1
|
Lin YH, Wu F, Li TY, Lin L, Gao F, Zhu LJ, Xu XM, Chen MY, Hou YL, Zhang CJ, Wu HY, Chang L, Luo CX, Qin YJ, Zhu DY. Disrupting stroke-induced GAT-1-syntaxin1A interaction promotes functional recovery after stroke. Cell Rep Med 2024; 5:101789. [PMID: 39423810 PMCID: PMC11604526 DOI: 10.1016/j.xcrm.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Although stroke is a frequent cause of permanent disability, our ability to promote stroke recovery is limited. Here, we design a small-molecule stroke recovery promoting agent that works by dissociating γ-aminobutyric acid (GABA) transporter 1 (GAT-1) from syntaxin1A (Synt1A), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein. Stroke induces an increase in GAT-1-Synt1A interaction in the subacute phase, a critical period for functional recovery. Uncoupling GAT-1-Synt1A reverses stroke-induced GAT-1 dysfunction and cortical excitability decline and enhances synaptic GABAergic inhibition and consequently cortical oscillations and network plasticity by facilitating the assembly of the SNARE complex at the synapse. Based on the molecular mechanism of GAT-1 binding to Synt1A, we design GAT-1-Synt1A blockers. Among them, ZLQ-3 exhibits the greatest potency. Intranasal use of ZLQ-3-1, a glycosylation product of ZLQ-3, substantially lessens impairments of sensorimotor and cognitive functions in rodent models. This compound, or its analogs, may serve as a promoting agent for stroke recovery.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Wu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ting-You Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Long Lin
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fan Gao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiu-Mei Xu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ming-Yu Chen
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ya-Lan Hou
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chang-Jing Zhang
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Xia Luo
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ya-Juan Qin
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Dong-Ya Zhu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Zhou J, Wang W, Liu D, Xu S, Wang X, Zhang X, Wang X, Li Y, Sheng L, Wang X, Xu B. Discovery of 2-Ethoxy-5-isobutyramido- N-1-substituted Benzamide Derivatives as Selective Kv2.1 Inhibitors with In Vivo Neuroprotective Effects. J Med Chem 2024; 67:213-233. [PMID: 38150670 DOI: 10.1021/acs.jmedchem.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Kv2.1 is involved in regulating neuronal excitability and neuronal cell apoptosis, and inhibiting Kv2.1 is a potential strategy to prevent cell death and achieve neuroprotection in ischemic stroke. In this work, a series of novel benzamide derivatives were designed and synthesized as Kv2.1 inhibitors, and extensive structure-activity relationships led to highly potent and selective Kv2.1 inhibitors having IC50 values of 10-8 M. Among them, compound 80 (IC50 = 0.07 μM, selectivity >130 fold over other K+, Na+, and Ca2+ ion channels) was able to decrease the apoptosis of HEK293/Kv2.1 cells induced by H2O2. Furthermore, its anti-ischemic efficacy was demonstrated as it markedly reduced the infarct volume in MCAO rat model. Additionally, compound 80 possessed appropriate plasma PK parameters. It could serve as a probe to investigate Kv2.1 pathological functions and deserved to be further explored.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dong Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shaofeng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinyuan Zhang
- Information Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Gomez K, Santiago U, Nelson TS, Allen HN, Calderon-Rivera A, Hestehave S, Rodríguez Palma EJ, Zhou Y, Duran P, Loya-Lopez S, Zhu E, Kumar U, Shields R, Koseli E, McKiver B, Giuvelis D, Zuo W, Inyang KE, Dorame A, Chefdeville A, Ran D, Perez-Miller S, Lu Y, Liu X, Handoko, Arora PS, Patek M, Moutal A, Khanna M, Hu H, Laumet G, King T, Wang J, Damaj MI, Korczeniewska OA, Camacho CJ, Khanna R. A peptidomimetic modulator of the Ca V2.2 N-type calcium channel for chronic pain. Proc Natl Acad Sci U S A 2023; 120:e2305215120. [PMID: 37972067 PMCID: PMC10666126 DOI: 10.1073/pnas.2305215120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA15261
| | - Tyler S. Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Sara Hestehave
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Erick J. Rodríguez Palma
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ85724
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY10016
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY10016
| | - Upasana Kumar
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Rory Shields
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ07101
| | - Eda Koseli
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA23298
| | - Bryan McKiver
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA23298
| | - Denise Giuvelis
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME04005
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ07103
| | | | - Angie Dorame
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ85724
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ85724
| | - Dongzhi Ran
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing400016, China
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Yi Lu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing400016, China
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing400016, China
| | - Handoko
- Department of Chemistry, New York University, New York, NY10003
| | | | - Marcel Patek
- Bright Rock Path Limited Liability Company, Tucson, AZ85724
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO63104
| | - May Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI48824
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME04005
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY10016
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY10016
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY10010
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA23298
| | - Olga A. Korczeniewska
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ07101
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ07101
| | - Carlos J. Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA15261
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- New York University Pain Research Center, New York, NY10010
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY10010
- Chemical, and Biomolecular Engineering Department, Tandon School of Engineering, New York University, New York City, NY11201
| |
Collapse
|
4
|
Regulation of neuronal excitation-transcription coupling by Kv2.1-induced clustering of somatic L-type Ca 2+ channels at ER-PM junctions. Proc Natl Acad Sci U S A 2021; 118:2110094118. [PMID: 34750263 PMCID: PMC8609631 DOI: 10.1073/pnas.2110094118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
In hippocampal neurons, gene expression is triggered by electrical activity and Ca2+ entry via L-type Cav1.2 channels in a process called excitation–transcription coupling. We identified a domain on the voltage-gated K+ channel Kv2.1 that promotes the clustering of L-type Cav1.2 channels at endoplasmic reticulum–plasma membrane junctions in the soma of neurons. Importantly, we discovered by disrupting this domain that the Kv2.1-mediated clustering of Cav1.2 at this somatic microdomain is critical for depolarization-induced excitation–transcription coupling. In mammalian brain neurons, membrane depolarization leads to voltage-gated Ca2+ channel-mediated Ca2+ influx that triggers diverse cellular responses, including gene expression, in a process termed excitation–transcription coupling. Neuronal L-type Ca2+ channels, which have prominent populations on the soma and distal dendrites of hippocampal neurons, play a privileged role in excitation–transcription coupling. The voltage-gated K+ channel Kv2.1 organizes signaling complexes containing the L-type Ca2+ channel Cav1.2 at somatic endoplasmic reticulum–plasma membrane junctions. This leads to enhanced clustering of Cav1.2 channels, increasing their activity. However, the downstream consequences of the Kv2.1-mediated regulation of Cav1.2 localization and function on excitation–transcription coupling are not known. Here, we have identified a region between residues 478 to 486 of Kv2.1’s C terminus that mediates the Kv2.1-dependent clustering of Cav1.2. By disrupting this Ca2+ channel association domain with either mutations or with a cell-penetrating interfering peptide, we blocked the Kv2.1-mediated clustering of Cav1.2 at endoplasmic reticulum–plasma membrane junctions and the subsequent enhancement of its channel activity and somatic Ca2+ signals without affecting the clustering of Kv2.1. These interventions abolished the depolarization-induced and L-type Ca2+ channel-dependent phosphorylation of the transcription factor CREB and the subsequent expression of c-Fos in hippocampal neurons. Our findings support a model whereby the Kv2.1-Ca2+ channel association domain-mediated clustering of Cav1.2 channels imparts a mechanism to control somatic Ca2+ signals that couple neuronal excitation to gene expression.
Collapse
|
5
|
Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Arch 2021; 473:1213-1227. [PMID: 34021780 DOI: 10.1007/s00424-021-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.
Collapse
|
6
|
Yeh CY, Schulien AJ, Molyneaux BJ, Aizenman E. Lessons from Recent Advances in Ischemic Stroke Management and Targeting Kv2.1 for Neuroprotection. Int J Mol Sci 2020; 21:ijms21176107. [PMID: 32854248 PMCID: PMC7503403 DOI: 10.3390/ijms21176107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Achieving neuroprotection in ischemic stroke patients has been a multidecade medical challenge. Numerous clinical trials were discontinued in futility and many were terminated in response to deleterious treatment effects. Recently, however, several positive reports have generated the much-needed excitement surrounding stroke therapy. In this review, we describe the clinical studies that significantly expanded the time window of eligibility for patients to receive mechanical endovascular thrombectomy. We further summarize the results available thus far for nerinetide, a promising neuroprotective agent for stroke treatment. Lastly, we reflect upon aspects of these impactful trials in our own studies targeting the Kv2.1-mediated cell death pathway in neurons for neuroprotection. We argue that recent changes in the clinical landscape should be adapted by preclinical research in order to continue progressing toward the development of efficacious neuroprotective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Anthony J. Schulien
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Bradley J. Molyneaux
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- UPMC Stroke Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Correspondence:
| |
Collapse
|
7
|
Aizenman E, Loring RH, Reynolds IJ, Rosenberg PA. The Redox Biology of Excitotoxic Processes: The NMDA Receptor, TOPA Quinone, and the Oxidative Liberation of Intracellular Zinc. Front Neurosci 2020; 14:778. [PMID: 32792905 PMCID: PMC7393236 DOI: 10.3389/fnins.2020.00778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
This special issue of Frontiers in Neuroscience-Neurodegeneration celebrates the 50th anniversary of John Olney's seminal work introducing the concept of excitotoxicity as a mechanism for neuronal cell death. Since that time, fundamental research on the pathophysiological activation of glutamate receptors has played a central role in our understanding of excitotoxic cellular signaling pathways, leading to the discovery of many potential therapeutic targets in the treatment of acute or chronic/progressive neurodegenerative disorders. Importantly, excitotoxic signaling processes have been found repeatedly to be closely intertwined with oxidative cellular cascades. With this in mind, this review looks back at long-standing collaborative efforts by the authors linking cellular redox status and glutamate neurotoxicity, focusing first on the discovery of the redox modulatory site of the N-methyl-D-aspartate (NMDA) receptor, followed by the study of the oxidative conversion of 3,4-dihydroxyphenylalanine (DOPA) to the non-NMDA receptor agonist and neurotoxin 2,4,5-trihydroxyphenylalanine (TOPA) quinone. Finally, we summarize our work linking oxidative injury to the liberation of zinc from intracellular metal binding proteins, leading to the uncovering of a signaling mechanism connecting excitotoxicity with zinc-activated cell death-signaling cascades.
Collapse
Affiliation(s)
- Elias Aizenman
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ralph H. Loring
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States
| | | | - Paul A. Rosenberg
- Program in Neuroscience, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Schulien AJ, Yeh CY, Orange BN, Pav OJ, Hopkins MP, Moutal A, Khanna R, Sun D, Justice JA, Aizenman E. Targeted disruption of Kv2.1-VAPA association provides neuroprotection against ischemic stroke in mice by declustering Kv2.1 channels. SCIENCE ADVANCES 2020; 6:eaaz8110. [PMID: 32937450 PMCID: PMC7458461 DOI: 10.1126/sciadv.aaz8110] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
Kv2.1 channels mediate cell death-enabling loss of cytosolic potassium in neurons following plasma membrane insertion at somatodendritic clusters. Overexpression of the carboxyl terminus (CT) of the cognate channel Kv2.2 is neuroprotective by disrupting Kv2.1 surface clusters. Here, we define a seven-amino acid declustering domain within Kv2.2 CT (DP-2) and demonstrate its neuroprotective efficacy in a murine ischemia-reperfusion model. TAT-DP-2, a membrane-permeable derivative, induces Kv2.1 surface cluster dispersal, prevents post-injurious pro-apoptotic potassium current enhancement, and is neuroprotective in vitro by disrupting the association of Kv2.1 with VAPA. TAT-DP-2 also induces Kv2.1 cluster dispersal in vivo in mice, reducing infarct size and improving long-term neurological function following stroke. We suggest that TAT-DP-2 induces Kv2.1 declustering by disrupting Kv2.1-VAPA association and scaffolding sites required for the membrane insertion of Kv2.1 channels following injury. We present the first evidence of targeted disruption of Kv2.1-VAPA association as a neuroprotective strategy following brain ischemia.
Collapse
Affiliation(s)
- Anthony J Schulien
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chung-Yang Yeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bailey N Orange
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Olivia J Pav
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Madelynn P Hopkins
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Dandan Sun
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jason A Justice
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|