1
|
Massoud EN, Hebert MK, Siddharthan A, Ferreira T, Neron A, Goodrow M, Ferreira T. Delivery vehicles for light-mediated drug delivery: microspheres, microbots, and nanoparticles: a review. J Drug Target 2025:1-13. [PMID: 39714878 DOI: 10.1080/1061186x.2024.2446636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infra-red (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release. Furthermore, this review discusses the significance of these drug delivery vehicles towards a spectrum of diverse applications spanning gene therapy, cancer treatment, diagnostics, and microsurgery, and the materials used in the fabrication of these vehicles encompassing polymers, ceramics, and lipids. Moreover, the review analyses the challenges and limitations of such drug delivery vehicles as areas of improvement to provide researchers with valuable insights for addressing current obstacles in the progression of drug delivery. Overall, this review underscores the potential of light-mediated drug delivery to revolutionise healthcare and personalised medicine, providing precise, targeted, and effective therapeutic interventions.
Collapse
Affiliation(s)
- Engi Nadia Massoud
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | | | | | - Tyler Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Abid Neron
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Mary Goodrow
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Tracie Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| |
Collapse
|
2
|
Qin X, Liu X, Liu S, Zhang C, Bai N, Li X, Wang W, Liu D, Yang Q, Yang R, Shen Y, Wei X. Movable surface acoustic wave tweezers: a versatile toolbox for micromanipulation. MICROSYSTEMS & NANOENGINEERING 2024; 10:155. [PMID: 39468048 PMCID: PMC11519341 DOI: 10.1038/s41378-024-00777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 10/30/2024]
Abstract
Surface acoustic wave (SAW) tweezers are a promising multifunctional micromanipulation method that controls microscale targets via patterned acoustic fields. Owing to their device structure and bonding process, most SAW tweezers have limitations in terms of controlling the position and motion of the acoustic traps, as they generate an acoustic field with a fixed region and adjust the manipulation effects via signal modulation. To address this challenge, we propose movable SAW tweezers with a multilayer structure, achieving dynamic control of their wave field and acoustic trap positions; we demonstrate their precise manipulation functions, such as translation, in-plane rotation, out-of-plane rotation, and cluster formation, on a wide spectrum of samples, including particles, bubbles, droplets, cells, and microorganisms. Our method not only improves the degree of freedom and working range of SAW tweezers but also allows for precise and selective manipulation of microtargets via microtools and localized wavefields. Owing to their flexibility, versatility, and biocompatibility, the movable SAW tweezers can be a practical platform for achieving arbitrary manipulation of microscale targets and have the potential to play significant roles in biomedical microrobotics.
Collapse
Affiliation(s)
- Xianming Qin
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Xianglian Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuo Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chuanyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Xue Li
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China.
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Xian, 710071, China.
| | - Dan Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiqi Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruiguo Yang
- Department of Biomedical Engineering, and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Yajing Shen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
3
|
Zhu R, Shen T, Gu Z, Shi Z, Dou L, Liu Y, Zhuang S, Gu F. Amphibious Hybrid Laser Tweezers for Fluid and Solid Domains. ACS NANO 2024; 18:23232-23242. [PMID: 39145514 DOI: 10.1021/acsnano.4c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Optical trapping is a potent tool for achieving precise and noninvasive manipulation of small objects in a vacuum and liquids. However, due to the substantial disparity between optical forces and interfacial adhesion, target objects should be suspended in fluid environments, rendering solid contact surfaces a restricted area for conventional optical tweezers. In this work, by relying on a single continuous wave (CW) laser, we demonstrate an optical manipulation system applicable for both fluid and solid domains, namely, amphibious hybrid laser tweezers. The key to our system lies in modulating the intensity of the CW laser with duration shorter than the dynamic thermal equilibrium time within objects, wherein strong thermal gradient forces with ∼6 orders of magnitude higher than the forces in optical tweezers are produced, enabling moving and trapping micro/nano-objects on solid interfaces. Thereby, CW laser-based optical tweezers and pulsed laser-based photothermal shock tweezers are seamlessly fused with the advantages of cost-effectiveness and simplicity. Our concept breaks the stereotype that CW lasers are limited to generating tiny forces and instead achieve ultrawide force generation spanning from femto-newtons (10-15 N) to (10-6 N). Our work expands the horizon of optical manipulation by seamlessly bridging its applications in fluid and solid environments and holds promise for inspiring optical manipulation techniques to perform more challenging tasks, which may unearth application scenarios in diverse fields such as fundamental physical research, nanofabrication, micro/nanorobotics, biomedicine, and cytology.
Collapse
Affiliation(s)
- Runlin Zhu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianci Shen
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhaoqi Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhangxing Shi
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Dou
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yifei Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songlin Zhuang
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fuxing Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
4
|
Zhao Y, Dong X, Li Y, Cui J, Shi Q, Huang HW, Huang Q, Wang H. Integrated Cross-Scale Manipulation and Modulable Encapsulation of Cell-Laden Hydrogel for Constructing Tissue-Mimicking Microstructures. RESEARCH (WASHINGTON, D.C.) 2024; 7:0414. [PMID: 39050820 PMCID: PMC11266663 DOI: 10.34133/research.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
Engineered microstructures that mimic in vivo tissues have demonstrated great potential for applications in regenerative medicine, drug screening, and cell behavior exploration. However, current methods for engineering microstructures that mimic the multi-extracellular matrix and multicellular features of natural tissues to realize tissue-mimicking microstructures in vitro remain insufficient. Here, we propose a versatile method for constructing tissue-mimicking heterogeneous microstructures by orderly integration of macroscopic hydrogel exchange, microscopic cell manipulation, and encapsulation modulation. First, various cell-laden hydrogel droplets are manipulated at the millimeter scale using electrowetting on dielectric to achieve efficient hydrogel exchange. Second, the cells are manipulated at the micrometer scale using dielectrophoresis to adjust their density and arrangement within the hydrogel droplets. Third, the photopolymerization of these hydrogel droplets is triggered in designated regions by dynamically modulating the shape and position of the excitation ultraviolet beam. Thus, heterogeneous microstructures with different extracellular matrix geometries and components were constructed, including specific cell densities and patterns. The resulting heterogeneous microstructure supported long-term culture of hepatocytes and fibroblasts with high cell viability (over 90%). Moreover, the density and distribution of the 2 cell types had significant effects on the cell proliferation and urea secretion. We propose that our method can lead to the construction of additional biomimetic heterogeneous microstructures with unprecedented potential for use in future tissue engineering applications.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Juan Cui
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education,
North University of China, Taiyuan 030051, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Hen-Wei Huang
- Laboratory for Translational Engineering,
Harvard Medical School, Cambridge, MA 02139, USA
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
5
|
Liu C, Huang Z, Huang S, Zhang Y, Li B, Nan F, Zheng Y. Robotic Nanomanipulation Based on Spatiotemporal Modulation of Optical Gradients. ACS NANO 2024; 18:19391-19400. [PMID: 38904270 DOI: 10.1021/acsnano.4c06596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Robotic nanomanipulation emerges as a cutting-edge technique pivotal for in situ nanofabrication, advanced sensing, and comprehensive material characterization. In this study, we develop an optical robotic platform (ORP) for the dynamic manipulation of colloidal nanoparticles (NPs). The ORP incorporates a human-in-the-loop control mechanism enhanced by real-time visual feedback. This feature enables the generation of custom optical landscapes with adjustable intensity and phase configurations. Based on the ORP, we achieve the parallel and reconfigurable manipulation of multiple NPs. Through the application of spatiotemporal phase gradient-reversals, our platform demonstrates capabilities in trapping, binding, rotating, and transporting NPs across custom trajectories. This presents a previously unidentified paradigm in the realm of in situ nanomanipulation. Additionally, the ORP facilities a "capture-and-print" assembly process, utilizing a strategic interplay of phase and intensity gradients. This process operates under a constant laser power setting, streamlining the assembly of NPs into any targeted configuration. With its precise positioning and manipulation capabilities, underpinned by the spatiotemporal modulation of optical gradients, the ORP will facilitate the development of colloid-based sensors and on-demand fabrication of nanodevices.
Collapse
Affiliation(s)
- Chenchen Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Zongpeng Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Siyuan Huang
- Walker Department of Mechanical Engineering, Texas Materials Institute, and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Fan Nan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Texas Materials Institute, and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Neagu AN, Jayaweera T, Weraduwage K, Darie CC. A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era. Int J Mol Sci 2024; 25:4981. [PMID: 38732200 PMCID: PMC11084175 DOI: 10.3390/ijms25094981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (K.W.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (K.W.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (K.W.)
| |
Collapse
|
7
|
Hong X, Xu B, Li G, Nan F, Wang X, Liang Q, Dong W, Dong W, Sun H, Zhang Y, Li C, Fu R, Wang Z, Shen G, Wang Y, Yao Y, Zhang S, Li J. Optoelectronically navigated nano-kirigami microrotors. SCIENCE ADVANCES 2024; 10:eadn7582. [PMID: 38657056 PMCID: PMC11042735 DOI: 10.1126/sciadv.adn7582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.
Collapse
Affiliation(s)
- Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gong Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chongrui Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Xu H, Wu S, Liu Y, Wang X, Efremov AK, Wang L, McCaskill JS, Medina-Sánchez M, Schmidt OG. 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators. NATURE NANOTECHNOLOGY 2024; 19:494-503. [PMID: 38172430 PMCID: PMC11026159 DOI: 10.1038/s41565-023-01567-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Microscale organisms and specialized motile cells use protein-based spring-like responsive structures to sense, grasp and move. Rendering this biomechanical transduction functionality in an artificial micromachine for applications in single-cell manipulations is challenging due to the need for a bio-applicable nanoscale spring system with a large and programmable strain response to piconewton-scale forces. Here we present three-dimensional nanofabrication and monolithic integration, based on an acrylic elastomer photoresist, of a magnetic spring system with quantifiable compliance sensitive to 0.5 pN, constructed with customized elasticity and magnetization distributions at the nanoscale. We demonstrate the effective design programmability of these 'picospring' ensembles as energy transduction mechanisms for the integrated construction of customized soft micromachines, with onboard sensing and actuation functions at the single-cell scale for microrobotic grasping and locomotion. The integration of active soft springs into three-dimensional nanofabrication offers an avenue to create biocompatible soft microrobots for non-disruptive interactions with biological entities.
Collapse
Affiliation(s)
- Haifeng Xu
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany.
| | - Song Wu
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany
| | - Yuan Liu
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | | | - Lei Wang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany
| | - Mariana Medina-Sánchez
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany.
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, Dresden, Germany.
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany.
| |
Collapse
|
9
|
Lin S, Feng D, Han X, Li L, Lin Y, Gao H. Microfluidic platform for omics analysis on single cells with diverse morphology and size: A review. Anal Chim Acta 2024; 1294:342217. [PMID: 38336406 DOI: 10.1016/j.aca.2024.342217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microfluidic techniques have emerged as powerful tools in single-cell research, facilitating the exploration of omics information from individual cells. Cell morphology is crucial for gene expression and physiological processes. However, there is currently a lack of integrated analysis of morphology and single-cell omics information. A critical challenge remains: what platform technologies are the best option to decode omics data of cells that are complex in morphology and size? RESULTS This review highlights achievements in microfluidic-based single-cell omics and isolation of cells based on morphology, along with other cell sorting methods based on physical characteristics. Various microfluidic platforms for single-cell isolation are systematically presented, showcasing their diversity and adaptability. The discussion focuses on microfluidic devices tailored to the distinct single-cell isolation requirements in plants and animals, emphasizing the significance of considering cell morphology and cell size in optimizing single-cell omics strategies. Simultaneously, it explores the application of microfluidic single-cell sorting technologies to single-cell sequencing, aiming to effectively integrate information about cell shape and size. SIGNIFICANCE AND NOVELTY The novelty lies in presenting a comprehensive overview of recent accomplishments in microfluidic-based single-cell omics, emphasizing the integration of different microfluidic platforms and their implications for cell morphology-based isolation. By underscoring the pivotal role of the specialized morphology of different cells in single-cell research, this review provides robust support for delving deeper into the exploration of single-cell omics data.
Collapse
Affiliation(s)
- Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Ling Li
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, 350004, China; Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, China.
| | - Haibing Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
10
|
Ali A, Kim H, Torati SR, Kang Y, Reddy V, Kim K, Yoon J, Lim B, Kim C. Magnetic Lateral Ladder for Unidirectional Transport of Microrobots: Design Principles and Potential Applications of Cells-on-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305528. [PMID: 37845030 DOI: 10.1002/smll.202305528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Functionalized microrobots, which are directionally manipulated in a controlled and precise manner for specific tasks, face challenges. However, magnetic field-based controls constrain all microrobots to move in a coordinated manner, limiting their functions and independent behaviors. This article presents a design principle for achieving unidirectional microrobot transport using an asymmetric magnetic texture in the shape of a lateral ladder, which the authors call the "railway track." An asymmetric magnetic energy distribution along the axis allows for the continuous movement of microrobots in a fixed direction regardless of the direction of the magnetic field rotation. The authors demonstrated precise control and simple utilization of this method. Specifically, by placing magnetic textures with different directionalities, an integrated cell/particle collector can collect microrobots distributed in a large area and move them along a complex trajectory to a predetermined location. The authors can leverage the versatile capabilities offered by this texture concept, including hierarchical isolation, switchable collection, programmable pairing, selective drug-response test, and local fluid mixing for target objects. The results demonstrate the importance of microrobot directionality in achieving complex individual control. This novel concept represents significant advancement over conventional magnetic field-based control technology and paves the way for further research in biofunctionalized microrobotics.
Collapse
Affiliation(s)
- Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Nanotechnology Research Center, SRKR Engineering College, Bhimavaram, Andhra Pradesh, 534204, India
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
11
|
Dillinger C, Knipper J, Nama N, Ahmed D. Steerable acoustically powered starfish-inspired microrobot. NANOSCALE 2024; 16:1125-1134. [PMID: 37946510 PMCID: PMC10795801 DOI: 10.1039/d3nr03516f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Soft polymeric microrobots that can be loaded with nanocargoes and driven via external field stimuli can provide innovative solutions in various fields, including precise microscale assembly, targeted therapeutics, microsurgery, and the capture and degradation of unwanted wastewater fragments. However, in aquatic environments, it remains challenging to operate with microrobotic devices due to the predominant viscous resistances and the robots' limited actuation and sensing capabilities attributed to their miniaturization. The miniature size prevents the incorporation of onboard batteries that can provide sufficient power for propulsion and navigation, necessitating a wireless power supply. Current research examines untethered microrobot manipulation using external magnetic, electric, thermodynamic, or acoustic field-guided technologies: all strategies capable of wireless energy transmission towards sensitive and hard-to-reach locations. Nonetheless, developing a manipulation strategy that harnesses simple-to-induce strong propulsive forces in a stable manner over extended periods of time remains a significant endeavor. This study presents the fabrication and manipulation of a microrobot consisting of a magnetized soft polymeric composite material that enables a combination of stable acoustic propulsion through starfish-inspired artificial cilia and magnetic field-guided navigation. The acousto-magnetic manipulation strategy leverages the unique benefits of each applied field in the viscous-dominated microscale, namely precise magnetic orientation and strong acoustic thrust.
Collapse
Affiliation(s)
- Cornel Dillinger
- Acoustic Robotics and Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| | - Justin Knipper
- Acoustic Robotics and Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| | - Nitesh Nama
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Daniel Ahmed
- Acoustic Robotics and Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
12
|
Chen B, Sun H, Zhang J, Xu J, Song Z, Zhan G, Bai X, Feng L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304607. [PMID: 37653591 DOI: 10.1002/smll.202304607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.
Collapse
Affiliation(s)
- Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zeyu Song
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guangdong Zhan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Li J, Zhou H, Liu C, Zhang S, Du R, Deng Y, Zou X. Biomembrane‐inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMicro/nanorobots are promising for a wide range of biomedical applications (such as targeted tumor, thrombus, and infection therapies in hard‐to‐reach body sites) because of their tiny size and high maneuverability through the actuation of external fields (e.g., magnetic field, light, ultrasound, electric field, and/or heat). However, fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes. To address this issue, researchers have attempted to develop various cytomembrane‐camouflaged micro/nanorobots by two means: (1) direct coating of micro/nanorobots with cytomembranes derived from living cells and (2) the swallowing of micro/nanorobots by living immunocytes via phagocytosis. The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis, but also endows them with new characteristics or functionalities, such as prolonging propulsion in biofluids, targeting diseased areas, or neutralizing bacterial toxins. In this review, we comprehensively summarize the recent advances and developments of cytomembrane‐camouflaged medical micro/nanorobots. We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials, and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots. We aim to bridge the gap between cytomembrane‐cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane‐camouflaged micro/nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology Beijing Institute of Technology Beijing China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Chun Liu
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shuailong Zhang
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Ran Du
- School of Materials Science & Engineering Key Laboratory of High Energy Density Materials of the Ministry of Education Beijing Institute of Technology Beijing China
| | - Yulin Deng
- School of Life Science Beijing Institute of Technology Beijing China
| | - Xuenong Zou
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
14
|
Liang X, Chen Z, Deng Y, Liu D, Liu X, Huang Q, Arai T. Field-Controlled Microrobots Fabricated by Photopolymerization. CYBORG AND BIONIC SYSTEMS 2023; 4:0009. [PMID: 37287461 PMCID: PMC10243896 DOI: 10.34133/cbsystems.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2024] Open
Abstract
Field-controlled microrobots have attracted extensive research in the biological and medical fields due to the prominent characteristics including high flexibility, small size, strong controllability, remote manipulation, and minimal damage to living organisms. However, the fabrication of these field-controlled microrobots with complex and high-precision 2- or 3-dimensional structures remains challenging. The photopolymerization technology is often chosen to fabricate field-controlled microrobots due to its fast-printing velocity, high accuracy, and high surface quality. This review categorizes the photopolymerization technologies utilized in the fabrication of field-controlled microrobots into stereolithography, digital light processing, and 2-photon polymerization. Furthermore, the photopolymerized microrobots actuated by different field forces and their functions are introduced. Finally, we conclude the future development and potential applications of photopolymerization for the fabrication of field-controlled microrobots.
Collapse
Affiliation(s)
- Xiyue Liang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhuo Chen
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yan Deng
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering,
The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
15
|
Das SS, Yossifon G. Optoelectronic Trajectory Reconfiguration and Directed Self-Assembly of Self-Propelling Electrically Powered Active Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206183. [PMID: 37069767 PMCID: PMC10238198 DOI: 10.1002/advs.202206183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/25/2023] [Indexed: 06/04/2023]
Abstract
Self-propelling active particles are an exciting and interdisciplinary emerging area of research with projected biomedical and environmental applications. Due to their autonomous motion, control over these active particles that are free to travel along individual trajectories, is challenging. This work uses optically patterned electrodes on a photoconductive substrate using a digital micromirror device (DMD) to dynamically control the region of movement of self-propelling particles (i.e., metallo-dielectric Janus particles (JPs)). This extends previous studies where only a passive micromotor is optoelectronically manipulated with a translocating optical pattern that illuminates the particle. In contrast, the current system uses the optically patterned electrode merely to define the region within which the JPs moved autonomously. Interestingly, the JPs avoid crossing the optical region's edge, which enables constraint of the area of motion and to dynamically shape the JP trajectory. Using the DMD system to simultaneously manipulate several JPs enables to self-assemble the JPs into stable active structures (JPs ring) with precise control over the number of participating JPs and passive particles. Since the optoelectronic system is amenable to closed-loop operation using real-time image analysis, it enables exploitation of these active particles as active microrobots that can be operated in a programmable and parallelized manner.
Collapse
Affiliation(s)
- Sankha Shuvra Das
- School of Mechanical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Gilad Yossifon
- School of Mechanical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Biomedical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
| |
Collapse
|
16
|
Adam G, Ulliac G, Clevy C, Cappelleri DJ. 3D printed vision-based micro-force sensors for microrobotic applications. JOURNAL OF MICRO-BIO ROBOTICS 2023. [DOI: 10.1007/s12213-023-00152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Chen X, Chen X, Elsayed M, Edwards H, Liu J, Peng Y, Zhang HP, Zhang S, Wang W, Wheeler AR. Steering Micromotors via Reprogrammable Optoelectronic Paths. ACS NANO 2023; 17:5894-5904. [PMID: 36912818 DOI: 10.1021/acsnano.2c12811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Steering micromotors is important for using them in practical applications and as model systems for active matter. This functionality often requires magnetic materials in the micromotor, taxis behavior of the micromotor, or the use of specifically designed physical boundaries. Here, we develop an optoelectronic strategy that steers micromotors with programmable light patterns. In this strategy, light illumination turns hydrogenated amorphous silicon conductive, generating local electric field maxima at the edge of the light pattern that attracts micromotors via positive dielectrophoresis. As an example, metallo-dielectric Janus microspheres that self-propelled under alternating current electric fields were steered by static light patterns along customized paths and through complex microstructures. Their long-term directionality was also rectified by ratchet-shaped light patterns. Furthermore, dynamic light patterns that varied in space and time enabled more advanced motion controls such as multiple motion modes, parallel control of multiple micromotors, and the collection and transport of motor swarms. This optoelectronic steering strategy is highly versatile and compatible with a variety of micromotors, and thus it possesses the potential for their programmable control in complex environments.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Xiaowen Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Harrison Edwards
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H P Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| |
Collapse
|
18
|
Hou Y, Wang H, Fu R, Wang X, Yu J, Zhang S, Huang Q, Sun Y, Fukuda T. A review on microrobots driven by optical and magnetic fields. LAB ON A CHIP 2023; 23:848-868. [PMID: 36629004 DOI: 10.1039/d2lc00573e] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to their small sizes, microrobots are advantageous for accessing hard-to-reach spaces for delivery and measurement. However, their small sizes also bring challenges in on-board powering, thus usually requiring actuation by external energy. Microrobots actuated by external energy have been applied to the fields of physics, biology, medical science, and engineering. Among these actuation sources, light and magnetic fields show advantages in high precision and high biocompatibility. This paper reviews the recent advances in the design, actuation, and applications of microrobots driven by light and magnetic fields. For light-driven microrobots, we summarized the uses of optical tweezers, optoelectronic tweezers, and heat-mediated optical manipulation techniques. For magnetically driven microrobots, we summarized the uses of torque-driven microrobots, force-driven microrobots, and shape-deformable microrobots. Then, we compared the two types of field-driven microrobots and reviewed their advantages and disadvantages. The paper concludes with an outlook for the joint use of optical and magnetic field actuation in microrobots.
Collapse
Affiliation(s)
- Yaozhen Hou
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Huaping Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xian Wang
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
19
|
Wu Y, Yakov S, Fu A, Yossifon G. A Magnetically and Electrically Powered Hybrid Micromotor in Conductive Solutions: Synergistic Propulsion Effects and Label-Free Cargo Transport and Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204931. [PMID: 36507618 PMCID: PMC10015886 DOI: 10.1002/advs.202204931] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Indexed: 06/18/2023]
Abstract
Electrically powered micro- and nanomotors are promising tools for in vitro single-cell analysis. In particular, single cells can be trapped, transported, and electroporated by a Janus particle (JP) using an externally applied electric field. However, while dielectrophoretic (DEP)-based cargo manipulation can be achieved at high-solution conductivity, electrical propulsion of these micromotors becomes ineffective at solution conductivities exceeding ≈0.3 mS cm-1 . Here, JP cargo manipulation and transport capabilities to conductive near-physiological (<6 mS cm-1 ) solutions are extended successfully by combining magnetic field-based micromotor propulsion and navigation with DEP-based manipulation of various synthetic and biological cargos. Combination of a rotating magnetic field and electric field results in enhanced micromotor mobility and steering control through tuning of the electric field frequency. In addition, the micromotor's ability of identifying apoptotic cell among viable and necrotic cells based on their dielectrophoretic difference is demonstrated, thus, enabling to analyze the apoptotic status in the single-cell samples for drug discovery, cell therapeutics, and immunotherapy. The ability to trap and transport live cells towards regions containing doxorubicin-loaded liposomes is also demonstrated. This hybrid micromotor approach for label-free trapping, transporting, and sensing of selected cells within conductive solutions opens new opportunities in drug delivery and single-cell analysis, where close-to-physiological media conditions are necessary.
Collapse
Affiliation(s)
- Yue Wu
- School of Mechanical EngineeringUniversity of Tel‐AvivTel‐Aviv69978Israel
| | - Sivan Yakov
- Faculty of Mechanical EngineeringMicro‐ and Nanofluidics LaboratoryTechnion—Israel Institute of TechnologyHaifa32000Israel
| | - Afu Fu
- Technion Integrated Cancer CenterThe Rappaport Faculty of Medicine and Research InstituteTechnion—Israel Institute of TechnologyHaifa3109602Israel
| | - Gilad Yossifon
- School of Mechanical EngineeringUniversity of Tel‐AvivTel‐Aviv69978Israel
- Faculty of Mechanical EngineeringMicro‐ and Nanofluidics LaboratoryTechnion—Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
20
|
Abstract
Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility. Microbots have attracted attention due to an ability to reach places and perform tasks which are not possible with conventional techniques in a wide range of applications. Here, the authors review the recent work in the field on the fabrication, application and actuation of 3D printed microbots offering a view of the direction of future microbot research.
Collapse
|
21
|
Yang J, Gu Y, Zhang C, Zhang Y, Liang W, Hao L, Zhao Y, Liu L, Wang W. Label-free purification and characterization of optogenetically engineered cells using optically-induced dielectrophoresis. LAB ON A CHIP 2022; 22:3687-3698. [PMID: 35903981 DOI: 10.1039/d2lc00512c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optogenetically engineered cell population obtained by heterogeneous gene expression plays a vital role in life science, medicine, and biohybrid robotics, and purification and characterization are essential to enhance its application performance. However, the existing cell purification methods suffer from complex sample preparation or inevitable damage and pollution. The efficient and nondestructive label-free purification and characterization of the optogenetically engineered cells, HEK293-ChR2 cells, is provided here using an optically-induced dielectrophoresis (ODEP)-based approach. The distinctive crossover frequencies of the engineered cells and the unmodified cells enable effective separation due to the opposite DEP forces on them. The ODEP-based approach can greatly improve the purity of the separated cell population and especially, the ratio of the engineered cells in the separated cell population can be enhanced by 275% at a low transfection rate. The size and the membrane capacitance of the separated cell population decreases and increases, respectively, as the ratio of the engineered cells grows in the cell population, indicating that successful expression of ChR2 in a single HEK293 cell makes its size and membrane capacitance smaller and larger, respectively. The results of biohybrid imaging with the optogenetically engineered cells demonstrated that cell purification can improve the imaging quality. This work proves that the separation and purification of engineered cells are of great significance for their application in practice.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Gu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Yuzhao Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Lina Hao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Ying Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| |
Collapse
|
22
|
Kim H, Kang Y, Lim B, Kim K, Yoon J, Ali A, Torati SR, Kim C. Tailoring matter orbitals mediated using a nanoscale topographic interface for versatile colloidal current devices. MATERIALS HORIZONS 2022; 9:2353-2363. [PMID: 35792087 DOI: 10.1039/d2mh00523a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional micro-particle manipulation technologies have been used for various biomedical applications using dynamics on a plane without vertical movement. In this case, irregular topographic structures on surfaces could be a factor that causes the failure of the intended control. Here, we demonstrated a novel colloidal particle manipulation mediated by the topographic effect generated by the "micro hill" and "surface gradient" around a micro-magnet. The magnetic landscape, matter orbital, created by periodically arranged circular micro-magnets, induces a symmetric orbit of magnetic particle flow under a rotating magnetic field. The topographic effect can break this symmetry of the energy distribution by controlling the distance between the source of the driving force and target particles by several nanometers on the surface morphology. The origin symmetric orbit of colloidal flow can be distorted by modifying the symmetry in the energy landscape at the switching point without changing the driving force. The enhancement of the magnetic effect of the micro-magnet array can lead to the recovery of the symmetry of the orbit. Also, this effect on the surfaces of on-chip-based devices configured by symmetry control was demonstrated for selective manipulation, trapping, recovery, and altering the direction using a time-dependent magnetic field. Hence, the developed technique could be used in various precise lab-on-a-chip applications, including where the topographic effect is required as an additional variable without affecting the existing control method.
Collapse
Affiliation(s)
- Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
23
|
Wang Y, Nitta T, Hiratsuka Y, Morishima K. In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci Robot 2022; 7:eaba8212. [PMID: 36001686 DOI: 10.1126/scirobotics.aba8212] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microrobots have been developed for applications in the submillimeter domain such as the manipulation of micro-objects and microsurgery. Rapid progress has been achieved in developing miniaturized components for microrobotic systems, resulting in a variety of functional microactuators and soft components for creating untethered microrobots. Nevertheless, the integration of microcomponents, especially the assembly of actuators and mechanical components, is still time-consuming and has inherent restrictions, thus limiting efficient fabrications of microrobots and their potential applications. Here, we propose a method for fabricating microrobots in situ inspired by the construction of microsystems in living organisms. In a microfluidic chip, hydrogel mechanical components and artificial muscle actuators are successively photopatterned from hydrogel prepolymer and biomolecular motors, respectively, and integrated in situ into functional microrobots. The proposed method allows the fast fabrication of microrobots through simple operations and affordable materials while providing versatile functions through the precise spatiotemporal control of in situ integration and reconfiguration of artificial muscles. To validate the method, we fabricated microrobots to elicit different motions and on-chip robots with unique characteristics for microfluidic applications. This study may establish a new paradigm for microrobot integration and lead to the production of unique biohybrid microrobots with various advantages.
Collapse
Affiliation(s)
- Yingzhe Wang
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahiro Nitta
- Applied Physics Course, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Yuichi Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Wu Y, Boymelgreen A, Yossifon G. Micromotor-mediated label-free cargo manipulation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Chen X, Xu Y, Zhou C, Lou K, Peng Y, Zhang HP, Wang W. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. SCIENCE ADVANCES 2022; 8:eabn9130. [PMID: 35613263 PMCID: PMC9132452 DOI: 10.1126/sciadv.abn9130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Traveling waves are common in biological and synthetic systems, including the recent discovery that silver (Ag) colloids form traveling motion waves in H2O2 and under light. Here, we show that this colloidal motion wave is a heterogeneous excitable system. The Ag colloids generate traveling chemical waves via reaction-diffusion, and either self-propel through self-diffusiophoresis ("ballistic waves") or are advected by diffusio-osmotic flows from gradients of neutral molecules ("swarming waves"). Key results include the experimental observation of traveling waves of OH- with pH-sensitive fluorescent dyes and a Rogers-McCulloch model that qualitatively and quantitatively reproduces the key features of colloidal waves. These results are a step forward in elucidating the Ag-H2O2-light oscillatory system at individual and collective levels. In addition, they pave the way for using colloidal waves either as a platform for studying nonlinear phenomena, or as a tool for colloidal transport and for information transmission in microrobot ensembles.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yankai Xu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Zhou
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Kai Lou
- Guangzhou Kayja-Optics Technology Co. Ltd., Guangzhou 511458, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H. P. Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (W.W.); (H.P.Z.)
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Corresponding author. (W.W.); (H.P.Z.)
| |
Collapse
|
26
|
Abstract
Abstract
Untethered small-scale robots can accomplish tasks which are not feasible by conventional macro robots. In the current research, we have designed and fabricated a miniature magnetic robot actuated by an external magnetic field. The proposed robot has two coaxial wheels and one magnetic dipole which is capable of rolling and moving on the surface by variation in the direction of magnetic field. To generate the desired magnetic field, a Helmholtz electromagnetic coil is manufactured. To steer the robot to the desired position, at first the robot dynamics is investigated, and subsequently a controller based on a neuro-fuzzy network has been designed. Finally, the proposed controller is implemented experimentally and the performance of the control system is demonstrated.
Collapse
|
27
|
Abstract
Many light-based technologies have been developed to manipulate micro/nanoscale objects such as colloidal particles and biological cells for basic research and practical applications. While most approaches such as optical tweezers are best suited for manipulation of objects in fluidic environments, optical manipulation on solid substrates has recently gained research interest for its advantages in constructing, reconfiguring, or powering solid-state devices consisting of colloidal particles as building blocks. Here, we review recent progress in optical technologies that enable versatile manipulation and assembly of micro/nanoscale objects on solid substrates. Diverse technologies based on distinct physical mechanisms, including photophoresis, photochemical isomerization, optothermal phase transition, optothermally induced surface acoustic waves, and optothermal expansion, are discussed. We conclude this review with our perspectives on the opportunities, challenges, and future directions in optical manipulation and assembly on solid substrates.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ali Alfares
- Paul M. Rady Department of Mechanical Engineering, The University of Colorado at Boulder, Boulder, CO 80303, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
28
|
Dai Y, Jia L, Wang L, Sun H, Ji Y, Wang C, Song L, Liang S, Chen D, Feng Y, Bai X, Zhang D, Arai F, Chen H, Feng L. Magnetically Actuated Cell-Robot System: Precise Control, Manipulation, and Multimode Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105414. [PMID: 35233944 DOI: 10.1002/smll.202105414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Border-nearing microrobots with self-propelling and navigating capabilities have promising applications in micromanipulation and bioengineering, because they can stimulate the surrounding fluid flow for object transportation. However, ensuring the biosafety of microrobots is a concurrent challenge in bioengineering applications. Here, macrophage template-based microrobots (cell robots) that can be controlled individually or in chain-like swarms are proposed, which can transport various objects. The cell robots are constructed using the phagocytic ability of macrophages to load nanomagnetic particles while maintaining their viability. The robots exhibit high position control accuracy and generate a flow field that can be used to transport microspheres and sperm when exposed to an external magnetic field near a wall. The cell robots can also form chain-like swarms to transport a large object (more than 100 times the volume). This new insight into the manipulation of macrophage-based cell robots provides a new concept by converting other biological cells into microrobots for micromanipulation in biomedical applications.
Collapse
Affiliation(s)
- Yuguo Dai
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Lina Jia
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Yiming Ji
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Chutian Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Li Song
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Shuzhang Liang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Dixiao Chen
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Yanmin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Fumihito Arai
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Huawei Chen
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
29
|
Punyabrahma P, Bathe R, Jayanth GR. Micro-ring based manipulation of magnetized particles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:045003. [PMID: 35489946 DOI: 10.1063/5.0072194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The micromanipulation of untethered magnetic particles facilitates actuation, assembly, and characterization of samples for micro- and nanotechnology applications. Conventionally, macro-scale electromagnets combined with visual servo control are employed to manipulate untethered particles. Here, we propose to employ a micro-ring actuator and a strategy based on parametric excitation for manipulation of magnetized particles against a surface in a liquid medium, which does not require visual feedback. Experimentally, the system has been employed to smoothly manipulate magnetic particles of diameter in the range 30-50 µm to move along predefined trajectories. Subsequently, the particles have been demonstrated to be manipulated into a conventionally inaccessible region beneath the re-entrant walls of a micromachined silicon chip.
Collapse
Affiliation(s)
- P Punyabrahma
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - R Bathe
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India
| | - G R Jayanth
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
30
|
Punyabrahma P, Jayanth GR, Mohanty AK. Trapping and 3-D Manipulation of Magnetic Microparticles Using Parametric Excitation. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2021.3138164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Liang S, Sun J, Zhang C, Zhu Z, Dai Y, Gan C, Cai J, Chen H, Feng L. Parallel Manipulation and Flexible Assembly of Micro-Spiral via Optoelectronic Tweezers. Front Bioeng Biotechnol 2022; 10:868821. [PMID: 35387303 PMCID: PMC8977588 DOI: 10.3389/fbioe.2022.868821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Micro-spiral has a wide range of applications in smart materials, such as drug delivery, deformable materials, and micro-scale electronic devices by utilizing the manipulation of electric fields, magnetic fields, and flow fields. However, it is incredibly challenging to achieve a massively parallel manipulation of the micro-spiral to form a particular microstructure in these conventional methods. Here, a simple method is reported for assembling micro-spirals into various microstructures via optoelectronic tweezers (OETs), which can accurately manipulate the micro-/bio-particles by projecting light patterns. The manipulation force of micro-spiral is analyzed and simulated first by the finite element simulation. When the micro-spiral lies at the bottom of the microfluidic chip, it can be translated or rotated toward the target position by applying control forces simultaneously at multiple locations on the long axis of the micro-spiral. Through the OET manipulation, the length of the micro-spiral chain can reach 806.45 μm. Moreover, the different parallel manipulation modes are achieved by utilizing multiple light spots. The results show that the micro-spirulina can be manipulated by a real-time local light pattern and be flexibly assembled into design microstructures by OETs, such as a T-shape circuit, link lever, and micro-coil pairs of devices. This assembly method using OETs has promising potential in fabricating innovative materials and microdevices for practical engineering applications.
Collapse
Affiliation(s)
- Shuzhang Liang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jiayu Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Chaonan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Zixi Zhu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yuguo Dai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Chunyuan Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
32
|
Ahmad B, Gauthier M, Laurent GJ, Bolopion A. Mobile Microrobots for In Vitro Biomedical Applications: A Survey. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3085245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Du M, Liu F, Luan X, Li G. Isolation method of Saccharomyces cerevisiae from red blood cells based on the optically induced dielectrophoresis technique for the rapid detection of fungal infections. BIOMEDICAL OPTICS EXPRESS 2022; 13:559-570. [PMID: 35284153 PMCID: PMC8884199 DOI: 10.1364/boe.448729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Saccharomyces cerevisiae (S. cerevisiae) has been classically used to treat diarrhea and diarrhea-related diseases. However, in the past two decades, fungal infections caused by S. cerevisiae have been increasing among immunocompromised patients, and it takes too long to isolate S. cerevisiae from blood to diagnose it in time. In this paper, a new method for the isolation and selection of S. cerevisiae from red blood cells (RBC) is proposed by designing a microfluidic chip with an optically-induced dielectrophoresis (ODEP) system. It was verified by theory and experiments that the magnitude and direction of the dielectrophoresis force applied on RBCs and S. cerevisiae are different, which determine that the S. cerevisiae can be isolated from RBCs by the ODEP system. By designing the specific light images and the dynamic separation mode, the optimal operating conditions were experimentally achieved for acquiring higher purity of S. cerevisiae. The purity ranges were up to 95.9%-97.3%. This work demonstrates a promising tool for efficient and effective purification of S. cerevisiae from RBCs and provides a novel method of S. cerevisiae isolation for the timely diagnosis of fungal infections.
Collapse
Affiliation(s)
- Mingao Du
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Luan
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | - Gongxin Li
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
34
|
Mennillo L, Bendkowski C, Elsayed M, Edwards H, Zhang S, Pawar V, Wheeler AR, Stoyanov D, Shaw M. Adaptive Autonomous Navigation of Multiple Optoelectronic Microrobots in Dynamic Environments. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3194308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | | | | | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom
| | | |
Collapse
|
35
|
Zhang S, Xu B, Elsayed M, Nan F, Liang W, Valley JK, Liu L, Huang Q, Wu MC, Wheeler AR. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation. Chem Soc Rev 2022; 51:9203-9242. [DOI: 10.1039/d2cs00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the fundamentals, recent progress and state-of-the-art applications of optoelectronic tweezers technology, and demonstrates that optoelectronic tweezers technology is a versatile and powerful toolbox for nano-/micro-manipulation.
Collapse
Affiliation(s)
- Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Bingrui Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Justin K. Valley
- Berkeley Lights, Inc, 5858 Horton Street #320, Emeryville, CA 94608, USA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Ming C. Wu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Aaron R. Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
36
|
Liang S, Gan C, Dai Y, Zhang C, Bai X, Zhang S, Wheeler AR, Chen H, Feng L. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers. LAB ON A CHIP 2021; 21:4379-4389. [PMID: 34596652 DOI: 10.1039/d1lc00610j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optoelectronic tweezers (OET) is a noncontact micromanipulation technology for controlling microparticles and cells. In the OET, it is necessary to configure a medium with different electrical properties to manipulate different particles and to avoid the interaction between two particles. Here, a new method exploiting the interaction between different dielectric properties of micro-objects to achieve the trapping, transport, and release of particles in the OET system was proposed. Besides, the effect of interaction between the micro-objects with positive and negative dielectric properties was simulated by the arbitrary Lagrangian-Eulerian (ALE) method. In addition, compared with conventional OET systems relying on fabrication processes involving the assembly of photoelectric materials, a contactless OET platform with an iPad-based wireless-control interface was established to achieve convenient control. Finally, this platform was used in the interaction of swimming microorganisms (positive-dielectric properties) with microparticles (negative-dielectric properties) at different scales. It showed that one particle could interact with 5 particles simultaneously, indicating that the interaction can be applied to enhance the high-throughput transportation capacities of the OET system and assemble some special microstructures. Owing to the low power, microorganisms were free from adverse influence during the experiment. In the future, the interaction of particles in a simple OET platform is a promising alternative in micro-nano manipulation for controlling drug release from uncontaminated cells in targeted therapy research.
Collapse
Affiliation(s)
- Shuzhang Liang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China.
| | - Chunyuan Gan
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China.
| | - Yuguo Dai
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China.
| | - Chaonan Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China.
| | - Xue Bai
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China.
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada
| | - Huawei Chen
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
37
|
Abstract
Machines enabled the Industrial Revolution and are central to modern technological progress: A machine's parts transmit forces, motion, and energy to one another in a predetermined manner. Today's engineering frontier, building artificial micromachines that emulate the biological machinery of living organisms, requires faithful assembly and energy consumption at the microscale. Here, we demonstrate the programmable assembly of active particles into autonomous metamachines using optical templates. Metamachines, or machines made of machines, are stable, mobile and autonomous architectures, whose dynamics stems from the geometry. We use the interplay between anisotropic force generation of the active colloids with the control of their orientation by local geometry. This allows autonomous reprogramming of active particles of the metamachines to achieve multiple functions. It permits the modular assembly of metamachines by fusion, reconfiguration of metamachines and, we anticipate, a shift in focus of self-assembly towards active matter and reprogrammable materials.
Collapse
|
38
|
Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat Commun 2021; 12:5349. [PMID: 34504081 PMCID: PMC8429428 DOI: 10.1038/s41467-021-25582-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
There is great interest in the development of micromotors which can convert energy to motion in sub-millimeter dimensions. Micromachines take the micromotor concept a step further, comprising complex systems in which multiple components work in concert to effectively realize complex mechanical tasks. Here we introduce light-driven micromotors and micromachines that rely on optoelectronic tweezers (OET). Using a circular micro-gear as a unit component, we demonstrate a range of new functionalities, including a touchless micro-feed-roller that allows the programming of precise three-dimensional particle trajectories, multi-component micro-gear trains that serve as torque- or velocity-amplifiers, and micro-rack-and-pinion systems that serve as microfluidic valves. These sophisticated systems suggest great potential for complex micromachines in the future, for application in microrobotics, micromanipulation, microfluidics, and beyond. Light-driven micromotors can convert energy to motion in sub-millimeter dimensions. Here, the authors extend this concept and introduce reconfigurable micromachines with multiple components, driven by optoelectronic tweezers, and demonstrate new functionalities.
Collapse
|
39
|
Zhang S, Li W, Elsayed M, Peng J, Chen Y, Zhang Y, Zhang Y, Shayegannia M, Dou W, Wang T, Sun Y, Kherani NP, Neale SL, Wheeler AR. Integrated Assembly and Photopreservation of Topographical Micropatterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103702. [PMID: 34390185 DOI: 10.1002/smll.202103702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Micromanipulation techniques that are capable of assembling nano/micromaterials into usable structures such as topographical micropatterns (TMPs) have proliferated rapidly in recent years, holding great promise in building artificial electronic and photonic microstructures. Here, a method is reported for forming TMPs based on optoelectronic tweezers in either "bottom-up" or "top-down" modes, combined with in situ photopolymerization to form permanent structures. This work demonstrates that the assembled/cured TMPs can be harvested and transferred to alternate substrates, and illustrates that how permanent conductive traces and capacitive circuits can be formed, paving the way toward applications in microelectronics. The integrated, optical assembly/preservation method described here is accessible, versatile, and applicable for a wide range of materials and structures, suggesting utility for myriad microassembly and microfabrication applications in the future.
Collapse
Affiliation(s)
- Shuailong Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Weizhen Li
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Mohamed Elsayed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Jiaxi Peng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Yujie Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanfeng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yibo Zhang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Moein Shayegannia
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Nazir P Kherani
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Steven L Neale
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Aaron R Wheeler
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
40
|
Towards a Comprehensive and Robust Micromanipulation System with Force-Sensing and VR Capabilities. MICROMACHINES 2021; 12:mi12070784. [PMID: 34209417 PMCID: PMC8307479 DOI: 10.3390/mi12070784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022]
Abstract
In this modern world, with the increase of complexity of many technologies, especially in the micro and nanoscale, the field of robotic manipulation has tremendously grown. Microrobots and other complex microscale systems are often to laborious to fabricate using standard microfabrication techniques, therefore there is a trend towards fabricating them in parts then assembling them together, mainly using micromanipulation tools. Here, a comprehensive and robust micromanipulation platform is presented, in which four micromanipulators can be used simultaneously to perform complex tasks, providing the user with an intuitive environment. The system utilizes a vision-based force sensor to aid with manipulation tasks and it provides a safe environment for biomanipulation. Lastly, virtual reality (VR) was incorporated into the system, allowing the user to control the probes from a more intuitive standpoint and providing an immersive platform for the future of micromanipulation.
Collapse
|
41
|
Li Z, Yang X, Zhang Q, Yang W, Zhang H, Liu L, Liang W. Non-invasive acquisition of mechanical properties of cells via passive microfluidic mechanisms: A review. BIOMICROFLUIDICS 2021; 15:031501. [PMID: 34178202 PMCID: PMC8205512 DOI: 10.1063/5.0052185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
The demand to understand the mechanical properties of cells from biomedical, bioengineering, and clinical diagnostic fields has given rise to a variety of research studies. In this context, how to use lab-on-a-chip devices to achieve accurate, high-throughput, and non-invasive acquisition of the mechanical properties of cells has become the focus of many studies. Accordingly, we present a comprehensive review of the development of the measurement of mechanical properties of cells using passive microfluidic mechanisms, including constriction channel-based, fluid-induced, and micropipette aspiration-based mechanisms. This review discusses how these mechanisms work to determine the mechanical properties of the cell as well as their advantages and disadvantages. A detailed discussion is also presented on a series of typical applications of these three mechanisms to measure the mechanical properties of cells. At the end of this article, the current challenges and future prospects of these mechanisms are demonstrated, which will help guide researchers who are interested to get into this area of research. Our conclusion is that these passive microfluidic mechanisms will offer more preferences for the development of lab-on-a-chip technologies and hold great potential for advancing biomedical and bioengineering research studies.
Collapse
Affiliation(s)
- Zhenghua Li
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Qi Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Hemin Zhang
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
42
|
Du M, Li G, Wang Z, Ge Y, Liu F. Rapid isolation method of Saccharomyces cerevisiae based on optically induced dielectrophoresis technique for fungal infection diagnosis. APPLIED OPTICS 2021; 60:2150-2157. [PMID: 33690309 DOI: 10.1364/ao.415684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Saccharomyces cerevisiae(S. cerevisiae) has been classically used as a treatment for diarrhea and diarrhea-related diseases. However, cases of the fungal infections caused by S. cerevisiae have been increasing in the last two decades among immunocompromised patients, while a long time was spent on S. cerevisiae isolation clinically so it was difficult to achieve timely diagnosis the diseases. Here, a novel approach for isolation and selection of S. cerevisiae is proposed by designing a microfluidic chip with an optically induced dielectrophoresis (ODEP) system. S. cerevisiae was isolated from the surroundings by ODEP due to different dielectrophoretic forces. Two special light images were designed and used to block and separate S. cerevisiae, respectively, and several manipulation parameters of ODEP were experimentally optimized to acquire the maximum isolation efficiency of S. cerevisiae. The results on the S. cerevisiae isolation declared that the purity of the S. cerevisiae selected by the method was up to 99.5%±0.05, and the capture efficiency was up to 65.0%±2.5 within 10 min. This work provides a general method to isolate S. cerevisiae as well as other microbial cells with high accuracy and efficiency and paves a road for biological research in which the isolation of high-purity cells is required.
Collapse
|
43
|
Liang S, Cao Y, Dai Y, Wang F, Bai X, Song B, Zhang C, Gan C, Arai F, Feng L. A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage. MICROMACHINES 2021; 12:mi12030271. [PMID: 33800834 PMCID: PMC8000357 DOI: 10.3390/mi12030271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Non-contact manipulation technology has a wide range of applications in the manipulation and fabrication of micro/nanomaterials. However, the manipulation devices are often complex, operated only by professionals, and limited by a single manipulation function. Here, we propose a simple versatile optoelectronic tweezer (OET) system that can be easily controlled for manipulating microparticles with different sizes. In this work, we designed and established an optoelectronic tweezer manipulation system. The OET system could be used to manipulate particles with a wide range of sizes from 2 μm to 150 μm. The system could also manipulate micro-objects of different dimensions like 1D spherical polystyrene microspheres, 2D rod-shaped euglena gracilis, and 3D spiral microspirulina. Optical microscopic patterns for trapping, storing, parallel transporting, and patterning microparticles were designed for versatile manipulation. The sorting, rotation, and assembly of single particles in a given region were experimentally demonstrated. In addition, temperatures measured under different objective lenses indicate that the system does not generate excessive heat to damage bioparticles. The non-contact versatile manipulation reduces operating process and contamination. In future work, the simple optoelectronic tweezers system can be used to control non-contaminated cell interaction and micro-nano manipulation.
Collapse
Affiliation(s)
- Shuzhang Liang
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
| | - Yuqing Cao
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
| | - Yuguo Dai
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
| | - Fenghui Wang
- BEIGE Institue of Robot & Intelligent Manufacturing, Weifang 261000, China;
| | - Xue Bai
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
| | - Bin Song
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
| | - Chaonan Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
| | - Chunyuan Gan
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
| | - Fumihito Arai
- Department of Mechanical Engineering, University of Tokyo, Tokyo 113-8656, Japan;
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China; (S.L.); (Y.C.); (Y.D.); (X.B.); (B.S.); (C.Z.); (C.G.)
- BEIGE Institue of Robot & Intelligent Manufacturing, Weifang 261000, China;
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
- Correspondence: ; Tel.: +86-8231-6603
| |
Collapse
|
44
|
Abstract
3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with rational designs heretofore give evidence of how these printed microrobots are being exploited in the medical, environmental, and other relevant fields. A future outlook on the 3D printing of microrobots is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
45
|
Bunea AI, Taboryski R. Recent Advances in Microswimmers for Biomedical Applications. MICROMACHINES 2020; 11:E1048. [PMID: 33261101 PMCID: PMC7760273 DOI: 10.3390/mi11121048] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Microswimmers are a rapidly developing research area attracting enormous attention because of their many potential applications with high societal value. A particularly promising target for cleverly engineered microswimmers is the field of biomedical applications, where many interesting examples have already been reported for e.g., cargo transport and drug delivery, artificial insemination, sensing, indirect manipulation of cells and other microscopic objects, imaging, and microsurgery. Pioneered only two decades ago, research studies on the use of microswimmers in biomedical applications are currently progressing at an incredibly fast pace. Given the recent nature of the research, there are currently no clinically approved microswimmer uses, and it is likely that several years will yet pass before any clinical uses can become a reality. Nevertheless, current research is laying the foundation for clinical translation, as more and more studies explore various strategies for developing biocompatible and biodegradable microswimmers fueled by in vivo-friendly means. The aim of this review is to provide a summary of the reported biomedical applications of microswimmers, with focus on the most recent advances. Finally, the main considerations and challenges for clinical translation and commercialization are discussed.
Collapse
Affiliation(s)
- Ada-Ioana Bunea
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Ørsted Plads 347, 2800 Lyngby, Denmark;
| | | |
Collapse
|
46
|
Liang W, Liu L, Wang J, Yang X, Wang Y, Li WJ, Yang W. A Review on Optoelectrokinetics-Based Manipulation and Fabrication of Micro/Nanomaterials. MICROMACHINES 2020; 11:mi11010078. [PMID: 31936694 PMCID: PMC7019850 DOI: 10.3390/mi11010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Optoelectrokinetics (OEK), a fusion of optics, electrokinetics, and microfluidics, has been demonstrated to offer a series of extraordinary advantages in the manipulation and fabrication of micro/nanomaterials, such as requiring no mask, programmability, flexibility, and rapidness. In this paper, we summarize a variety of differently structured OEK chips, followed by a discussion on how they are fabricated and the ways in which they work. We also review how three differently sized polystyrene beads can be separated simultaneously, how a variety of nanoparticles can be assembled, and how micro/nanomaterials can be fabricated into functional devices. Another focus of our paper is on mask-free fabrication and assembly of hydrogel-based micro/nanostructures and its possible applications in biological fields. We provide a summary of the current challenges facing the OEK technique and its future prospects at the end of this paper.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Correspondence: (L.L.); (W.J.L.); Tel.: +86-24-2397-0181 (L.L.); +852-3442-9266 (W.J.L.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Wen Jung Li
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Correspondence: (L.L.); (W.J.L.); Tel.: +86-24-2397-0181 (L.L.); +852-3442-9266 (W.J.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| |
Collapse
|
47
|
Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin Drug Deliv 2019; 16:1259-1275. [DOI: 10.1080/17425247.2019.1676228] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|