1
|
Jiang Q, Du C, Qian L, Shan T, Bao Y, Gu L, Wang S, Yang T, Zhou L, Wang Z, He Y, Wang Q, Wang H, Wang R, Wang L. GPX3 Overexpression Ameliorates Cardiac Injury Post Myocardial Infarction Through Activating LSD1/Hif1α Axis. J Cell Mol Med 2025; 29:e70398. [PMID: 39900557 PMCID: PMC11790353 DOI: 10.1111/jcmm.70398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/21/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Myocardial infarction (MI) often results in significant loss of cardiomyocytes (CMs), contributing to adverse ventricular remodelling and heart failure. Therefore, promoting CM survival during the acute stage of MI is crucial. This study aimed to investigate the potential role of GPX3 in cardiac repair following MI. First, plasma GPX3 levels were measured in patients with acute MI (AMI), and myocardial GPX3 expression was assessed in a mouse MI model. Furthermore, the effects of GPX3 on MI were investigated through CM-specific overexpression or knockdown in vitro and in vivo models. RNA sequencing and subsequent experiments were performed to uncover the molecular mechanisms underlying GPX3-related effects. Multi-omics database analysis and experimental verification revealed a significant upregulation of GPX3 expression in ischemic myocardium following MI and in CMs exposed to oxygen-glucose deprivation (OGD). Immunofluorescence results further confirmed elevated cytoplasmic GPX3 expression in CMs under hypoxic conditions. In vitro, GPX3 overexpression mitigated reactive oxygen species (ROS) production and enhanced CM survival during hypoxia, while GPX3 knockdown inhibited these processes. In vivo, CM-specific GPX3 overexpression in the infarct border zone significantly attenuated CM apoptosis and alleviated myocardial injury, promoting cardiac repair and long-term functional recovery. Mechanistically, GPX3 overexpression upregulated LSD1 and Hif1α protein expression, and rescue experiments confirmed the involvement of the LSD1/Hif1α pathway in mediating the protective effects of GPX3. Overall, our findings suggest that GPX3 exerts a protective role in ischemic myocardium post-MI, at least partially through the LSD1/Hif1α axis, highlighting its potential as a therapeutic target for MI treatment.
Collapse
Affiliation(s)
- Qi‐Qi Jiang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chong Du
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ling‐Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Tian‐Kai Shan
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu‐Lin Bao
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ling‐Feng Gu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Si‐Bo Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tong‐Tong Yang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Liu‐Hua Zhou
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ze‐Mu Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ye He
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qi‐Ming Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ru‐Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Lian‐Sheng Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Wang H, Zhao B, Huang L, Zhu X, Li N, Huang C, Han Z, Ouyang K. Conditional deletion of IP 3R1 by Islet1-Cre in mice reveals a critical role of IP 3R1 in interstitial cells of Cajal in regulating GI motility. J Gastroenterol 2025; 60:152-165. [PMID: 39476178 DOI: 10.1007/s00535-024-02164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND AND AIMS Inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) has been proposed to play a physiological role in regulating gastrointestinal (GI) motility, but the underlying cell-dependent mechanism remains unclear. Here, we utilized cell-specific IP3R1 deletion strategies to address this question in mice. METHODS Conditional IP3R1 knockout mice using Wnt1-Cre, Islet1-Cre mice, and smMHC-CreEGFP were generated. Cell lineage tracing was performed to determine where gene deletion occurred in the GI tract. Whole-gut transit assay and isometric tension recording were used to assess GI function in vivo and in vitro. RESULTS In the mouse GI tract, Islet1-Cre targeted smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs), but not enteric neurons. IP3R1 deletion by Islet1-Cre (isR1KO) caused a phenotype of intestinal pseudo-obstruction (IPO), evidenced by prolonged whole-gut transit time, enlarged GI tract, abdominal distention, and early lethality. IP3R1 deletion by Islet1-Cre not only reduced the frequency of spontaneous contractions but also decreased the contractile responses to the muscarinic agonist carbachol (CCh) and electrical field stimulation (EFS) in colonic circular muscles. By contrast, smMHC-CreEGFP only targeted SMCs in the mouse GI tract. Although IP3R1 deletion by smMHC-CreEGFP (smR1KO) also reduced the contractile responses to CCh and EFS in colonic circular muscles, the frequency of spontaneous contractions was less affected, and neither global GI abnormalities nor early lethality was found in smR1KO mice. CONCLUSIONS IP3R1 deletion in both ICCs and SMCs but not in SMCs alone causes an IPO phenotype, suggesting that IP3R1 in ICCs plays an essential role in regulating GI motility in vivo.
Collapse
Affiliation(s)
- Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China
| | - Beili Zhao
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China.
| | - Kunfu Ouyang
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China.
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China.
| |
Collapse
|
3
|
Sedmera D, Olejnickova V, Sankova B, Kolesova H, Bartos M, Kvasilova A, Phillips LC, Bamforth SD, Phillips HM. Morphological, electrophysiological, and molecular alterations in foetal noncompacted cardiomyopathy induced by disruption of ROCK signalling. Front Cell Dev Biol 2024; 12:1471751. [PMID: 39435333 PMCID: PMC11491540 DOI: 10.3389/fcell.2024.1471751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Left ventricular noncompaction cardiomyopathy is associated with heart failure, arrhythmia, and sudden cardiac death. The developmental mechanism underpinning noncompaction in the adult heart is still not fully understood, with lack of trabeculae compaction, hypertrabeculation, and loss of proliferation cited as possible causes. To study this, we utilised a mouse model of aberrant Rho kinase (ROCK) signalling in cardiomyocytes, which led to a noncompaction phenotype during embryogenesis, and monitored how this progressed after birth and into adulthood. The cause of the early noncompaction at E15.5 was attributed to a decrease in proliferation in the developing ventricular wall. By E18.5, the phenotype became patchy, with regions of noncompaction interspersed with thick compacted areas of ventricular wall. To study how this altered myoarchitecture of the heart influenced impulse propagation in the developing and adult heart, we used histology with immunohistochemistry for gap junction protein expression, optical mapping, and electrocardiography. At the prenatal stages, a clear reduction in left ventricular wall thickness, accompanied by abnormal conduction of the ectopically paced beat in that area, was observed in mutant hearts. This correlated with increased expression of connexin-40 and connexin-43 in noncompacted trabeculae. In postnatal stages, left ventricular noncompaction was resolved, but the right ventricular wall remained structurally abnormal through to adulthood with cardiomyocyte hypertrophy and retention of myocardial crypts. Thus, this is a novel model of self-correcting embryonic hypertrabeculation cardiomyopathy, but it highlights that remodelling potential differs between the left and right ventricles. We conclude that disruption of ROCK signalling induces both morphological and electrophysiological changes that evolve over time, highlighting the link between myocyte proliferation and noncompaction phenotypes and electrophysiological differentiation.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lauren C. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D. Bamforth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Miklovič M, Gawryś O, Honetschlägerová Z, Kala P, Husková Z, Kikerlová S, Vaňourková Z, Jíchová Š, Kvasilová A, Kitamoto M, Maxová H, Puertas-Frias G, Mráček T, Sedmera D, Melenovský V. Renal denervation improves cardiac function independently of afterload and restores myocardial norepinephrine levels in a rodent heart failure model. Hypertens Res 2024; 47:2718-2730. [PMID: 38302774 PMCID: PMC11456508 DOI: 10.1038/s41440-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
Renal nerves play a critical role in cardiorenal interactions. Renal denervation (RDN) improved survival in some experimental heart failure (HF) models. It is not known whether these favorable effects are indirect, explainable by a decrease in vascular afterload, or diminished neurohumoral response in the kidneys, or whether RDN procedure per se has direct myocardial effects in the failing heart. To elucidate mechanisms how RDN affects failing heart, we studied load-independent indexes of ventricular function, gene markers of myocardial remodeling, and cardiac sympathetic signaling in HF, induced by chronic volume overload (aorto-caval fistula, ACF) of Ren2 transgenic rats. Volume overload by ACF led to left ventricular (LV) hypertrophy and dysfunction, myocardial remodeling (upregulated Nppa, MYH 7/6 genes), increased renal and circulating norepinephrine (NE), reduced myocardial NE content, increased monoaminoxidase A (MAO-A), ROS production and decreased tyrosine hydroxylase (+) nerve staining. RDN in HF animals decreased congestion in the lungs and the liver, improved load-independent cardiac function (Ees, PRSW, Ees/Ea ratio), without affecting arterial elastance or LV pressure, reduced adverse myocardial remodeling (Myh 7/6, collagen I/III ratio), decreased myocardial MAO-A and inhibited renal neprilysin activity. RDN increased myocardial expression of acetylcholinesterase (Ache) and muscarinic receptors (Chrm2), decreased circulating and renal NE, but increased myocardial NE content, restoring so autonomic control of the heart. These changes likely explain improvements in survival after RDN in this model. The results suggest that RDN has remote, load-independent and favorable intrinsic myocardial effects in the failing heart. RDN therefore could be a useful therapeutic strategy in HF.
Collapse
Affiliation(s)
- Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Gawryś
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Zuzana Honetschlägerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Petr Kala
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Misuzu Kitamoto
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Maxová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Melenovský
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic.
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic.
| |
Collapse
|
5
|
Ostadal B, Kolar F. Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences. Physiol Res 2024; 73:S35-S48. [PMID: 38634652 PMCID: PMC11412335 DOI: 10.33549/physiolres.935337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
Collapse
Affiliation(s)
- B Ostadal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
6
|
Ping X, Li Q, Ding M, Wang X, Tang C, Yu Z, Yi Q, He Y, Zheng L. Effects of hypoxic compound exercise to promote HIF-1α expression on cardiac pumping function, sleep activity behavior, and exercise capacity in Drosophila. FASEB J 2024; 38:e23499. [PMID: 38430222 DOI: 10.1096/fj.202302269r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Alteration of HIF-1α expression levels under hypoxic conditions affects the sequence of its downstream target genes thereby producing different effects. In order to investigate whether the effect of hypoxic compound exercise (HE) on HIF-1α expression alters cardiac pumping function, myocardial structure, and exercise capacity, we developed a suitable model of hypoxic exercise using Drosophila, a model organism, and additionally investigated the effect of hypoxic compound exercise on nocturnal sleep and activity behavior. The results showed that hypoxic compound exercise at 6% oxygen concentration for five consecutive days, lasting 1 h per day, significantly improved the cardiac stress resistance of Drosophila. The hypoxic complex exercise promoted the whole-body HIF-1α expression in Drosophila, and improved the jumping ability, climbing ability, moving speed, and moving distance. The expression of HIF-1α in the heart was increased after hypoxic exercise, which made a closer arrangement of myofilaments, an increase in the diameter of cardiac tubules, and an increase in the pumping function of the heart. The hypoxic compound exercise improved the sleep quality of Drosophila by increasing its nocturnal sleep time, the number of deep sleeps, and decreasing its nocturnal awakenings and activities. Therefore, we conclude that hypoxic compound exercise promoted the expression of HIF-1α to enhance the exercise capacity and heart pumping function of Drosophila, and improved the quality of sleep.
Collapse
Affiliation(s)
- Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qin Yi
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Yupeng He
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Kolesova H, Hrabalova P, Bohuslavova R, Abaffy P, Fabriciova V, Sedmera D, Pavlinkova G. Reprogramming of the developing heart by Hif1a-deficient sympathetic system and maternal diabetes exposure. Front Endocrinol (Lausanne) 2024; 15:1344074. [PMID: 38505753 PMCID: PMC10948485 DOI: 10.3389/fendo.2024.1344074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. Methods and results In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. Discussion Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.
Collapse
Affiliation(s)
- Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Developmental Cardiology, Institute of Physiology Czech Academy of Sciences (CAS), Prague, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Developmental Cardiology, Institute of Physiology Czech Academy of Sciences (CAS), Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| |
Collapse
|
8
|
Dreute J, Pfisterer M, Schmitz ML. A reductionist perspective on HIF-1α's role in cell proliferation under non-hypoxic conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119683. [PMID: 38301905 DOI: 10.1016/j.bbamcr.2024.119683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The role of hypoxia-inducible factor (HIF)-1α in the control of proliferation under non-hypoxic conditions has been investigated in numerous studies, but does not yield a coherent picture. Therefore, we conducted this meta-analysis of existing literature to systematically evaluate the role of HIF-1α, based on a number of inclusion and exclusion criteria. Studies analyzing non-transformed, primary cells showed a largely heterogeneous distribution of pro-proliferative, anti-proliferative or absent functions for HIF-1α, which are co-determined by several parameters, including the type and age of the cell and its localization in tissues and organs. In contrast, the analyses of tumor cells showed a predominantly pro-proliferative role of HIF-1α by cell-intrinsic and cell-extrinsic molecular mechanism not yet understood.
Collapse
Affiliation(s)
- Jan Dreute
- Institute of Biochemistry, Justus-Liebig-University Giessen, Germany
| | | | | |
Collapse
|
9
|
Triposkiadis F, Briasoulis A, Kitai T, Magouliotis D, Athanasiou T, Skoularigis J, Xanthopoulos A. The sympathetic nervous system in heart failure revisited. Heart Fail Rev 2024; 29:355-365. [PMID: 37707755 DOI: 10.1007/s10741-023-10345-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Several attempts have been made, by the scientific community, to develop a unifying hypothesis that explains the clinical syndrome of heart failure (HF). The currently widely accepted neurohormonal model has substituted the cardiorenal and the cardiocirculatory models, which focused on salt-water retention and low cardiac output/peripheral vasoconstriction, respectively. According to the neurohormonal model, HF with eccentric left ventricular (LV) hypertrophy (LVH) (systolic HF or HF with reduced LV ejection fraction [LVEF] or HFrEF) develops and progresses because endogenous neurohormonal systems, predominantly the sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), exhibit prolonged activation following the initial heart injury exerting deleterious hemodynamic and direct nonhemodynamic cardiovascular effects. However, there is evidence to suggest that SNS overactivity often preexists HF development due to its association with HF risk factors, is also present in HF with preserved LVEF (diastolic HF or HFpEF), and that it is linked to immune/inflammatory factors. Furthermore, SNS activity in HF may be augmented by coexisting noncardiac morbidities and modified by genetic factors and demographics. The purpose of this paper is to provide a contemporary overview of the complex associations between SNS overactivity and the development and progression of HF, summarize the underlying mechanisms, and discuss the clinical implications as they relate to therapeutic interventions mitigating SNS overactivity.
Collapse
Affiliation(s)
| | - Alexandros Briasoulis
- Department of Therapeutics, Heart Failure and Cardio-Oncology Clinic, National and Kapodistrian Univesity of Athens, 11527, Athens, Greece
| | - Takeshi Kitai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Dimitrios Magouliotis
- Unit of Quality Improvement, Department of Cardiothoracic Surgery, University of Thessaly, Biopolis, 41110, Greece
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, W2 1NY, UK
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110, Larissa, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110, Larissa, Greece
| |
Collapse
|
10
|
Mu K, Fu J, Gai J, Ravichandran H, Zheng L, Sun WC. Genetic alterations in the neuronal development genes are associated with changes of the tumor immune microenvironment in pancreatic cancer. ANNALS OF PANCREATIC CANCER 2023; 6:10.21037/apc-23-13. [PMID: 38495381 PMCID: PMC10942730 DOI: 10.21037/apc-23-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis and is highly metastatic. Our prior studies have demonstrated the critical role of axon guidance pathway genes in PDAC and the connection between neuronal development and the tumor microenvironment. A recent study newly identified 20 neuronal development genes [disks large homolog 2 (DLG2), neuron-glial-related cell adhesion molecule (NRCAM), neurexin3 (NRXN3), mitogen-activated protein kinase 10 (MAPK10), platelet-derived growth factor D (PDGFD), protein kinase C epsilon (PRKCE), potassium calcium-activated channel subfamily M alpha 1 (KCNMA1), polycystic kidney and hepatic disease 1 (PKHD1), neural cell adhesion molecule 1 (NCAM1), neuregulin-1 (NRG1), zinc finger protein 667 (ZNF667), cystic fibrosis transmembrane conductance regulator (CFTR), acyl-CoA medium-chain synthetase-3 (ACSM3), complement 6 (C6), protein tyrosine phosphatase receptor type M (PTPRM), hypoxia-inducible factor 1 alpha (HIF1A), adenylyl cyclase 5 (ADCY5), adherens junctions-associated protein 1 (AJAP1), neurobeachin (NBEA), sodium voltage-gated channel alpha subunit 9 (SCN9A)] that are associated with perineural invasion and poor prognosis of PDAC. The relationship between genetic alterations in these 20 genes and tumor immune microenvironment (TME) has not previously been investigated. Methods We hence applied the sequential multiplex immunohistochemistry results of biopsy specimens from 63 PDAC patients to investigate this relationship. Results We found that, except for PTPRM and NBEA, genetic alterations involving these 20 genes are associated with significant changes in the densities of major immune cell subtypes. Except for AJAP1, the copy number loss involving this panel of neuronal development genes is significantly associated with changes in immune cell infiltrates. In contrast, the copy number gain in fewer genes, including NRXN3, ZNF667, ACSM3, C6, ADCY5, SCN9A, and PRKCE, is significantly associated with changes in immune cell infiltrates. Conclusions Our study suggested that neuronal development genes play a role in modulating TME in a pancreatic cancer setting.
Collapse
Affiliation(s)
- Kaiyi Mu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harshitha Ravichandran
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei-Chih Sun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Tapio J, Kiviniemi AM, Perkiömäki J, Junttila MJ, Huikuri HV, Ukkola O, Koivunen P, Tulppo MP. Lower hemoglobin levels associate with higher baroreflex sensitivity and heart rate variability. Am J Physiol Heart Circ Physiol 2023; 325:H629-H634. [PMID: 37566112 PMCID: PMC10659262 DOI: 10.1152/ajpheart.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The aim of this study was to cross-sectionally examine whether hemoglobin (Hb) levels within the normal variation associate with heart rate variability (HRV) measures and baroreflex sensitivity (BRS). The study population included 733 Finnish subjects of the OPERA cohort (aged 41-59 yr, 53% males, 51.7% treated for hypertension) of whom HRV was measured from a standardized 45-min period and whose Hb levels were within the Finnish reference intervals. The low Hb tertile (mean Hb, 135 g/L) had an overall healthier metabolic profile compared with the high Hb tertile (mean Hb, 152 g/L). BRS was higher in the low Hb tertile compared with the high Hb tertile (P < 0.05). R-R interval (RRi) and standard deviation (SD) of the RRi (SDNN)index were the longest in the low Hb tertile regardless of posture. Of the spectral components of HRV, HF power was the highest in the low Hb tertile regardless of posture (P < 0.05). In a stepwise logistic regression model, BRS associated negatively with Hb levels after adjusting for covariates (B = -0.160 [-0.285; -0.035]). Similar associations were observed for SDNNindex when lying down (B = -0.105 [-0.207; -0.003]) and walking (B = -0.154 [-0.224; -0.083]). For HF power negative associations with Hb levels were observed when lying down (B = -0.110 [-0.180; -0.040]), sitting (B = -0.150 [-0.221; -0.079]), and in total analysis (B = -0.124 [-0.196; -0.053]). Overall, lower Hb levels associated independently with healthier cardiac autonomic function.NEW & NOTEWORTHY Heart rate variability (HRV) and baroreflex sensitivity (BRS), which can be measured noninvasively, can predict cardiac and metabolic diseases. Our findings show that within normal variation subjects with lower hemoglobin (Hb) levels have an overall healthier HRV profile and increased cardiac parasympathetic activity in middle age, independent of age, sex, smoking status, and key metabolic covariates. These findings support our previous findings that Hb levels can be used in assessing long-term risks for cardiometabolic diseases.
Collapse
Affiliation(s)
- Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Antti M Kiviniemi
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Juha Perkiömäki
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - M Juhani Junttila
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Heikki V Huikuri
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Olavi Ukkola
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Mikko P Tulppo
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
13
|
Belapurkar R, Pfisterer M, Dreute J, Werner S, Zukunft S, Fleming I, Kracht M, Schmitz ML. A transient increase of HIF-1α during the G1 phase (G1-HIF) ensures cell survival under nutritional stress. Cell Death Dis 2023; 14:477. [PMID: 37500648 PMCID: PMC10374543 DOI: 10.1038/s41419-023-06012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The family of hypoxia-inducible transcription factors (HIF) is activated to adapt cells to low oxygen conditions, but is also known to regulate some biological processes under normoxic conditions. Here we show that HIF-1α protein levels transiently increase during the G1 phase of the cell cycle (designated as G1-HIF) in an AMP-activated protein kinase (AMPK)-dependent manner. The transient elimination of G1-HIF by a degron system revealed its contribution to cell survival under unfavorable metabolic conditions. Indeed, G1-HIF plays a key role in the cell cycle-dependent expression of genes encoding metabolic regulators and the maintenance of mTOR activity under conditions of nutrient deprivation. Accordingly, transient elimination of G1-HIF led to a significant reduction in the concentration of key proteinogenic amino acids and carbohydrates. These data indicate that G1-HIF acts as a cell cycle-dependent surveillance factor that prevents the onset of starvation-induced apoptosis.
Collapse
Affiliation(s)
- Ratnal Belapurkar
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Maximilian Pfisterer
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Jan Dreute
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Sebastian Werner
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany.
| |
Collapse
|
14
|
Watanabe M, Yano T, Sato T, Umetsu A, Higashide M, Furuhashi M, Ohguro H. mTOR Inhibitors Modulate the Physical Properties of 3D Spheroids Derived from H9c2 Cells. Int J Mol Sci 2023; 24:11459. [PMID: 37511214 PMCID: PMC10380298 DOI: 10.3390/ijms241411459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
To establish an appropriate in vitro model for the local environment of cardiomyocytes, three-dimensional (3D) spheroids derived from H9c2 cardiomyoblasts were prepared, and their morphological, biophysical phase contrast and biochemical characteristics were evaluated. The 3D H9c2 spheroids were successfully obtained, the sizes of the spheroids decreased, and they became stiffer during 3-4 days. In contrast to the cell multiplication that occurs in conventional 2D planar cell cultures, the 3D H9c2 spheroids developed into a more mature form without any cell multiplication being detected. qPCR analyses of the 3D H9c2 spheroids indicated that the production of collagen4 (COL4) and fibronectin (FN), connexin43 (CX43), β-catenin, N-cadherin, STAT3, and HIF1 molecules had increased and that the production of COL6 and α-smooth muscle actin (α-SMA) molecules had decreased as compared to 2D cultured cells. In addition, treatment with rapamycin (Rapa), an mTOR complex (mTORC) 1 inhibitor, and Torin 1, an mTORC1/2 inhibitor, resulted in significantly decreased cell densities of the 2D cultured H9c2 cells, but the size and stiffness of the H9c2 cells within the 3D spheroids were reduced with the gene expressions of several of the above several factors being reduced. The metabolic responses to mTOR modulators were also different between the 2D and 3D cultures. These results suggest that as unique aspects of the local environments of the 3D spheroids, the spontaneous expression of GJ-related molecules and hypoxia within the core may be associated with their maturation, suggesting that this may become a useful in vitro model that replicates the local environment of cardiomyocytes.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Megumi Higashide
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| |
Collapse
|
15
|
Bechmann N, Westermann F, Eisenhofer G. HIF and MYC signaling in adrenal neoplasms of the neural crest: implications for pediatrics. Front Endocrinol (Lausanne) 2023; 14:1022192. [PMID: 37361539 PMCID: PMC10286580 DOI: 10.3389/fendo.2023.1022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Pediatric neural crest-derived adrenal neoplasms include neuroblastoma and pheochromocytoma. Both entities are associated with a high degree of clinical heterogeneity, varying from spontaneous regression to malignant disease with poor outcome. Increased expression and stabilization of HIF2α appears to contribute to a more aggressive and undifferentiated phenotype in both adrenal neoplasms, whereas MYCN amplification is a valuable prognostic marker in neuroblastoma. The present review focuses on HIF- and MYC signaling in both neoplasms and discusses the interaction of associated pathways during neural crest and adrenal development as well as potential consequences on tumorigenesis. Emerging single-cell methods together with epigenetic and transcriptomic analyses provide further insights into the importance of a tight regulation of HIF and MYC signaling pathways during adrenal development and tumorigenesis. In this context, increased attention to HIF-MYC/MAX interactions may also provide new therapeutic options for these pediatric adrenal neoplasms.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Westermann
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Afsar B, Afsar RE. Hypoxia-inducible factors and essential hypertension: narrative review of experimental and clinical data. Pharmacol Rep 2023:10.1007/s43440-023-00497-x. [PMID: 37210694 DOI: 10.1007/s43440-023-00497-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Hypoxia-inducible factor (HIFs) is a new class of drug developed for the management of anemia in chronic kidney disease (CKD) patients. HIFs increase the production of erythropoietin in the kidney and liver, enhance the absorption and utilization of iron, and stimulate the maturation and proliferation of erythroid progenitor cells. Besides, HIFs regulate many physiologic processes by orchestrating the transcription of hundreds of genes. Essential hypertension (HT) is an epidemic worldwide. HIFs play a role in many biological processes involved in the regulation of blood pressure (BP). In the current review, we summarize pre-clinical and clinical studies investigating the relationship between HIFs and BP regulation in patients with CKD, conflicting issues, and discuss future potential strategies.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
17
|
Leu T, Denda J, Wrobeln A, Fandrey J. Hypoxia-Inducible Factor-2alpha Affects the MEK/ERK Signaling Pathway via Primary Cilia in Connection with the Intraflagellar Transport Protein 88 Homolog. Mol Cell Biol 2023; 43:174-183. [PMID: 37074220 PMCID: PMC10153011 DOI: 10.1080/10985549.2023.2198931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/25/2023] [Indexed: 04/20/2023] Open
Abstract
The ability of cells to communicate with their surrounding is a prerequisite for essential processes such as proliferation, apoptosis, migration, and differentiation. To this purpose, primary cilia serve as antennae-like structures on the surface of most mammalian cell types. Cilia allow signaling via hedgehog, Wnt or TGF-beta pathways. Their length, in part controlled by the activity of intraflagellar transport (IFT), is a parameter for adequate function of primary cilia. Here we show, in murine neuronal cells, that intraflagellar transport protein 88 homolog (IFT88) directly interacts with the hypoxia-inducible factor-2α (HIF-2α), hitherto known as an oxygen-regulated transcription factor. Furthermore, HIF-2α accumulates in the ciliary axoneme and promotes ciliary elongation under hypoxia. Loss of HIF-2α affected ciliary signaling in neuronal cells by decreasing transcription of Mek1/2 and Erk1/2. Targets of the MEK/ERK signaling pathway, such as Fos and Jun, were significantly decreased. Our results suggest that HIF-2α influences ciliary signaling by interacting with IFT88 under hypoxic conditions. This implies an unexpected and far more extensive function of HIF-2α than described before.
Collapse
Affiliation(s)
- Tristan Leu
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Jannik Denda
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Hrabalova P, Bohuslavova R, Matejkova K, Papousek F, Sedmera D, Abaffy P, Kolar F, Pavlinkova G. Dysregulation of hypoxia-inducible factor 1α in the sympathetic nervous system accelerates diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:88. [PMID: 37072781 PMCID: PMC10114478 DOI: 10.1186/s12933-023-01824-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
- Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Katerina Matejkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - David Sedmera
- Institute of Physiology CAS, Prague, Czechia
- Institute of Anatomy, Charles University, Prague, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia.
| |
Collapse
|
19
|
Lu F, Kato J, Toramaru T, Zhang M, Morisaki H. Pharmacological Ischemic Conditioning with Roxadustat Does Not Affect Pain-Like Behaviors but Mitigates Sudomotor Impairment in a Murine Model of Deep Hind Paw Incision. J Pain Res 2023; 16:573-587. [PMID: 36852095 PMCID: PMC9960722 DOI: 10.2147/jpr.s397054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose The involvement of hypoxic response mechanisms in local functional impairments in surgical wounds is unclear. In the present study, we characterized tissue hypoxia in surgical wounds and investigated the role of pharmacological ischemic conditioning (PIC) using roxadustat, an oral prolyl hydroxylase domain enzyme inhibitor, in postoperative local functional impairments in a murine model of deep hind paw incision. Methods Male BALB/cAJcl mice aged 9-13 weeks were used in all experiments. Plantar skins of mice that underwent surgical incision were subjected to immunohistochemistry to localise tissue hypoxia. Pain-like behaviours and sudomotor function were compared between mice treated with 6-week perioperative PIC and control mice. The effects of PIC were examined in vitro by immunocytochemistry using sympathetically differentiated PC12 cells and in vivo by immunohistochemistry using plantar skins collected on postoperative day 21. Results Prominent tissue hypoxia was detected within axons in the nerve bundles underneath surgical wounds. Six-week perioperative PIC using roxadustat failed to ease spontaneous pain-like behaviors; however, it mitigated local sudomotor impairment postoperatively. Upregulation of sympathetic innervation to the eccrine glands was observed in the PIC-treated skins collected on postoperative day 21, in accordance with the in vitro study wherein roxadustat promoted neurite growth of sympathetically differentiated PC12 cells. Conclusion This study suggests that tissue hypoxia is involved in the pathogenesis of local sudomotor dysfunction associated with surgical trauma. Targeting the hypoxic response mechanisms with PIC may be of therapeutic potential in postsurgical local sympathetic impairments that can be present in complex regional pain syndrome.
Collapse
Affiliation(s)
- Fanglin Lu
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan.,Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Jungo Kato
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Toramaru
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Mengting Zhang
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan.,Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Cammalleri M, Amato R, Dal Monte M, Filippi L, Bagnoli P. The β3 adrenoceptor in proliferative retinopathies: "Cinderella" steps out of its family shadow. Pharmacol Res 2023; 190:106713. [PMID: 36863427 DOI: 10.1016/j.phrs.2023.106713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
In the retina, hypoxic condition leads to overgrowing leaky vessels resulting in altered metabolic supply that may cause impaired visual function. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the retinal response to hypoxia by activating the transcription of numerous target genes, including vascular endothelium growth factor, which acts as a major player in retinal angiogenesis. In the present review, oxygen urge by the retina and its oxygen sensing systems including HIF-1 are discussed in respect to the role of the beta-adrenergic receptors (β-ARs) and their pharmacologic manipulation in the vascular response to hypoxia. In the β-AR family, β1- and β2-AR have long been attracting attention because their pharmacology is intensely used for human health, while β3-AR, the third and last cloned receptor is no longer increasingly emerging as an attractive target for drug discovery. Here, β3-AR, a main character in several organs including the heart, the adipose tissue and the urinary bladder, but so far a supporting actor in the retina, has been thoroughly examined in respect to its function in retinal response to hypoxia. In particular, its oxygen dependence has been taken as a key indicator of β3-AR involvement in HIF-1-mediated responses to oxygen. Hence, the possibility of β3-AR transcription by HIF-1 has been discussed from early circumstantial evidence to the recent demonstration that β3-AR acts as a novel HIF-1 target gene by playing like a putative intermediary between oxygen levels and retinal vessel proliferation. Thus, targeting β3-AR may implement the therapeutic armamentarium against neovascular pathologies of the eye.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
21
|
Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol 2023; 81:202-208. [PMID: 36127212 DOI: 10.1016/j.jjcc.2022.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
Oxygen is essential for living organisms. Molecular oxygen binds to hemoglobin and is delivered to every organ in the body. In several cardiovascular diseases or anemia, local oxygen tension drops below its physiological level and tissue hypoxia develops. In such conditions, the expression of hypoxia-responsive genes increases to alleviate the respective condition. The hypoxia-responsive genes include the genes coding erythropoietin (EPO), vascular endothelial growth factor-A, and glycolytic enzymes. Hypoxia-inducible factor (HIF)-1α, HIF-2α, and HIF-3α are transcription factors that regulate the hypoxia-responsive genes. The HIF-α proteins are continuously degraded by an oxygen-dependent degrading pathway involving HIF-prolyl hydroxylases (HIF-PHs) and von Hippel-Lindau tumor suppressor protein. However, upon hypoxia, this degradation ceases and the HIF-α proteins form heterodimers with HIF-1β (a constitutive subunit of HIF), which results in the induction of hypoxia responsive genes. HIF-1α and HIF-2α are potential therapeutic targets for renal anemia, where EPO production is impaired due to chronic kidney diseases. Small molecule HIF-PH inhibitors are currently used to activate HIF-α signaling and to increase plasma hemoglobin levels by restoring EPO production. In this review, we will discuss the current understanding of the roles of the HIF-α signaling pathway in cardiovascular diseases. This will include the roles of HIF-1α in cardiomyocytes as well as in stromal cells including macrophages.
Collapse
Affiliation(s)
- Tatsuyuki Sato
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
22
|
Tang J, Li Y, Liu X, Yu G, Zheng F, Guo Z, Zhang Y, Shao W, Wu S, Li H. Cobalt induces neurodegenerative damages through impairing autophagic flux by activating hypoxia-inducible factor-1α triggered ROS overproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159432. [PMID: 36243078 DOI: 10.1016/j.scitotenv.2022.159432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cobalt is an environmental toxicant, and excessive bodily exposure can damage the nervous system. Particularly, our previous study reported that low-dose cobalt (significantly less than the safety threshold) is still able to induce neurodegenerative changes. However, the underlying molecular mechanism is still insufficient revealed. Herein, we further investigate the molecular mechanism between cobalt-induced neurodegeneration and autophagy, as well as explore the interplay between hypoxia-inducible factor-1α (HIF-1α), reactive oxygen species (ROS), and autophagy in cobalt-exposed mice and human neuroglioma cells. We first reveal cobalt as an environmental toxicant to severely induce β amyloid (Aβ) deposition, tau hyperphosphorylation, and dysregulated autophagy in the hippocampus and cortex of mice. In particular, we further identify that cobalt-induced neurotoxicity is triggered by the impairment of autophagic flux in vitro experiments. Moreover, the mechanistic study reveals that cobalt exposure extremely activates HIF-1α expression to facilitate the overproduction of ROS. Then, elevated ROS can target the amino-threonine kinase (AKT)-mammalian target of rapamycin (mTOR)-Unc-51 like autophagy activating kinase 1 (ULK1) signaling pathway to participate in cobalt-induced impairment of autophagic flux. Subsequently, defected autophagy further exacerbates cobalt-induced neurotoxicity for its unable to eliminate the deposition of pathological protein. Therefore, our data provide scientific evidence for cobalt safety evaluation and risk assessment and propose a breakthrough for understanding the regulatory relationship between HIF-1α, ROS, and autophagy in cobalt-induced neurodegeneration.
Collapse
Affiliation(s)
- Jianping Tang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yanjun Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xu Liu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yating Zhang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
23
|
Hu Y, Lu H, Li H, Ge J. Molecular basis and clinical implications of HIFs in cardiovascular diseases. Trends Mol Med 2022; 28:916-938. [PMID: 36208988 DOI: 10.1016/j.molmed.2022.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Oxygen maintains the homeostasis of an organism in a delicate balance in different tissues and organs. Under hypoxic conditions, hypoxia-inducible factors (HIFs) are specific and dominant factors in the spatiotemporal regulation of oxygen homeostasis. As the most basic functional unit of the heart at the cellular level, the cardiomyocyte relies on oxygen and nutrients delivered by the microvasculature to keep the heart functioning properly. Under hypoxic stress, HIFs are involved in acute and chronic myocardial pathology because of their spatiotemporal specificity, thus granting them therapeutic potential. Most adult animals lack the ability to regenerate their myocardium entirely following injury, and complete regeneration has long been a goal of clinical treatment for heart failure. The precise manipulation of HIFs (considering their dynamic balance and transformation) and the development of HIF-targeted drugs is therefore an extremely attractive cardioprotective therapy for protecting against myocardial ischemic and hypoxic injury, avoiding myocardial remodeling and heart failure, and promoting recovery of cardiac function.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Neffeová K, Olejníčková V, Naňka O, Kolesová H. Development and diseases of the coronary microvasculature and its communication with the myocardium. WIREs Mech Dis 2022; 14:e1560. [DOI: 10.1002/wsbm.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kristýna Neffeová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| | - Ondřej Naňka
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| |
Collapse
|
25
|
Zhu S, Yu C, Liu N, Zhao M, Chen Z, Liu J, Li G, Huang H, Guo H, Sun T, Chen J, Zhuang J, Zhu P. Injectable conductive gelatin methacrylate / oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment. Bioact Mater 2022; 13:119-134. [PMID: 35224296 PMCID: PMC8844712 DOI: 10.1016/j.bioactmat.2021.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 02/03/2023] Open
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) transplantation has been proposed as a promising treatment modality for myocardial infarction (MI), but the low retention rate remains a considerable challenge. Injectable natural polymer hydrogels with conductivity ability are highly desirable as cell delivery vehicles to repair infarct myocardium and restore the cardiac function. In this work, we developed a hydrogel system based on gelatin methacrylate (GelMA) and oxidized dextran (ODEX) as cell delivery vehicles for MI. And dopamine could be used as a reductant of graphene oxide (GO) to form reductive GO (rGO). By adjusting the amount of rGO, the conductivity of hydrogels with 0.5 mg/mL rGO concentration (≈10−4 S/cm) was similar to that of natural heart tissue. In vitro cell experiments showed that the prepared hydrogels had excellent biocompatibility and cell delivery ability of UCMSCs. More importantly, GelMA-O5/rGO hydrogel could promote UCMSCs growth and proliferation, improve the myocardial differentiation ability of UCMSCs, and up-regulate the expression of cTnI and Cx43. Further in vivo experiments demonstrated that GelMA-O5/rGO/UCMSCs Hydrogel could significantly improve the ejection fraction (EF) of rats and significantly reduce myocardial infarct area compared to PBS group, promote the survival of UCMSCs, enhance the expression level of cTnI and Cx43, and decrease the expression level of caspase-3. The findings of this study suggested that the injectable conductive GelMA-O5/rGO hydrogel encapsulating UCMSCs could improve damaged myocardial tissue and reconstruct myocardial function, which will be a promising therapeutic strategy for cardiac repair. Conducting interpenetrating polymer network (IPN) hydrogels were synthesized for myocardial infarction treatment. The conductivity of hydrogel with 0.5 mg/mL rGO concentration (≈10−4 S/cm) was similar to that of natural heart tissue. The hydrogel could promote the growth and proliferation of UCMSCs, and improve the myocardial differentiation ability of UCMSCs. The hydrogel could reduce infarct size and cardiac fibrosis in the infarct zone, increase ventricular ejection fraction. The hydrogel could promote the survival of UCMSCs, up-regulate the expression level of cTnI and Cx43, down-regulate the expression level of caspase-3.
Collapse
|
26
|
Semenza GL. Hypoxia-inducible factors: roles in cardiovascular disease progression, prevention, and treatment. Cardiovasc Res 2022; 119:371-380. [PMID: 35687650 DOI: 10.1093/cvr/cvac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIF)-1 and HIF-2 are master regulators of oxygen homeostasis that regulate the expression of thousands of genes in order to match O2 supply and demand. A large body of experimental data links HIF activity to protection against multiple disorders affecting the cardiovascular system: ischemic cardiovascular disease (including coronary artery disease and peripheral artery disease), through collateral blood vessel formation and preconditioning phenomena; emphysema; lymphedema; and lung transplant rejection. In these disorders, strategies to increase the expression of one or both HIFs may be of therapeutic utility. Conversely, extensive data link HIFs to the pathogenesis of pulmonary arterial hypertension and drugs that inhibit one or both HIFs may be useful in treating this disease.
Collapse
Affiliation(s)
- Gregg L Semenza
- Armstrong Oxygen Biology Research Center, Vascular Program, Institute for Cell Engineering; and Departments of Genetic Medicine, Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 2022; 238:108186. [PMID: 35413308 DOI: 10.1016/j.pharmthera.2022.108186] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xinyao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| |
Collapse
|
28
|
Nemcakova I, Litvinec A, Mandys V, Potocky S, Plencner M, Doubkova M, Nanka O, Olejnickova V, Sankova B, Bartos M, Ukraintsev E, Babčenko O, Bacakova L, Kromka A, Rezek B, Sedmera D. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep 2022; 12:5264. [PMID: 35347219 PMCID: PMC8960880 DOI: 10.1038/s41598-022-09183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Andrej Litvinec
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vaclav Mandys
- Department of Pathology, Charles University, Third Faculty of Medicine, Ruska 2411, 100 00, Prague 10, Czech Republic
| | - Stepan Potocky
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Martin Plencner
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ondrej Nanka
- Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Veronika Olejnickova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Barbora Sankova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, Charles University, First Faculty of Medicine, U Nemocnice 2, 1280 00, Prague 2, Czech Republic
| | - Egor Ukraintsev
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Oleg Babčenko
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - David Sedmera
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic. .,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
29
|
Meng LB, Zhang YM, Luo Y, Gong T, Liu DP. Chronic Stress A Potential Suspect Zero of Atherosclerosis: A Systematic Review. Front Cardiovasc Med 2022; 8:738654. [PMID: 34988123 PMCID: PMC8720856 DOI: 10.3389/fcvm.2021.738654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis (AS) is a chronic vascular inflammatory disease, in which the lipid accumulation in the intima of the arteries shows yellow atheromatous appearance, which is the pathological basis of many diseases, such as coronary artery disease, peripheral artery disease and cerebrovascular disease. In recent years, it has become the main cause of death in the global aging society, which seriously endangers human health. As a result, research on AS is increasing. Lesions of atherosclerosis contain macrophages, T cells and other cells of the immune response, together with cholesterol that infiltrates from the blood. Recent studies have shown that chronic stress plays an important role in the occurrence and development of AS. From the etiology of disease, social, environmental and genetic factors jointly determine the occurrence of disease. Atherosclerotic cardio-cerebrovascular disease (ASCVD) is often caused by chronic stress (CS). If it cannot be effectively prevented, there will be biological changes in the body environment successively, and then the morphological changes of the corresponding organs. If the patient has a genetic predisposition and a combination of environmental factors triggers the pathogenesis, then chronic stress can eventually lead to AS. Therefore, this paper discusses the influence of chronic stress on AS in the aspects of inflammation, lipid metabolism, endothelial dysfunction, hemodynamics and blood pressure, plaque stability, autophagy, ferroptosis, and cholesterol efflux.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan-Meng Zhang
- Department of Internal Medicine, The Third Medical Centre of Chinese People's Liberation Army (PLA) General Hospital, The Training Site for Postgraduate of Jinzhou Medical University, Beijing, China
| | - Yue Luo
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tao Gong
- Department of Neurology, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - De-Ping Liu
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
MicroRNA-31 inhibits traumatic brain injury-triggered neuronal cell apoptosis by regulating hypoxia-inducible factor-1A/vascular endothelial growth factor A axis. Neuroreport 2022; 33:1-12. [PMID: 34874324 DOI: 10.1097/wnr.0000000000001741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MicroRNAs are dysregulated in traumatic brain injury and are involved in neuronal cell behaviors. Previous studies identified miR-31 as a spinal cord injury-related microRNA, while its role in traumatic brain injury remains indistinct. Herein, we explored the participation of miR-31 in traumatic brain injury. Traumatic brain injury model was established after traumatic neuron injury. Neurocytes were transfected with miR-31 mimic or inhibitor. Cell counting kit-8, lactate dehydrogenase assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, and western blot were applied to examine cell viability, lactate dehydrogenase releasing, apoptosis, and apoptosis-related protein. The binding between miR-31 and hypoxia-inducible factor-1A was verified by luciferase assay. Quantitative reverse transcription-PCR was used to detect the regulation of traumatic neuron injury or hypoxia-inducible factor-1A overexpression on vascular endothelial growth factor A level. The effects of hypoxia-inducible factor-1A or vascular endothelial growth factor A on neuronal cell injury were examined. Additionally, phosphatidylinositol 3kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway was also examined using western blot. Downregulation of miR-31 promoted traumatic neuron injury-induced neuronal cell injury, and its overexpression did the opposite. Hypoxia-inducible factor-1A acted as a downstream mRNA of miR-31 and its downregulation was involved in miR-31-regulated neuronal cell injury. Vascular endothelial growth factor A level was elevated by traumatic neuron injury or hypoxia-inducible factor-1A overexpression. Hypoxia-inducible factor-1A enhanced neuronal cell injury via promoting vascular endothelial growth factor A expression. Furthermore, miR-31/hypoxia-inducible factor-1A/vascular endothelial growth factor A regulated PI3K/AKT/mTOR pathway in neuronal cells. Our study demonstrated miR-31 inhibited neuronal cell apoptosis via regulating hypoxia-inducible factor-1A/vascular endothelial growth factor A axis.
Collapse
|
31
|
Elorza Ridaura I, Sorrentino S, Moroni L. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101837. [PMID: 34693660 PMCID: PMC8655224 DOI: 10.1002/advs.202101837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 05/10/2023]
Abstract
Neurovascular disorders, which involve the vascular and nervous systems, are common. Research on such disorders usually focuses on either vascular or nervous components, without looking at how they interact. Adopting a neurovascular perspective is essential to improve current treatments. Therefore, comparing molecular processes known to be involved in both systems separately can provide insight into promising areas of future research. Since development and regeneration share many mechanisms, comparing signaling molecules involved in both the developing vascular and nervous systems and shedding light to those that they have in common can reveal processes, which have not yet been studied from a regenerative perspective, yet hold great potential. Hence, this review discusses and compares processes involved in the development of the vascular and nervous systems, in order to provide an overview of the molecular mechanisms, which are most promising with regards to treatment for neurovascular disorders. Vascular endothelial growth factor, semaphorins, and ephrins are found to hold the most potential, while fibroblast growth factor, bone morphogenic protein, slits, and sonic hedgehog are shown to participate in both the developing vascular and nervous systems, yet have not been studied at the neurovascular level, therefore being of special interest for future research.
Collapse
Affiliation(s)
- Idoia Elorza Ridaura
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefano Sorrentino
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| |
Collapse
|
32
|
Jiang Y, Duan LJ, Fong GH. Oxygen-sensing mechanisms in development and tissue repair. Development 2021; 148:273632. [PMID: 34874450 DOI: 10.1242/dev.200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
33
|
Semenza GL. Heritable disorders of oxygen sensing. Am J Med Genet A 2021; 185:3334-3339. [PMID: 34655169 DOI: 10.1002/ajmg.a.62521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factors (HIFs) activate gene transcription in response to reduced O2 availability and play critical roles in development, physiology, and disease pathogenesis. Mutations that dysregulate HIF activity are the genetic basis for tumor predisposition in the von Hippel-Lindau syndrome and excess red blood cell production in hereditary erythrocytosis.
Collapse
Affiliation(s)
- Gregg L Semenza
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Maryland, Baltimore, USA
| |
Collapse
|
34
|
Choi J, Kim W, Yoon H, Lee J, Jun JH. Dynamic Oxygen Conditions Promote the Translocation of HIF-1 α to the Nucleus in Mouse Blastocysts. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5050527. [PMID: 34608438 PMCID: PMC8487385 DOI: 10.1155/2021/5050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Oxygen tension is one of the most critical factors for mammalian embryo development and its survival. The HIF protein is an essential transcription factor that activated under hypoxic conditions. In this study, we evaluated the effect of dynamic oxygen conditions on the expression of embryonic genes and translocation of hypoxia-inducible factor-1α (HIF-1α) in cultured mouse blastocysts. Two-pronuclear (2PN) zygotes harvested from ICR mice were subjected to either high oxygen (HO; 20%), low oxygen (LO; 5%), or dynamic oxygen (DO; 5% to 2%) conditions. In the DO group, PN zygotes were cultured in 5% O2 from days 1 to 3 and then in 2% O2 till day 5 after hCG injection. On day 5, the percentage of blastocysts in the cultured embryos from each group was estimated, and the embryos were also subjected to immunocytochemical and gene expression analysis. We found that the percentage of blastocysts was similar among the experimental groups; however, the percentage of hatching blastocysts in the DO and LO groups was significantly higher than that in the HO group. The total cell number of blastocysts in the DO group was significantly higher than that of both the HO and LO groups. Further, gene expression analysis revealed that the expression of genes related to the embryonic development was significantly higher in the DO group than that in the HO and LO groups. Interestingly, HIF-1α mRNA expression did not significantly differ; however, HIF-1α protein translocation from the cytoplasm to the nucleus was significantly higher in the DO group than in the HO and LO groups. Our study suggests that dynamic oxygen concentrations increase the developmental capacity in mouse preimplantation embryos through activation of the potent transcription factor HIF-1α.
Collapse
Affiliation(s)
- Jungwon Choi
- Department of Senior Healthcare BK21 Plus Program, Graduate School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Wontae Kim
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Republic of Korea
| | - Hyejin Yoon
- Department of Senior Healthcare BK21 Plus Program, Graduate School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Senior Healthcare BK21 Plus Program, Graduate School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
35
|
Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 2021; 131:137557. [PMID: 34623330 DOI: 10.1172/jci137557] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart forms early in development and delivers oxygenated blood to the rest of the embryo. After birth, the heart requires kilograms of ATP each day to support contractility for the circulation. Cardiac metabolism is omnivorous, utilizing multiple substrates and metabolic pathways to produce this energy. Cardiac development, metabolic tuning, and the response to ischemia are all regulated in part by the hypoxia-inducible factors (HIFs), central components of essential signaling pathways that respond to hypoxia. Here we review the actions of HIF1, HIF2, and HIF3 in the heart, from their roles in development and metabolism to their activity in regeneration and preconditioning strategies. We also discuss recent work on the role of HIFs in atherosclerosis, the precipitating cause of myocardial ischemia and the leading cause of death in the developed world.
Collapse
|
36
|
Wörsdörfer P, Ergün S. The Impact of Oxygen Availability and Multilineage Communication on Organoid Maturation. Antioxid Redox Signal 2021; 35:217-233. [PMID: 33334234 DOI: 10.1089/ars.2020.8195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: An optimal supply with oxygen is of high importance during embryogenesis and a prerequisite for proper organ development. Different tissues require varying amounts of oxygen, and even within single organs, different phases of development go alongside with either physiological hypoxia or the need for sufficient oxygen supply. Recent Advances: Human induced pluripotent stem cell-derived organoid models are state of the art cell culture platforms for the investigation of developmental processes, disease modeling, and drug testing. Organoids modeling the development of multiple tissues were developed within the past years. Critical Issues: Until now, optimization of oxygen supply and its role during organoid growth, differentiation, and maturation have only rarely been addressed. Recent publications indicate that hypoxia-induced processes play an important role in three-dimensional tissue cultures, triggering multilineage communication between mesenchymal cells, the endothelium, as well as organotypic cells. Later in culture, a sufficient supply with oxygen is of high importance to allow larger organoid sizes. Moreover, cellular stress is reduced and tissue maturation is improved. Therefore, a functional blood vessel network is required. Future Directions: In this review, we will briefly summarize aspects of the role of oxygen during embryonic development and organogenesis, present an update on novel organoid models with a special focus on organoid vascularization, and discuss the importance of complex organoids involving parenchymal cells, mesenchymal cells, inflammatory cells, and functional blood vessels for the generation of mature and fully functional tissues in vitro. Antioxid. Redox Signal. 35, 217-233.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Joyce W, Perry SF. Hif-1α is not required for the development of cardiac adrenergic control in zebrafish (Danio rerio). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:623-631. [PMID: 34288573 DOI: 10.1002/jez.2507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
Adrenergic regulation, acting via the sympathetic nervous system, provides a major mechanism to control cardiac function. It has recently been shown that hypoxia inducible factor-1α (Hif-1α) is necessary for normal development of sympathetic innervation and control of cardiac function in the mouse. To investigate whether this may represent a fundamental trait shared across vertebrates, we assessed adrenergic regulation of the heart in wild-type and Hif-1α knockout (hif-1α -/- ) zebrafish (Danio rerio). Wild-type and hif-1α -/- zebrafish larvae (aged 4 and 7 days postfertilisation) exhibited similar routine heart rates within a given age group, and β-adrenergic receptor blockade with propranolol universally reduced heart rate to comparable levels, indicating similar adrenergic tone in both genotypes. In adult fish, in vivo heart rate measured during anaesthesia was identical between genotypes. Treatment of spontaneously beating hearts in vitro with adrenaline revealed a similar positive chronotropic effect and similar maximum heart rates in both genotypes. Tyrosine hydroxylase immunohistochemistry with confocal microscopy demonstrated that the bulbus arteriosus (outflow tract of the teleost heart) of adult fish was particularly well innervated by sympathetic nerves, and nerve density (as a percentage of bulbus arteriosus area) was similar between wild-types and hif-1α -/- mutants. In summary, we did not find any evidence that adrenergic cardiac control was perturbed in larval or adult zebrafish lacking Hif-1α. We conclude that Hif-1α is not essential for the normal development of cardiovascular control or adult sympathetic cardiac innervation in zebrafish, although it is possible that it plays a redundant or auxiliary role.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology-Zoophysiology, Aarhus University, Aarhus C, Denmark
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Bohuslavova R, Smolik O, Malfatti J, Berkova Z, Novakova Z, Saudek F, Pavlinkova G. NEUROD1 Is Required for the Early α and β Endocrine Differentiation in the Pancreas. Int J Mol Sci 2021; 22:6713. [PMID: 34201511 PMCID: PMC8268837 DOI: 10.3390/ijms22136713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| | - Ondrej Smolik
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Jessica Malfatti
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (Z.B.); (F.S.)
| | - Zaneta Novakova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (Z.B.); (F.S.)
| | - Gabriela Pavlinkova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| |
Collapse
|
39
|
Semenza GL. Heritable disorders of oxygen sensing. Am J Med Genet A 2021; 185:2576-2581. [PMID: 33973706 DOI: 10.1002/ajmg.a.62250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIFs) activate gene transcription in response to reduced O2 availability and play critical roles in development, physiology, and disease pathogenesis. Mutations that dysregulate HIF activity are the genetic basis for tumor predisposition in the von Hippel-Lindau syndrome and excess red blood cell production in hereditary erythrocytosis.
Collapse
Affiliation(s)
- Gregg L Semenza
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Maryland, Baltimore, USA
| |
Collapse
|
40
|
Furnary T, Garcia-Milian R, Liew Z, Whirledge S, Vasiliou V. In Silico Exploration of the Potential Role of Acetaminophen and Pesticides in the Etiology of Autism Spectrum Disorder. TOXICS 2021; 9:toxics9050097. [PMID: 33925648 PMCID: PMC8146009 DOI: 10.3390/toxics9050097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
Recent epidemiological studies suggest that prenatal exposure to acetaminophen (APAP) is associated with increased risk of Autism Spectrum Disorder (ASD), a neurodevelopmental disorder affecting 1 in 59 children in the US. Maternal and prenatal exposure to pesticides from food and environmental sources have also been implicated to affect fetal neurodevelopment. However, the underlying mechanisms for ASD are so far unknown, likely with complex and multifactorial etiology. The aim of this study was to explore the potential effects of APAP and pesticide exposure on development with regards to the etiology of ASD by highlighting common genes and biological pathways. Genes associated with APAP, pesticides, and ASD through human research were retrieved from molecular and biomedical literature databases. The interaction network of overlapping genetic associations was subjected to network topology analysis and functional annotation of the resulting clusters. These genes were over-represented in pathways and biological processes (FDR p < 0.05) related to apoptosis, metabolism of reactive oxygen species (ROS), and carbohydrate metabolism. Since these three biological processes are frequently implicated in ASD, our findings support the hypothesis that cell death processes and specific metabolic pathways, both of which appear to be targeted by APAP and pesticide exposure, may be involved in the etiology of ASD. This novel exposures-gene-disease database mining might inspire future work on understanding the biological underpinnings of various ASD risk factors.
Collapse
Affiliation(s)
- Tristan Furnary
- Environmental Health Sciences Department, Yale School of Public Health, New Haven, CT 06510, USA;
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Zeyan Liew
- Yale Center for Perinatal, Pediatric and Environmental Health, Yale School of Public Health, New Haven, CT 06510, USA;
| | - Shannon Whirledge
- Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Vasilis Vasiliou
- Environmental Health Sciences Department, Yale School of Public Health, New Haven, CT 06510, USA;
- Correspondence:
| |
Collapse
|
41
|
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience 2021; 24:102387. [PMID: 33981974 PMCID: PMC8086021 DOI: 10.1016/j.isci.2021.102387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.
Collapse
Affiliation(s)
- Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Gregorovičová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
42
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
43
|
Alzahrani AA, Cao LL, Aldossary HS, Nathanael D, Fu J, Ray CJ, Brain KL, Kumar P, Coney AM, Holmes AP. β-Adrenoceptor blockade prevents carotid body hyperactivity and elevated vascular sympathetic nerve density induced by chronic intermittent hypoxia. Pflugers Arch 2021; 473:37-51. [PMID: 33210151 PMCID: PMC7782391 DOI: 10.1007/s00424-020-02492-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown. This study evaluated whether beta-blocker treatment with propranolol (Prop) prevented the development of CB hyperactivity, vascular sympathetic nerve growth and hypertension caused by CIH. Adult male Wistar rats were assigned into 1 of 4 groups: Control (N), N + Prop, CIH and CIH + Prop. The CIH paradigm consisted of 8 cycles h-1, 8 h day-1, for 3 weeks. Propranolol was administered via drinking water to achieve a dose of 40 mg kg-1 day-1. Immunohistochemistry revealed the presence of both β1 and β2-adrenoceptor subtypes on the CB type I cell. CIH caused a 2-3-fold elevation in basal CB single-fibre chemoafferent activity and this was prevented by chronic propranolol treatment. Chemoafferent responses to hypoxia and mitochondrial inhibitors were attenuated by propranolol, an effect that was greater in CIH animals. Propranolol decreased respiratory frequency in normoxia and hypoxia in N and CIH. Propranolol also abolished the CIH mediated increase in vascular sympathetic nerve density. Arterial blood pressure was reduced in propranolol groups during hypoxia. Propranolol exaggerated the fall in blood pressure in most (6/7) CIH animals during hypoxia, suggestive of reduced sympathetic tone. These findings therefore identify new roles for β-adrenergic stimulation in evoking CB hyperactivity, sympathetic vascular hyperinnervation and altered blood pressure control in response to CIH.
Collapse
Affiliation(s)
- Abdulaziz A Alzahrani
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Respiratory Care Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lily L Cao
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hayyaf S Aldossary
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Demitris Nathanael
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jiarong Fu
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare J Ray
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Keith L Brain
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Prem Kumar
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew M Coney
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Andrew P Holmes
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
44
|
Pavlinkova G. Molecular Aspects of the Development and Function of Auditory Neurons. Int J Mol Sci 2020; 22:ijms22010131. [PMID: 33374462 PMCID: PMC7796308 DOI: 10.3390/ijms22010131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- BIOCEV, Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
45
|
Tittarelli A, Navarrete M, Lizana M, Hofmann-Vega F, Salazar-Onfray F. Hypoxic Melanoma Cells Deliver microRNAs to Dendritic Cells and Cytotoxic T Lymphocytes through Connexin-43 Channels. Int J Mol Sci 2020; 21:ijms21207567. [PMID: 33066331 PMCID: PMC7589225 DOI: 10.3390/ijms21207567] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations in microRNA (miRNA) profiles, induced by tumor microenvironment stressors, like hypoxia, allow cancer cells to acquire immune-resistance phenotypes. Indeed, hypoxia-induced miRNAs have been implicated in cancer progression through numerous cancer cell non-autonomous mechanisms, including the direct transfer of hypoxia-responsive miRNA from cancer to immune cells via extracellular vesicles. Connexin-43 (Cx43)-constituted gap junctions (GJs) have also been involved in miRNA intercellular mobilization, in other biological processes. In this report, we aimed to evaluate the involvement of Cx43-GJs in the shift of miRNAs induced by hypoxia, from hypoxic melanoma cells to dendritic cells and melanoma-specific cytotoxic T lymphocytes (CTLs). Using qRT-PCR arrays, we identified that miR-192-5p was strongly induced in hypoxic melanoma cells. Immune cells acquired this miRNA after co-culture with hypoxic melanoma cells. The transfer of miR-192-5p was inhibited when hypoxic melanoma cells expressed a dominant negative Cx43 mutant or when Cx43 expression was silenced using specific short-hairpin RNAs. Interestingly, miR-192-5p levels on CTLs after co-culture with hypoxic melanoma cells were inversely correlated with the cytotoxic activity of T cells and with ZEB2 mRNA expression, a validated immune-related target of miR-192-5p, which is also observed in vivo. Altogether, our data suggest that hypoxic melanoma cells may suppress CTLs cytotoxic activity by transferring hypoxia-induced miR-192-5p through a Cx43-GJs driven mechanism, constituting a resistance strategy for immunological tumor escape.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago 8940577, Chile
- Correspondence: ; Tel.: +56-2-2787-7903
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Marcelo Lizana
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
| | - Francisca Hofmann-Vega
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
46
|
Abstract
Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
47
|
Das T, Soren K, Yerasi M, Kamle A, Kumar A, Chakravarty S. Molecular Basis of Sex Difference in Neuroprotection induced by Hypoxia Preconditioning in Zebrafish. Mol Neurobiol 2020; 57:5177-5192. [PMID: 32862360 DOI: 10.1007/s12035-020-02091-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia, the major cause of ischemic injury, leads to debilitating disease in infants via birth asphyxia and cerebral palsy, whereas in adults via heart attack and stroke. A widespread, natural protective phenomenon termed 'hypoxic preconditioning' (PH) occurs when prior exposures to hypoxia eventually result in robust hypoxia resistance. Accordingly, we have developed and optimized a novel model of hypoxic preconditioning in adult zebrafish to mimic the tolerance of mini stroke(s) in human, which appears to protect against the severe damage inflicted by a major stroke event. Here, we observed a remarkable difference in the progression pattern of neuroprotection between preconditioning hypoxia followed by acute hypoxia (PH) group, and acute hypoxia (AH) only group, with noticeable sex difference when compared with normoxia behaviour upon recovery. Since gender difference has been reported in stroke risk factors and disease history, it was pertinent to investigate whether any such sex difference also exists in PH's protective mechanism against acute ischemic stroke. In order to elucidate the neural molecular mechanisms behind sex difference in neuroprotection induced by PH, a high throughput proteomics approach utilizing iTRAQ was performed, followed by protein enrichment analysis using ingenuity pathway analysis (IPA) tool. Out of thousands of significantly altered proteins in zebrafish brain, the ones having critical role either in neuroglial proliferation/differentiation or neurotrophic functions were validated by analyzing their expression levels in preconditioned (PH), acute hypoxia (AH), and normoxia groups. The data indicate that female zebrafish brains are more protected against the severity of AH when exposed to the hypoxic preconditioning. The study also sheds light on the involvement of many signalling pathways underlying sex difference in preconditioning-induced neuroprotective mechanism, which can be further validated for the therapeutic approach.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India
| | - Kalyani Soren
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India
| | - Mounica Yerasi
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India.,CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India.
| |
Collapse
|
48
|
Goldowitz D. Oxygen Sensing Comes to the Development of the Cerebellum. Neuron 2020; 106:554-555. [PMID: 32437652 DOI: 10.1016/j.neuron.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Neuron, Kullmann et al. (2020) demonstrate that the hypoxic state of the developing cerebellum stimulates Hif1a expression to maintain cell proliferation until vascularization creates normoxic conditions, activating Pard polarity signaling complex genes and stimulating cells to cease proliferation and begin migration.
Collapse
Affiliation(s)
- Dan Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
49
|
Joyce W, Perry SF. Hypoxia inducible factor-1 α knockout does not impair acute thermal tolerance or heat hardening in zebrafish. Biol Lett 2020; 16:20200292. [PMID: 32673542 PMCID: PMC7423049 DOI: 10.1098/rsbl.2020.0292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
The rapid increase in critical thermal maximum (CTmax) in fish (or other animals) previously exposed to critically high temperature is termed 'heat hardening', which likely represents a key strategy to cope with increasingly extreme environments. The physiological mechanisms that determine acute thermal tolerance, and the underlying pathways facilitating heat hardening, remain debated. It has been posited, however, that exposure to high temperature is associated with tissue hypoxia and may be associated with the increased expression of hypoxia-inducible factor-1 (Hif-1). We studied acute thermal tolerance in zebrafish (Danio rerio) lacking functional Hif-1α paralogs (Hif-1aa and Hif-1ab double knockout; Hif-1α-/-), which are known to exhibit markedly reduced hypoxia tolerance. We hypothesized that Hif-1α-/- zebrafish would suffer reduced acute thermal tolerance relative to wild type and that the heat hardening ability would be lost. However, on the contrary, we observed that Hif-1α-/- and wild-type fish did not differ in CTmax, and both genotypes exhibited heat hardening of a similar degree when CTmax was re-tested 48 h later. Despite exhibiting impaired hypoxia tolerance, Hif-1α-/- zebrafish display unaltered thermal tolerance, suggesting that these traits are not necessarily functionally associated. Hif-1α is accordingly not required for short-term acclimation in the form of heat hardening.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ONCanada, K1N 6N5
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Steve F. Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ONCanada, K1N 6N5
| |
Collapse
|
50
|
Abstract
Human survival is dependent upon the continuous delivery of O2 to each cell in the body in sufficient amounts to meet metabolic requirements, primarily for ATP generation by oxidative phosphorylation. Hypoxia-inducible factors (HIFs) regulate the transcription of thousands of genes to balance O2 supply and demand. The HIFs are negatively regulated by O2-dependent hydrox-ylation and ubiquitination by prolyl hydroxylase domain (PHD) proteins and the von Hippel-Lindau (VHL) protein. Germline mutations in the genes encoding VHL, HIF-2α, and PHD2 cause hereditary erythrocytosis, which is characterized by polycythemia and pulmonary hypertension and is caused by increased HIF activity. Evolutionary adaptation to life at high altitude is associated with unique genetic variants in the genes encoding HIF-2α and PHD2 that blunt the erythropoietic and pulmonary vascular responses to hypoxia.
Collapse
Affiliation(s)
- Gregg L Semenza
- Departments of Genetic Medicine, Oncology, Pediatrics, Radiation Oncology, Medicine, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|