1
|
Xie G, Huang Y, Hu D, Xia Y, Gong M, Zou Z. Potentiation of Catalase-Mediated Plant Thermotolerance by N-Terminal Attachment of Solubilizing/Thermostabilizing Fusion Partners. Int J Mol Sci 2024; 25:12181. [PMID: 39596251 PMCID: PMC11594932 DOI: 10.3390/ijms252212181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Catalase (CAT) plays a crucial role in plant responses to environmental stresses and maintaining redox homeostasis. However, its putative heat lability might compromise its activity and function, thus restricting plant thermotolerance. Herein, we verified Arabidopsis CAT3 was of poor thermostability that was then engineered by fusion expression in Escherichia coli. We found that our selected fusion partners, three hyperacidic mini-peptides and the short rubredoxin from hyperthermophile Pyrococcus furiosus, were commonly effectual to enhance the solubility and thermostability of CAT3 and enlarge its improvement on heat tolerance in E. coli and yeast. Most importantly, this finding was also achievable in plants. Fusion expression could magnify CAT3-mediated thermotolerance in tobacco. Under heat stress, transgenic lines expressing CAT3 fusions generally outperformed native CAT3 which in turn surpassed wild-type tobacco, in terms of seed germination, seedling survival, plant recovery growth, protection of chlorophyll and membrane lipids, elimination of H2O2, as well as mitigation of cell damage in leaves and roots. Moreover, we revealed that the introduced CAT3 or its fusions seemed solely responsible for the enhanced thermotolerance in tobacco. Prospectively, this fusion expression strategy would be applicable to other crucial plant proteins of intrinsic heat instability and thus provide an alternative biotechnological route for ameliorating plant heat tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China; (G.X.); (Y.H.); (D.H.); (Y.X.); (M.G.)
| |
Collapse
|
2
|
Chotewutmontri P, Barkan A. Localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus to thylakoid subdomains in Arabidopsis. PLANT DIRECT 2024; 8:e70008. [PMID: 39544483 PMCID: PMC11560805 DOI: 10.1002/pld3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
Thylakoid membranes in chloroplasts and cyanobacteria harbor the multisubunit protein complexes that catalyze the light reactions of photosynthesis. In plant chloroplasts, the thylakoid membrane system comprises a highly organized network with several subcompartments that differ in composition and morphology: grana stacks, unstacked stromal lamellae, and grana margins at the interface between stacked and unstacked regions. The localization of components of the photosynthetic apparatus among these subcompartments has been well characterized. However, less is known about the localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus, the partitioning of proteins between two recently resolved components of the traditional margin fraction (refined margins and curvature), and the effects of light on these features. In this study, we analyzed the partitioning of numerous thylakoid biogenesis and repair factors among grana, curvature, refined margin, and stromal lamellae fractions of Arabidopsis thylakoid membranes, comparing the results from illuminated and dark-adapted plants. Several proteins previously shown to localize to a margin fraction partitioned in varying ways among the resolved curvature and refined margin fractions. For example, the ALB3 insertase and FtsH protease involved in photosystem II (PSII) repair were concentrated in the refined margin fraction, whereas TAT translocon subunits and proteins involved in early steps in photosystem assembly were concentrated in the curvature fraction. By contrast, two photosystem assembly factors that facilitate late assembly steps were depleted from the curvature fraction. The enrichment of the PSII subunit OE23/PsbP in the curvature fraction set it apart from other PSII subunits, supporting the previous conjecture that OE23/PsbP assists in PSII biogenesis and/or repair. The PSII assembly factor PAM68 partitioned differently among thylakoid fractions from dark-adapted plants and illuminated plants and was the only analyzed protein to convincingly do so. These results demonstrate an unanticipated spatial heterogeneity of photosystem biogenesis and repair functions in thylakoid membranes and reveal the curvature fraction to be a focal point of early photosystem biogenesis.
Collapse
Affiliation(s)
- Prakitchai Chotewutmontri
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Present address:
Crop Improvement and Genetics Research, Western Regional Research CenterUnited States Department of Agriculture—Agricultural Research ServiceAlbanyCaliforniaUSA
| | - Alice Barkan
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
| |
Collapse
|
3
|
Che LP, Ruan J, Xin Q, Zhang L, Gao F, Cai L, Zhang J, Chen S, Zhang H, Rochaix JD, Peng L. RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4143-4167. [PMID: 38963884 PMCID: PMC11449094 DOI: 10.1093/plcell/koae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.
Collapse
Affiliation(s)
- Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shiwei Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Komenda J, Sobotka R, Nixon PJ. The biogenesis and maintenance of PSII: Recent advances and current challenges. THE PLANT CELL 2024; 36:3997-4013. [PMID: 38484127 PMCID: PMC11449106 DOI: 10.1093/plcell/koae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 10/05/2024]
Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Collapse
Affiliation(s)
- Josef Komenda
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
5
|
Mehra HS, Wang X, Russell BP, Kulkarni N, Ferrari N, Larson B, Vinyard DJ. Assembly and Repair of Photosystem II in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:811. [PMID: 38592843 PMCID: PMC10975043 DOI: 10.3390/plants13060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important questions remain about its assembly and repair which are presented here.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David J. Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (H.S.M.); (X.W.); (B.P.R.); (N.K.); (N.F.); (B.L.)
| |
Collapse
|
6
|
Song Y, Zhang H, Liu S, Chang Y, Zhang Y, Feng H, Zhang X, Sun M, Sha W, Li Y, Dai S. Na2CO3-responsive mechanism insight from quantitative proteomics and SlRUB gene function in Salix linearistipularis seedlings. TREE PHYSIOLOGY 2024; 44:tpae011. [PMID: 38263488 DOI: 10.1093/treephys/tpae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Mongolian willow (Salix linearistipularis) is a naturally occurring woody dioecious plant in the saline soils of north-eastern China, which has a high tolerance to alkaline salts. Although transcriptomics studies have identified a large number of salinity-responsive genes, the mechanism of salt tolerance in Mongolian willow is not clear. Here, we found that in response to Na2CO3 stress, Mongolian willow regulates osmotic homeostasis by accumulating proline and soluble sugars and scavenges reactive oxygen species (ROS) by antioxidant enzymes and non-enzymatic antioxidants. Our quantitative proteomics study identified 154 salt-sensitive proteins mainly involved in maintaining the stability of the photosynthetic system and ROS homeostasis to cope with Na2CO3 stress. Among them, Na2CO3-induced rubredoxin (RUB) was predicted to be associated with 122 proteins for the modulation of these processes. The chloroplast-localized S. linearistipularis rubredoxin (SlRUB) was highly expressed in leaves and was significantly induced under Na2CO3 stress. Phenotypic analysis of overexpression, mutation and complementation materials of RUB in Arabidopsis suggests that SlRUB is critical for the regulation of photosynthesis, ROS scavenging and other metabolisms in the seedlings of Mongolian willow to cope with Na2CO3 stress. This provides more clues to better understand the alkali-responsive mechanism and RUB functions in the woody Mongolian willow.
Collapse
Affiliation(s)
- Yingying Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Shijia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Yu Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Huiting Feng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, No. 1 Jinming Avenue, Longting District, Kaifeng 475001, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Wei Sha
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar 161006, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| |
Collapse
|
7
|
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, Willmund F, Vallon O, Bohne AV. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1612-1633. [PMID: 36649171 PMCID: PMC10022639 DOI: 10.1093/plphys/kiad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.
Collapse
Affiliation(s)
- Fei Wang
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Irene Meindl
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Egidi
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Joerg Nickelsen
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
8
|
Calderon RH, de Vitry C, Wollman FA, Niyogi KK. Rubredoxin 1 promotes the proper folding of D1 and is not required for heme b 559 assembly in Chlamydomonas photosystem II. J Biol Chem 2023; 299:102968. [PMID: 36736898 PMCID: PMC9986647 DOI: 10.1016/j.jbc.2023.102968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and β (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and β cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.
Collapse
Affiliation(s)
- Robert H Calderon
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
9
|
Gao H, McCormick AJ, Roston RL, Lu Y. Editorial: Structure and function of chloroplasts, Volume III. FRONTIERS IN PLANT SCIENCE 2023; 14:1145680. [PMID: 36938040 PMCID: PMC10014905 DOI: 10.3389/fpls.2023.1145680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Hongbo Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Alistair J. McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca L. Roston
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
10
|
Fu W, Cui Z, Guo J, Cui X, Han G, Zhu Y, Hu J, Gao X, Li Y, Xu M, Fu A, Wang F. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1002-1016. [PMID: 36417279 PMCID: PMC9922407 DOI: 10.1093/plphys/kiac524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Excess light causes severe photodamage to photosystem II (PSII) where the primary charge separation for electron transfer takes place. Dissection of mechanisms underlying the PSII maintenance and repair cycle in green algae promotes the usage of genetic engineering and synthetic biology to improve photosynthesis and biomass production. In this study, we systematically analyzed the high light (HL) responsive immunophilin genes in Chlamydomonas (Chlamydomonas reinhardtii) and identified one chloroplast lumen-localized immunophilin, CYN28, as an essential player in HL tolerance. Lack of CYN28 caused HL hypersensitivity, severely reduced accumulation of PSII supercomplexes and compromised PSII repair in cyn28. The thylakoid FtsH (filamentation temperature-sensitive H) is an essential AAA family metalloprotease involved in the degradation of photodamaged D1 during the PSII repair cycle and was identified as one potential target of CYN28. In the cyn28 mutant, the thylakoid FtsH undergoes inefficient turnover under HL conditions. The CYN28-FtsH1/2 interaction relies on the FtsH N-terminal proline residues and is strengthened particularly under HL. Further analyses demonstrated CYN28 displays peptidyl-prolyl isomerase (PPIase) activity, which is necessary for its physiological function. Taken together, we propose that immunophilin CYN28 participates in PSII maintenance and regulates the homeostasis of FtsH under HL stress via its PPIase activity.
Collapse
Affiliation(s)
- Weihan Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jia Guo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiayu Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Guomao Han
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yunpeng Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jinju Hu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaoling Gao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yeqing Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
11
|
Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants (Basel) 2022; 12:antiox12010096. [PMID: 36670957 PMCID: PMC9854524 DOI: 10.3390/antiox12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins composed of 3 to 10 residues and involved in multiple cellular functions. Here, we performed a search for SLiMs that exert sequence similarity to two segments of alpha-fetoprotein (AFP), a major mammalian embryonic and cancer-associated protein. Biological activities of the peptides, LDSYQCT (AFP14-20) and EMTPVNPGV (GIP-9), have been previously confirmed under in vitro and in vivo conditions. In our study, we retrieved a vast array of proteins that contain SLiMs of interest from both prokaryotic and eukaryotic species, including viruses, bacteria, archaea, invertebrates, and vertebrates. Comprehensive Gene Ontology enrichment analysis showed that proteins from multiple functional classes, including enzymes, transcription factors, as well as those involved in signaling, cell cycle, and quality control, and ribosomal proteins were implicated in cellular adaptation to environmental stress conditions. These include response to oxidative and metabolic stress, hypoxia, DNA and RNA damage, protein degradation, as well as antimicrobial, antiviral, and immune response. Thus, our data enabled insights into the common functions of SLiMs evolutionary conserved across all taxonomic categories. These SLiMs can serve as important players in cellular adaptation to stress, which is crucial for cell functioning.
Collapse
|
12
|
Chiu YF, Chu HA. New Structural and Mechanistic Insights Into Functional Roles of Cytochrome b 559 in Photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:914922. [PMID: 35755639 PMCID: PMC9214863 DOI: 10.3389/fpls.2022.914922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome (Cyt) b 559 is a key component of the photosystem II (PSII) complex for its assembly and proper function. Previous studies have suggested that Cytb 559 has functional roles in early assembly of PSII and in secondary electron transfer pathways that protect PSII against photoinhibition. In addition, the Cytb 559 in various PSII preparations exhibited multiple different redox potential forms. However, the precise functional roles of Cytb 559 in PSII remain unclear. Recent site-directed mutagenesis studies combined with functional genomics and biochemical analysis, as well as high-resolution x-ray crystallography and cryo-electron microscopy studies on native, inactive, and assembly intermediates of PSII have provided important new structural and mechanistic insights into the functional roles of Cytb 559. This mini-review gives an overview of new exciting results and their significance for understanding the structural and functional roles of Cytb 559 in PSII.
Collapse
|
13
|
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. PLANT PHYSIOLOGY 2022; 189:790-804. [PMID: 35134246 PMCID: PMC9157124 DOI: 10.1093/plphys/kiac045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Joko P Trinugroho
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ladislav Csefalvay
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice 370 05, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| |
Collapse
|
14
|
Behr M, Speeckaert N, Kurze E, Morel O, Prévost M, Mol A, Mahamadou Adamou N, Baragé M, Renaut J, Schwab W, El Jaziri M, Baucher M. Leaf necrosis resulting from downregulation of poplar glycosyltransferase UGT72A2. TREE PHYSIOLOGY 2022; 42:1084-1099. [PMID: 34865151 DOI: 10.1093/treephys/tpab161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Reactive species (RS) causing oxidative stress are unavoidable by-products of various plant metabolic processes, such as photosynthesis, respiration or photorespiration. In leaves, flavonoids scavenge RS produced during photosynthesis and protect plant cells against deleterious oxidative damages. Their biosynthesis and accumulation are therefore under tight regulation at the cellular level. Glycosylation has emerged as an essential biochemical reaction in the homeostasis of various specialized metabolites such as flavonoids. This article provides a functional characterization of the Populus tremula x P. alba (poplar) UGT72A2 coding for a UDP-glycosyltransferase that is localized in the chloroplasts. Compared with the wild type, transgenic poplar lines with decreased expression of UGT72A2 are characterized by reduced growth and oxidative damages in leaves, as evidenced by necrosis, higher content of glutathione and lipid peroxidation products as well as diminished soluble peroxidase activity and NADPH to NADP+ ratio under standard growing conditions. They furthermore display lower pools of phenolics, anthocyanins and total flavonoids but higher proanthocyanidins content. Promoter analysis revealed the presence of cis-elements involved in photomorphogenesis, chloroplast biogenesis and flavonoid biosynthesis. The UGT72A2 is regulated by the poplar MYB119, a transcription factor known to regulate the flavonoid biosynthesis pathway. Phylogenetic analysis and molecular docking suggest that UGT72A2 could glycosylate flavonoids; however, the actual substrate(s) was not consistently evidenced with either in vitro assays nor analyses of glycosylated products in leaves of transgenic poplar overexpressing or downregulated for UGT72A2. This article provides elements highlighting the importance of flavonoid glycosylation regarding protection against oxidative stress in poplar leaves and raises new questions about the link between this biochemical reaction and regulation of the redox homeostasis system.
Collapse
Affiliation(s)
- Marc Behr
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nathanael Speeckaert
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Oriane Morel
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Martine Prévost
- Unité de recherche Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Adeline Mol
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nassirou Mahamadou Adamou
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Moussa Baragé
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| |
Collapse
|
15
|
Zamani M, Yang V, Maziashvili L, Fan G, Klapperich CM, Furst AL. Surface Requirements for Optimal Biosensing with Disposable Gold Electrodes. ACS MEASUREMENT SCIENCE AU 2022; 2:91-95. [PMID: 35479101 PMCID: PMC9026247 DOI: 10.1021/acsmeasuresciau.1c00042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Electrochemical biosensors are promising technologies for detection and monitoring in low-resource settings due to their potential for easy use and low-cost instrumentation. Disposable gold screen-printed electrodes (SPEs) are popular substrates for these biosensors, but necessary dopants in the ink used for their production can interfere with biosensor function and contribute to the heterogeneity of these electrodes. We recently reported an alternative disposable gold electrode made from gold leaf generated using low-cost, equipment-free fabrication. We have directly compared the surface topology, biorecognition element deposition, and functional performance of three disposable gold electrodes: our gold leaf electrodes and two commercial SPEs. Our leaf electrodes significantly outperformed the SPEs for reproducible and effective biosensing in a DNase I assay and are nearly an order of magnitude less expensive than the SPEs. Therefore, these electrodes are promising for further development as point-of-care diagnostics, especially in low-resource settings.
Collapse
Affiliation(s)
- Marjon Zamani
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Victoria Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Lizi Maziashvili
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Fan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine M. Klapperich
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Advances in the Understanding of the Lifecycle of Photosystem II. Microorganisms 2022; 10:microorganisms10050836. [PMID: 35630282 PMCID: PMC9145668 DOI: 10.3390/microorganisms10050836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Photosystem II is a light-driven water-plastoquinone oxidoreductase present in cyanobacteria, algae and plants. It produces molecular oxygen and protons to drive ATP synthesis, fueling life on Earth. As a multi-subunit membrane-protein-pigment complex, Photosystem II undergoes a dynamic cycle of synthesis, damage, and repair known as the Photosystem II lifecycle, to maintain a high level of photosynthetic activity at the cellular level. Cyanobacteria, oxygenic photosynthetic bacteria, are frequently used as model organisms to study oxygenic photosynthetic processes due to their ease of growth and genetic manipulation. The cyanobacterial PSII structure and function have been well-characterized, but its lifecycle is under active investigation. In this review, advances in studying the lifecycle of Photosystem II in cyanobacteria will be discussed, with a particular emphasis on new structural findings enabled by cryo-electron microscopy. These structural findings complement a rich and growing body of biochemical and molecular biology research into Photosystem II assembly and repair.
Collapse
|
17
|
Maeda H, Takahashi K, Ueno Y, Sakata K, Yokoyama A, Yarimizu K, Myouga F, Shinozaki K, Ozawa SI, Takahashi Y, Tanaka A, Ito H, Akimoto S, Takabayashi A, Tanaka R. Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2022; 135:361-376. [PMID: 35146632 DOI: 10.1007/s10265-022-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The assembly process of photosystem II (PSII) requires several auxiliary proteins to form assembly intermediates. In plants, early assembly intermediates comprise D1 and D2 subunits of PSII together with a few auxiliary proteins including at least ONE-HELIX PROTEIN1 (OHP1), OHP2, and HIGH-CHLOROPHYLL FLUORESCENCE 244 (HCF244) proteins. Herein, we report the basic characterization of the assembling intermediates, which we purified from Arabidopsis transgenic plants overexpressing a tagged OHP1 protein and named the OHP1 complexes. We analyzed two major forms of OHP1 complexes by mass spectrometry, which revealed that the complexes consist of OHP1, OHP2, and HCF244 in addition to the PSII subunits D1, D2, and cytochrome b559. Analysis of chlorophyll fluorescence showed that a major form of the complex binds chlorophyll a and carotenoids and performs quenching with a time constant of 420 ps. To identify the localization of the auxiliary proteins, we solubilized thylakoid membranes using a digitonin derivative, glycodiosgenin, and separated them into three fractions by ultracentrifugation, and detected these proteins in the loose pellet containing the stroma lamellae and the grana margins together with two chlorophyll biosynthesis enzymes. The results indicated that chlorophyll biosynthesis and assembly may take place in the same compartments of thylakoid membranes. Inducible suppression of the OHP2 mRNA substantially decreased the OHP2 protein in mature Arabidopsis leaves without a significant reduction in the maximum quantum yield of PSII under low-light conditions, but it compromised the yields under high-light conditions. This implies that the auxiliary protein is required for acclimation to high-light conditions.
Collapse
Affiliation(s)
- Hanaki Maeda
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Koharu Takahashi
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657‑8501, Japan
| | - Kei Sakata
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Akari Yokoyama
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Kozue Yarimizu
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Fumiyoshi Myouga
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657‑8501, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan.
| |
Collapse
|
18
|
Che L, Meng H, Ruan J, Peng L, Zhang L. Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:824358. [PMID: 35283894 PMCID: PMC8905225 DOI: 10.3389/fpls.2022.824358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 05/03/2023]
Abstract
Chloroplast thylakoid protein rubredoxin 1 (RBD1) in Chlamydomonas and its cyanobacterial homolog RubA contain a rubredoxin domain. These proteins have been proposed to participate in the assembly of photosystem II (PSII) at early stages. However, the effects of inactivation of RBD1 on PSII assembly in higher plants are largely unclear. Here, we characterized an Arabidopsis rbd1 mutant in detail. A drastic reduction of intact PSII complex but relatively higher levels of assembly intermediates including PSII RC, pre-CP47, and pre-CP43 were found in rbd1. Polysome association and ribosome profiling revealed that ribosome recruitment of psbA mRNA is specifically reduced. Consistently, in vivo protein pulse-chase labeling showed that the rate of D1/pD1 synthesis is significantly reduced in rbd1 compared with WT. Moreover, newly synthesized mature D1 and pD1/D2 can assemble into the PSII reaction center (RC) complex but further formation of larger PSII complexes is nearly totally blocked in rbd1. Our data imply that RBD1 is not only required for the formation of a functional PSII core complex during the early stages of PSII assembly but may also be involved in the translation of D1 in higher plants.
Collapse
Affiliation(s)
- Liping Che
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Han Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Junxiang Ruan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- *Correspondence: Lin Zhang,
| |
Collapse
|
19
|
Choo P, Forsman JA, Hui L, Khaing EP, Summerfield TC, Eaton-Rye JJ. The PsbJ protein is required for photosystem II activity in centers lacking the PsbO and PsbV lumenal subunits. PHOTOSYNTHESIS RESEARCH 2022; 151:103-111. [PMID: 34273062 DOI: 10.1007/s11120-021-00862-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Photosystem II (PS II) of oxygenic photosynthesis is found in the thylakoid membranes of plastids and cyanobacteria. The mature PS II complex comprises a central core of four membrane proteins that bind the majority of the redox-active cofactors. In cyanobacteria the central core is surrounded by 13 low-molecular-weight (LMW) subunits which each consist of one or two transmembrane helices. Three additional hydrophilic subunits known as PsbO, PsbU and PsbV are found associated with hydrophilic loops belonging to the core proteins protruding into the thylakoid lumen. During biogenesis the majority of the LMW subunits are known to initially associate with individual pre-assembly complexes consisting of one or more of the core proteins; however, the point at which the PsbJ LMW subunit binds to PS II is not known. The majority of models for PS II biogenesis propose that the three extrinsic proteins and PsbJ bind in the final stages of PS II assembly. We have investigated the impact of creating the double mutants ∆PsbJ:∆PsbO, ∆PsbJ:∆PsbU and ∆PsbJ:∆PsbV to investigate potential cooperation between these subunits in the final stages of biogenesis. Our results indicate that PsbJ can bind to PS II in the absence of any one of the extrinsic proteins. However, unlike their respective single mutants, the ∆PsbJ:∆PsbO and ∆PsbJ:∆PsbV strains were not photoautotrophic and were unable to support oxygen evolution suggesting a functional oxygen-evolving complex could not assemble in these strains. In contrast, the PS II centers formed in the ∆PsbJ:∆PsbU strain were capable of photoautotrophic growth and could support oxygen evolution when whole-chain electron transport was supported by the addition of bicarbonate.
Collapse
Affiliation(s)
- Priscilla Choo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jack A Forsman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Liangliang Hui
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ei Phyo Khaing
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
20
|
Uflewski M, Mielke S, Correa Galvis V, von Bismarck T, Chen X, Tietz E, Ruß J, Luzarowski M, Sokolowska E, Skirycz A, Eirich J, Finkemeier I, Schöttler MA, Armbruster U. Functional characterization of proton antiport regulation in the thylakoid membrane. PLANT PHYSIOLOGY 2021; 187:2209-2229. [PMID: 33742682 PMCID: PMC8644300 DOI: 10.1093/plphys/kiab135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 05/21/2023]
Abstract
During photosynthesis, energy is transiently stored as an electrochemical proton gradient across the thylakoid membrane. The resulting proton motive force (pmf) is composed of a membrane potential (ΔΨ) and a proton concentration gradient (ΔpH) and powers the synthesis of ATP. Light energy availability for photosynthesis can change very rapidly and frequently in nature. Thylakoid ion transport proteins buffer the effects that light fluctuations have on photosynthesis by adjusting pmf and its composition. Ion channel activities dissipate ΔΨ, thereby reducing charge recombinations within photosystem II. The dissipation of ΔΨ allows for increased accumulation of protons in the thylakoid lumen, generating the signal that activates feedback downregulation of photosynthesis. Proton export from the lumen via the thylakoid K+ exchange antiporter 3 (KEA3), instead, decreases the ΔpH fraction of the pmf and thereby reduces the regulatory feedback signal. Here, we reveal that the Arabidopsis (Arabidopsis thaliana) KEA3 protein homo-dimerizes via its C-terminal domain. This C-terminus has a regulatory function, which responds to light intensity transients. Plants carrying a C-terminus-less KEA3 variant show reduced feed-back downregulation of photosynthesis and suffer from increased photosystem damage under long-term high light stress. However, during photosynthetic induction in high light, KEA3 deregulation leads to an increase in carbon fixation rates. Together, the data reveal a trade-off between long-term photoprotection and a short-term boost in carbon fixation rates, which is under the control of the KEA3 C-terminus.
Collapse
Affiliation(s)
- Michał Uflewski
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Sarah Mielke
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | | | | | - Xiaoheng Chen
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Enrico Tietz
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Jeremy Ruß
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Ewelina Sokolowska
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Boyce Thompson Institute, Ithaca 14853, New York
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster 48149, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster 48149, Germany
| | | | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Author for communication:
| |
Collapse
|
21
|
Fattore N, Bellan A, Pedroletti L, Vitulo N, Morosinotto T. Acclimation of photosynthesis and lipids biosynthesis to prolonged nitrogen and phosphorus limitation in Nannochloropsis gaditana. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Anderson SA, Satyanarayan MB, Wessendorf RL, Lu Y, Fernandez DE. A homolog of GuidedEntry of Tail-anchored proteins3 functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. THE PLANT CELL 2021; 33:2812-2833. [PMID: 34021351 PMCID: PMC8408437 DOI: 10.1093/plcell/koab145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 05/12/2023]
Abstract
The chloroplasts and mitochondria of photosynthetic eukaryotes contain proteins that are closely related to cytosolic Guided Entry of Tail-anchored proteins3 (Get3). Get3 is a targeting factor that efficiently escorts tail-anchored (TA) proteins to the ER. Because other components of the cytosolic-targeting pathway appear to be absent in organelles, previous investigators have asserted that organellar Get3 homologs are unlikely to act as targeting factors. However, we show here both that the Arabidopsis thaliana chloroplast homolog designated as GET3B is structurally similar to cytosolic Get3 proteins and that it selectively binds a thylakoid-localized TA protein. Based on genetic interactions between a get3b mutation and mutations affecting the chloroplast signal recognition particle-targeting pathway, as well as changes in the abundance of photosynthesis-related proteins in mutant plants, we propose that GET3B acts primarily to direct proteins to the thylakoids. Furthermore, through molecular complementation experiments, we show that function of GET3B depends on its ability to hydrolyze ATP, and this is consistent with action as a targeting factor. We propose that GET3B and related organellar Get3 homologs play a role that is analogous to that of cytosolic Get3 proteins, and that GET3B acts as a targeting factor in the chloroplast stroma to deliver TA proteins in a membrane-specific manner.
Collapse
Affiliation(s)
- Stacy A. Anderson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Manasa B. Satyanarayan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Ryan L. Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Donna E. Fernandez
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
23
|
Sushko T, Kavaleuski A, Grabovec I, Kavaleuskaya A, Vakhrameev D, Bukhdruker S, Marin E, Kuzikov A, Masamrekh R, Shumyantseva V, Tsumoto K, Borshchevskiy V, Gilep A, Strushkevich N. A new twist of rubredoxin function in M. tuberculosis. Bioorg Chem 2021; 109:104721. [PMID: 33618255 DOI: 10.1016/j.bioorg.2021.104721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Electron transfer mediated by metalloproteins drives many biological processes. Rubredoxins are a ubiquitous [1Fe-0S] class of electron carriers that play an important role in bacterial adaptation to changing environmental conditions. In Mycobacterium tuberculosis, oxidative and acidic stresses as well as iron starvation induce rubredoxins expression. However, their functions during M. tuberculosis infection are unknown. In the present work, we show that rubredoxin B (RubB) is able to efficiently shuttle electrons from cognate reductases, FprA and FdR to support catalytic activity of cytochrome P450s, CYP124, CYP125, and CYP142, which are important for bacterial viability and pathogenicity. We solved the crystal structure of RubB and characterized the interaction between RubB and CYPs using site-directed mutagenesis. Mutations that not only neutralize single charge but also change the specific residues on the surface of RubB did not dramatically decrease activity of studied CYPs. Together with isothermal calorimetry (ITC) experiments, the obtained results suggest that interactions are transient and not highly specific. The redox potential of RubB is -264 mV vs. Ag/AgCl and the measured extinction coefficients are 9931 M-1cm-1 and 8371 M-1cm-1 at 380 nm and 490 nm, respectively. Characteristic parameters of RubB along with the discovered function might be useful for biotechnological applications. Our findings suggest that a switch from ferredoxins to rubredoxins might be crucial for M. tuberculosis to support CYPs activity during the infection.
Collapse
Affiliation(s)
- Tatsiana Sushko
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anna Kavaleuskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Daniil Vakhrameev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; ESRF - The European Synchrotron, 38000 Grenoble, France
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Alexey Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rami Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victoria Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Kouhei Tsumoto
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus; Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
24
|
Chloroplast Sec14-like 1 (CPSFL1) is essential for normal chloroplast development and affects carotenoid accumulation in Chlamydomonas. Proc Natl Acad Sci U S A 2020; 117:12452-12463. [PMID: 32404426 PMCID: PMC7275715 DOI: 10.1073/pnas.1916948117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are essential molecules in oxygenic photoautotrophs, and they fulfill essential requirements for human and animal nutrition. How carotenoid accumulation is regulated in the chloroplast, a cyanobacterium-derived organelle, remains poorly understood, despite significant advancements in identifying enzymes of the carotenoid biosynthetic pathway. This study identifies a role of chloroplast Sec14-like 1 (CPSFL1), a CRAL-TRIO protein of eukaryotic origin, in modulation of carotenoid biosynthesis and accumulation in the chloroplast. The CPSFL1 protein represents an isoprenoid- and carotenoid-binding protein that associates with membranes through interactions with the phospholipid phosphatidic acid. These findings have implications for understanding carotenoid biosynthesis and optimizing algal carotenoid nutritional quality. Plastid isoprenoid-derived carotenoids serve essential roles in chloroplast development and photosynthesis. Although nearly all enzymes that participate in the biosynthesis of carotenoids in plants have been identified, the complement of auxiliary proteins that regulate synthesis, transport, sequestration, and degradation of these molecules and their isoprenoid precursors have not been fully described. To identify such proteins that are necessary for the optimal functioning of oxygenic photosynthesis, we screened a large collection of nonphotosynthetic (acetate-requiring) DNA insertional mutants of Chlamydomonas reinhardtii and isolated cpsfl1. The cpsfl1 mutant is extremely light-sensitive and susceptible to photoinhibition and photobleaching. The CPSFL1 gene encodes a CRAL-TRIO hydrophobic ligand-binding (Sec14) domain protein. Proteins containing this domain are limited to eukaryotes, but some may have been retargeted to function in organelles of endosymbiotic origin. The cpsfl1 mutant showed decreased accumulation of plastidial isoprenoid-derived pigments, especially carotenoids, and whole-cell focused ion-beam scanning-electron microscopy revealed a deficiency of carotenoid-rich chloroplast structures (e.g., eyespot and plastoglobules). The low carotenoid content resulted from impaired biosynthesis at a step prior to phytoene, the committed precursor to carotenoids. The CPSFL1 protein bound phytoene and β-carotene when expressed in Escherichia coli and phosphatidic acid in vitro. We suggest that CPSFL1 is involved in the regulation of phytoene synthesis and carotenoid transport and thereby modulates carotenoid accumulation in the chloroplast.
Collapse
|
25
|
Wessendorf RL, Lu Y. Photosynthetic characterization of transgenic Synechocystis expressing a plant thiol/disulfide-modulating protein. PLANT SIGNALING & BEHAVIOR 2019; 15:1709708. [PMID: 31889463 PMCID: PMC7053882 DOI: 10.1080/15592324.2019.1709708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
A previous study showed that introducing an Arabidopsis thaliana thiol/disulfide-modulating protein, Low Quantum Yield of Photosystem II 1 (LQY1), into the cyanobacterium Synechocystis sp. PCC6803 increased the efficiency of Photosystem II (PSII) photochemistry. In the present study, the authors provided additional evidence for the role of AtLQY1 in improving PSII photochemical efficiency and cell growth. Light response curve analysis showed that AtLQY1-expressing Synechocystis grown at a moderate growth light intensity (50 µmol photons m-2 s-1) had higher minimal, maximal, and variable fluorescence than the empty-vector control, under a wide range of actinic light intensities. Light induction and dark recovery curves demonstrated that AtLQY1-expressing Synechocystis grown at the moderate growth light intensity had higher effective PSII quantum yield, higher photochemical quenching, lower regulated heat dissipation (non-photochemical quenching), low amounts of reduced plastoquinone, and higher amounts of oxidized plastoquinone than the empty-vector control. Furthermore, growth curve analysis indicated that AtLQY1-expressing Synechocystis grew faster than the empty-vector control at the moderate growth light intensity. These results suggest that transgenic expression of AtLQY1 in Synechocystis significantly improves PSII photochemical efficiency and overall cell growth.
Collapse
Affiliation(s)
- Ryan L. Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
26
|
Baers LL, Breckels LM, Mills LA, Gatto L, Deery MJ, Stevens TJ, Howe CJ, Lilley KS, Lea-Smith DJ. Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism. PLANT PHYSIOLOGY 2019; 181:1721-1738. [PMID: 31578229 PMCID: PMC6878006 DOI: 10.1104/pp.19.00897] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in Synechocystis sp. PCC 6803, ∼1000 more than previous studies. Assigned to six specific subcellular regions were 1,712 proteins. Proteins involved in energy conversion localized to TMs. The majority of transporters, with the exception of a TM-localized copper importer, resided in the plasma membrane (PM). Most metabolic enzymes were soluble, although numerous pathways terminated in the TM (notably those involved in peptidoglycan monomer, NADP+, heme, lipid, and carotenoid biosynthesis) or PM (specifically, those catalyzing lipopolysaccharide, molybdopterin, FAD, and phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM electron transport chains. The majority of ribosomal proteins and enzymes synthesizing the storage compound polyhydroxybuyrate formed distinct clusters within the data, suggesting similar subcellular distributions to one another, as expected for proteins operating within multicomponent structures. Moreover, heterogeneity within membrane regions was observed, indicating further cellular complexity. Cyanobacterial TM protein localization was conserved in Arabidopsis (Arabidopsis thaliana) chloroplasts, suggesting similar proteome organization in more developed photosynthetic organisms. Successful application of this technique in Synechocystis suggests it could be applied to mapping the proteomes of other cyanobacteria and single-celled organisms. The organization of the cyanobacterial cell revealed here substantially aids our understanding of these environmentally and biotechnologically important organisms.
Collapse
Affiliation(s)
- Laura L Baers
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Laurent Gatto
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David J Lea-Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|