IV, Fang X, Gao W, Gupta S, Hofer M, Liao MZ, Loo L, McBlane F, Menochet K, Stubenrauch KG, Upreti VV, Vigil A, Wiethoff CM, Xia CQ, Zhu X, Jawa V, Chemuturi N. PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper. AAPS J 2023; 25:78. [PMID: 37523051 DOI: 10.1208/s12248-023-00842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.
Collapse
Affiliation(s)
- Uma Kavita
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA.
| | - Kefeng Sun
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA.
| | - Manuela Braun
- Bayer AG, Pharmaceuticals R&D, 13342, Berlin, Germany
| | - Wibke Lembke
- Integrated Biologix GmbH, 4051, Basel, Switzerland
| | - Hardik Mody
- Genentech Inc., South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Janssen R&D LLC., Spring House, Pennsylvania, 19477, USA
| | | | - Xiaodong Fang
- Asklepios BioPharmaceutical, Inc., Research Triangle, North Carolina, 27709, USA
| | - Wei Gao
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, 01821, USA
| | - Swati Gupta
- AbbVie, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Magdalena Hofer
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA
| | | | - LiNa Loo
- Vertex Pharmaceuticals Boston, Boston, Massachusetts, 02210, USA
| | | | | | | | | | - Adam Vigil
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, 06877, USA
| | | | - Cindy Q Xia
- ReNAgade Therapeutics, Cambridge, Massachusetts, 02142, USA
| | - Xu Zhu
- AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrence Township, New Jersey, 08648, USA
| | - Nagendra Chemuturi
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
45
|
Zhong J, Gou Y, Zhao P, Dong X, Guo M, Li A, Hao A, Luu HH, He TC, Reid RR, Fan J. Glycogen storage disease type I: Genetic etiology, clinical manifestations, and conventional and gene therapies. PEDIATRIC DISCOVERY 2023; 1:e3. [PMID: 38370424 PMCID: PMC10874634 DOI: 10.1002/pdi3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 02/20/2024]
Abstract
Glycogen storage disease type I (GSDI) is an inherited metabolic disorder characterized by a deficiency of enzymes or proteins involved in glycogenolysis and gluconeogenesis, resulting in excessive intracellular glycogen accumulation. While GSDI is classified into four different subtypes based on molecular genetic variants, GSDIa accounts for approximately 80%. GSDIa and GSDIb are autosomal recessive disorders caused by deficiencies in glucose-6-phosphatase (G6Pase-α) and glucose-6-phosphate-transporter (G6PT), respectively. For the past 50 years, the care of patients with GSDI has been improved following elaborate dietary managements. GSDI patients currently receive dietary therapies that enable patients to improve hypoglycemia and alleviate early symptomatic signs of the disease. However, dietary therapies have many limitations with a risk of calcium, vitamin D, and iron deficiency and cannot prevent long-term complications, such as progressive liver and renal failure. With the deepening understanding of the pathogenesis of GSDI and the development of gene therapy technology, there is great progress in the treatment of GSDI. Here, we review the underlying molecular genetics and the current clinical management strategies of GSDI patients with an emphasis on promising experimental gene therapies.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
46
|
Li B, Rodrigo-Torres D, Pelz C, Innes B, Canaday P, Chai S, Zandstra P, Bader GD, Grompe M. Cell networks in the mouse liver during partial hepatectomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549116. [PMID: 37503083 PMCID: PMC10370080 DOI: 10.1101/2023.07.16.549116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In solid tissues homeostasis and regeneration after injury involve a complex interplay between many different cell types. The mammalian liver harbors numerous epithelial and non-epithelial cells and little is known about the global signaling networks that govern their interactions. To better understand the hepatic cell network, we isolated and purified 10 different cell populations from normal and regenerative mouse livers. Their transcriptomes were analyzed by bulk RNA-seq and a computational platform was used to analyze the cell-cell and ligand-receptor interactions among the 10 populations. Over 50,000 potential cell-cell interactions were found in both the ground state and after partial hepatectomy. Importantly, about half of these differed between the two states, indicating massive changes in the cell network during regeneration. Our study provides the first comprehensive database of potential cell-cell interactions in mammalian liver cell homeostasis and regeneration. With the help of this prediction model, we identified and validated two previously unknown signaling interactions involved in accelerating and delaying liver regeneration. Overall, we provide a novel platform for investigating autocrine/paracrine pathways in tissue regeneration, which can be adapted to other complex multicellular systems.
Collapse
Affiliation(s)
- Bin Li
- Oregon Stem Cell Center
- Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Rodrigo-Torres
- Oregon Stem Cell Center
- Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Carl Pelz
- Oregon Stem Cell Center
- Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Brendan Innes
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Sunghee Chai
- Oregon Stem Cell Center
- Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter Zandstra
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Gary D. Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Markus Grompe
- Oregon Stem Cell Center
- Department of Pediatrics, Papé Family Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
47
|
Logan GJ, Mietzsch M, Khandekar N, D'Silva A, Anderson D, Mandwie M, Hsi J, Nelson AR, Chipman P, Jackson J, Schofield P, Christ D, Goodnow CC, Reed JH, Farrar MA, McKenna R, Alexander IE. Structural and functional characterization of capsid binding by anti-AAV9 monoclonal antibodies from infants after SMA gene therapy. Mol Ther 2023; 31:1979-1993. [PMID: 37012705 PMCID: PMC10362397 DOI: 10.1016/j.ymthe.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Neeta Khandekar
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Arlene D'Silva
- School of Women's and Children's Health, University of New South Wales Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel Anderson
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Austin R Nelson
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer Jackson
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
| | - Michelle A Farrar
- School of Women's and Children's Health, University of New South Wales Medicine, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia; Discipline of Child and Adolescent Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
48
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
49
|
Sasaki N, Kok CY, Westhaus A, Alexander IE, Lisowski L, Kizana E. In Search of Adeno-Associated Virus Vectors With Enhanced Cardiac Tropism for Gene Therapy. Heart Lung Circ 2023; 32:816-824. [PMID: 37451880 DOI: 10.1016/j.hlc.2023.06.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Globally, adeno-associated virus (AAV) vectors have been increasingly used for clinical gene therapy trials. In Australia, AAV-based gene therapy is available for hereditary diseases such as retinal dystrophy or spinal muscular atrophy 1 (SMA1). Many preclinical studies have used AAV vectors for gene therapy in models of cardiac disease with outcomes of varying translational potential. However, major barriers to effective and safe therapeutic gene delivery to the human heart remain to be overcome. These include tropism, efficient gene transfer, mitigating off-target gene delivery and avoidance of the host immune response. Developing such an enhanced AAV vector for cardiac gene therapy is of great interest to the field of advanced cardiac therapeutics. In this review, we provide an overview of the approaches currently being employed in the search for cardiac cell-specific AAV capsids, ranging from natural AAVs selected as a result of infection and latency in the heart, to the use of cutting-edge molecular techniques to engineer and select AAVs specific for cardiac cells with the use of high-throughput methods.
Collapse
Affiliation(s)
- Natsuki Sasaki
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Cindy Y Kok
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Eddy Kizana
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia.
| |
Collapse
|
50
|
Happi Mbakam C, Tremblay JP. Gene therapy for Duchenne muscular dystrophy: an update on the latest clinical developments. Expert Rev Neurother 2023; 23:905-920. [PMID: 37602688 DOI: 10.1080/14737175.2023.2249607] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is one of the most severe and devastating neuromuscular hereditary diseases with a male newborn incidence of 20 000 cases each year. The disease caused by mutations (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) in the DMD gene, progressively leads to muscle wasting and loss of ambulation. This situation is painful for both patients and their families, calling for an emergent need for effective treatments. AREAS COVERED In this review, the authors describe the state of the gene therapy approach in clinical trials for DMD. This therapeutics included gene replacement, gene substitution, RNA-based therapeutics, readthrough mutation, and the CRISPR approach. EXPERT OPINION Only a few drug candidates have yet been granted conditional approval for the treatment of DMD. Most of these therapies have only a modest capability to restore the dystrophin or improve muscle function, suggesting an important unmet need in the development of DMD therapeutics. Complementary genes and cellular therapeutics need to be explored to both restore dystrophin, improve muscle function, and efficiently reconstitute the muscle fibers in the advanced stage of the disease.
Collapse
Affiliation(s)
- Cedric Happi Mbakam
- CHU de Québec research centre, Laval University, Québec, Canada
- Molecular Medicine Department, Faculty of Medicine, Laval University, Québec, Canada
| | - Jacques P Tremblay
- CHU de Québec research centre, Laval University, Québec, Canada
- Molecular Medicine Department, Faculty of Medicine, Laval University, Québec, Canada
| |
Collapse
|