1
|
Willemsen A, Manzano-Marín A, Horn M. Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts. Genome Biol Evol 2025; 17:evae271. [PMID: 39760805 PMCID: PMC11702301 DOI: 10.1093/gbe/evae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba. We employ their genomic data to investigate the predictability of giant virus host range. Using a combination of long- and short-read sequencing, we obtained highly contiguous and complete genomes of Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba terricola, Naegleria clarki, Vermamoeba vermiformis, and Willaertia magna, contributing to the collection of sequences for the eukaryotic tree of life. We found that the 6 amoebae have distinct codon usage patterns and that, contrary to other virus groups, giant viruses often have different and even opposite codon usage with their known hosts. Conversely, giant viruses with matching codon usage are frequently not known to infect or replicate in these hosts. Interestingly, analyses of integrated viral sequences in the amoeba host genomes reveal potential novel virus-host associations. Matching of codon usage preferences is often used to predict virus-host pairs. However, with the broad-scale analyses performed in this study, we demonstrate that codon usage alone appears to be a poor predictor of host range for giant viruses infecting amoeba. We discuss the potential strategies that giant viruses employ to ensure high viral fitness in nonmatching hosts. Moreover, this study emphasizes the need for more high-quality protist genomes. Finally, the amoeba genomes presented in this study set the stage for future experimental studies to better understand how giant viruses interact with different host species.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
2
|
Thomy J, Schvarcz CR, McBeain KA, Edwards KF, Steward GF. Eukaryotic viruses encode the ribosomal protein eL40. NPJ VIRUSES 2024; 2:51. [PMID: 39464202 PMCID: PMC11499249 DOI: 10.1038/s44298-024-00060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Viruses in the phylum Nucleocytoviricota are large, complex and have an exceptionally diverse metabolic repertoire. Some encode hundreds of products involved in the translation of mRNA into protein, but none was known to encode any of the proteins in ribosomes, the central engines of translation. With the discovery of the eL40 gene in FloV-SA2, we report the first example of a eukaryotic virus encoding a ribosomal protein and show that this gene is also present and expressed in other uncultivated marine giant viruses. FloV-SA2 also encodes a "group II" viral rhodopsin, a viral light-activated protein of unknown function previously only reported in metagenomes. FloV-SA2 is thus a valuable model system for investigating new mechanisms by which viruses manipulate eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Julie Thomy
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Christopher R. Schvarcz
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kelsey A. McBeain
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kyle F. Edwards
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Grieg F. Steward
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
3
|
Oppermann J, Rozenberg A, Fabrin T, González-Cabrera C, Parker R, Béjà O, Prigge M, Hegemann P. Robust optogenetic inhibition with red-light-sensitive anion-conducting channelrhodopsins. eLife 2024; 12:RP90100. [PMID: 39401075 PMCID: PMC11473104 DOI: 10.7554/elife.90100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used to optically activate or silence selected electrogenic cells, such as individual brain neurons. Here, we describe identifying and characterizing a set of anion-conducting ChRs (ACRs) from diverse taxa and representing various branches of the ChR phylogenetic tree. The Mantoniella squamata ACR (MsACR1) showed high sensitivity to yellow-green light (λmax at 555 nm) and was further engineered for optogenetic applications. A single amino-acid substitution that mimicked red-light-sensitive rhodopsins like Chrimson shifted the photosensitivity 20 nm toward red light and accelerated photocurrent kinetics. Hence, it was named red and accelerated ACR, raACR. Both wild-type and mutant are capable optical silencers at low light intensities in mouse neurons in vitro and in vivo, while raACR offers a higher temporal resolution.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| | - Andrey Rozenberg
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Thomaz Fabrin
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Cristian González-Cabrera
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Rafael Parker
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Oded Béjà
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Center for Behavioral Brain Sciences, CBBSMagdeburgGermany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
4
|
Ishizuka T, Suzuki K, Konno M, Shibata K, Kawasaki Y, Akiyama H, Murata T, Inoue K. Light-driven anion-pumping rhodopsin with unique cytoplasmic anion-release mechanism. J Biol Chem 2024; 300:107797. [PMID: 39305959 PMCID: PMC11532467 DOI: 10.1016/j.jbc.2024.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Microbial rhodopsins are photoreceptive membrane proteins found in microorganisms with an all-trans-retinal chromophore. The function of many microbial rhodopsins is determined by three residues in the third transmembrane helix called motif residues. Here, we report a group of microbial rhodopsins with a novel Thr-Thr-Gly (TTG) motif. The ion-transport assay revealed that they function as light-driven inward anion pumps similar to halorhodopsins previously found in archaea and bacteria. Based on the characteristic glycine residue in their motif and light-driven anion-pumping function, these new rhodopsins are called glycylhalorhodopsins (GHRs). X-ray crystallographic analysis found large cavities on the cytoplasmic side, which are produced by the small side-chain volume of the glycine residue in the motif. The opened structure of GHR on the cytoplasmic side is related to the anion releasing process to the cytoplasm during the photoreaction compared to canonical halorhodopsin from Natronomonas pharaonis (NpHR). GHR also transports SO42- and the extracellular glutamate residue plays an essential role in extracellular SO42- uptake. In summary, we have identified TTG motif-containing microbial rhodopsins that display an anion-releasing mechanism.
Collapse
Affiliation(s)
- Tomohiro Ishizuka
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Keisei Shibata
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Yuma Kawasaki
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Hidefumi Akiyama
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan; Membrane Protein Research and Molecular Chirality Research Centers, Chiba University, Chiba, Japan.
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
5
|
Truchon AR, Chase EE, Stark AR, Wilhelm SW. The diel disconnect between cell growth and division in Aureococcus is interrupted by giant virus infection. Front Microbiol 2024; 15:1426193. [PMID: 39234538 PMCID: PMC11371579 DOI: 10.3389/fmicb.2024.1426193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Viruses of eukaryotic algae have become an important research focus due to their role(s) in nutrient cycling and top-down control of algal blooms. Omics-based studies have identified a boon of genomic and transcriptional potential among the Nucleocytoviricota, a phylum of large dsDNA viruses which have been shown to infect algal and non-algal eukaryotes. However, little is still understood regarding the infection cycle of these viruses, particularly in how they take over a metabolically active host and convert it into a virocell state. Of particular interest are the roles light and the diel cycle in virocell development. Yet despite such a large proportion of Nucleocytoviricota infecting phototrophs, little work has been done to tie infection dynamics to the presence, and absence, of light. Here, we examine the role of the diel cycle on the physiological and transcriptional state of the pelagophyte Aureococcus anophagefferens while undergoing infection by Kratosvirus quantuckense strain AaV. Our observations demonstrate how infection by the virus interrupts the diel growth and division of this cell strain, and that infection further complicates the system by enhancing export of cell biomass.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Ashton R Stark
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Laperriere SM, Minch B, Weissman JL, Hou S, Yeh YC, Ignacio-Espinoza JC, Ahlgren NA, Moniruzzaman M, Fuhrman JA. Phylogenetic proximity drives temporal succession of marine giant viruses in a five-year metagenomic time-series. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607631. [PMID: 39185240 PMCID: PMC11343133 DOI: 10.1101/2024.08.12.607631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleocytoplasmic Large DNA Viruses (NCLDVs, also called giant viruses) are widespread in marine systems and infect a broad range of microbial eukaryotes (protists). Recent biogeographic work has provided global snapshots of NCLDV diversity and community composition across the world's oceans, yet little information exists about the guiding 'rules' underpinning their community dynamics over time. We leveraged a five-year monthly metagenomic time-series to quantify the community composition of NCLDVs off the coast of Southern California and characterize these populations' temporal dynamics. NCLDVs were dominated by Algavirales (Phycodnaviruses, 59%) and Imitervirales (Mimiviruses, 36%). We identified clusters of NCLDVs with distinct classes of seasonal and non-seasonal temporal dynamics. Overall, NCLDV population abundances were often highly dynamic with a strong seasonal signal. The Imitervirales group had highest relative abundance in the more oligotrophic late summer and fall, while Algavirales did so in winter. Generally, closely related strains had similar temporal dynamics, suggesting that evolutionary history is a key driver of the temporal niche of marine NCLDVs. However, a few closely-related strains had drastically different seasonal dynamics, suggesting that while phylogenetic proximity often indicates ecological similarity, occasionally phenology can shift rapidly, possibly due to host-switching. Finally, we identified distinct functional content and possible host interactions of two major NCLDV orders-including connections of Imitervirales with primary producers like the diatom Chaetoceros and widespread marine grazers like Paraphysomonas and Spirotrichea ciliates. Together, our results reveal key insights on season-specific effect of phylogenetically distinct giant virus communities on marine protist metabolism, biogeochemical fluxes and carbon cycling.
Collapse
Affiliation(s)
- Sarah M. Laperriere
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - JL Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Zhao J, Nair S, Zhang Z, Wang Z, Jiao N, Zhang Y. Macroalgal virosphere assists with host-microbiome equilibrium regulation and affects prokaryotes in surrounding marine environments. THE ISME JOURNAL 2024; 18:wrae083. [PMID: 38709876 PMCID: PMC11126160 DOI: 10.1093/ismejo/wrae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/23/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.
Collapse
Affiliation(s)
- Jiulong Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shailesh Nair
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zenghu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zhang L, Meng L, Fang Y, Ogata H, Okazaki Y. Spatiotemporal dynamics of giant viruses within a deep freshwater lake reveal a distinct dark-water community. THE ISME JOURNAL 2024; 18:wrae182. [PMID: 39312489 PMCID: PMC11465185 DOI: 10.1093/ismejo/wrae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.
Collapse
Affiliation(s)
- Liwen Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yue Fang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Eria-Oliveira AS, Folacci M, Chassot AA, Fedou S, Thézé N, Zabelskii D, Alekseev A, Bamberg E, Gordeliy V, Sandoz G, Vivaudou M. Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins. Nat Commun 2024; 15:65. [PMID: 38167346 PMCID: PMC10761956 DOI: 10.1038/s41467-023-44548-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP3-dependent stores. In vivo, this light-induced calcium release is sufficient to remote control muscle contraction in VCR1-expressing tadpoles. VCR1s natively confer light-induced Ca2+ release, suggesting a distinct mechanism for reshaping the response to light of virus-infected algae. The ability of VCR1s to photorelease calcium without altering plasma membrane electrical properties marks them as potential precursors for optogenetics tools, with potential applications in basic research and medicine.
Collapse
Affiliation(s)
- Ana-Sofia Eria-Oliveira
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France
| | - Mathilde Folacci
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Amandine Chassot
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France
| | - Sandrine Fedou
- Univ. Bordeaux, Inserm, BRIC, UMR, 1312, Bordeaux, France
| | - Nadine Thézé
- Univ. Bordeaux, Inserm, BRIC, UMR, 1312, Bordeaux, France
| | | | - Alexey Alekseev
- Advanced Optogenes Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Guillaume Sandoz
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France.
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France.
| | - Michel Vivaudou
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
10
|
Abstract
Long-read sequencing of a marine stramenopile genome yields a trove of insights into protist genomics and solves a 50-year-old viral mystery.
Collapse
Affiliation(s)
- Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Blacksburg, VA 24061, USA.
| |
Collapse
|
11
|
Truchon AR, Chase EE, Gann ER, Moniruzzaman M, Creasey BA, Aylward FO, Xiao C, Gobler CJ, Wilhelm SW. Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research. Front Microbiol 2023; 14:1284617. [PMID: 38098665 PMCID: PMC10720644 DOI: 10.3389/fmicb.2023.1284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
12
|
Abstract
Microbial rhodopsins are photoreceptive membrane proteins of microorganisms that express diverse photobiological functions. All-trans-retinylidene Schiff base, the so-called all-trans-retinal, is a chromophore of microbial rhodopsins, which captures photons. It isomerizes into the 13-cis form upon photoexcitation. Isomerization of retinal leads to sequential conformational changes in the protein, giving rise to active states that exhibit biological functions. Despite the rapidly expanding diversity of microbial rhodopsin functions, the photochemical behaviors of retinal were considered to be common among them. However, the retinal of many recently discovered rhodopsins was found to exhibit new photochemical characteristics, such as highly red-shifted absorption, isomerization to 7-cis and 11-cis forms, and energy transfer from a secondary carotenoid chromophore to the retinal, which is markedly different from that established in canonical microbial rhodopsins. Here, I review new aspects of retinal found in novel microbial rhodopsins and highlight the emerging problems that need to be addressed to understand noncanonical retinal photochemistry.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
13
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
14
|
Strauss J, Deng L, Gao S, Toseland A, Bachy C, Zhang C, Kirkham A, Hopes A, Utting R, Joest EF, Tagliabue A, Löw C, Worden AZ, Nagel G, Mock T. Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans. Nat Microbiol 2023; 8:2050-2066. [PMID: 37845316 PMCID: PMC10627834 DOI: 10.1038/s41564-023-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
Collapse
Affiliation(s)
- Jan Strauss
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
- German Maritime Centre, Hamburg, Germany.
| | - Longji Deng
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Sorbonne Université, CNRS, FR2424, Station biologique de Roscoff, Roscoff, France
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Amy Kirkham
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert Utting
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Eike F Joest
- Department of Biology, Biocenter, University of Würzburg, Wuerzburg, Germany
| | | | - Christian Löw
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
15
|
Meng L, Delmont TO, Gaïa M, Pelletier E, Fernàndez-Guerra A, Chaffron S, Neches RY, Wu J, Kaneko H, Endo H, Ogata H. Genomic adaptation of giant viruses in polar oceans. Nat Commun 2023; 14:6233. [PMID: 37828003 PMCID: PMC10570341 DOI: 10.1038/s41467-023-41910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023] Open
Abstract
Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus-host network at the polar-nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.
Collapse
Affiliation(s)
- Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Samuel Chaffron
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Russell Y Neches
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Junyi Wu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hiroto Kaneko
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan.
| |
Collapse
|
16
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
17
|
Coyle MC, Tajima AM, Leon F, Choksi SP, Yang A, Espinoza S, Hughes TR, Reiter JF, Booth DS, King N. An RFX transcription factor regulates ciliogenesis in the closest living relatives of animals. Curr Biol 2023; 33:3747-3758.e9. [PMID: 37552984 PMCID: PMC10530576 DOI: 10.1016/j.cub.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Cilia allowed our protistan ancestors to sense and explore their environment, avoid predation, and capture bacterial prey.1,2,3 Regulated ciliogenesis was likely critical for early animal evolution,2,4,5,6 and in modern animals, deploying cilia in the right cells at the right time is crucial for development and physiology. Two transcription factors, RFX and FoxJ1, coordinate ciliogenesis in animals7,8,9 but are absent from the genomes of many other ciliated eukaryotes, raising the question of how the regulation of ciliogenesis in animals evolved.10,11 By comparing the genomes of animals with those of their closest living relatives, the choanoflagellates, we found that the genome of their last common ancestor encoded at least three RFX paralogs and a FoxJ1 homolog. Disruption of the RFX homolog cRFXa in the model choanoflagellate Salpingoeca rosetta resulted in delayed cell proliferation and aberrant ciliogenesis, marked by the collapse and resorption of nascent cilia. In cRFXa mutants, ciliogenesis genes and foxJ1 were significantly downregulated. Moreover, the promoters of S. rosetta ciliary genes are enriched for DNA motifs matching those bound by the cRFXa protein in vitro. These findings suggest that an ancestral cRFXa homolog coordinated ciliogenesis in the progenitors of animals and choanoflagellates and that the selective deployment of the RFX regulatory module may have been necessary to differentiate ciliated from non-ciliated cell types during early animal evolution.
Collapse
Affiliation(s)
- Maxwell C Coyle
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Adia M Tajima
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Fredrick Leon
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada
| | - Sarah Espinoza
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David S Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
19
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Okhrimenko IS, Kovalev K, Petrovskaya LE, Ilyinsky NS, Alekseev AA, Marin E, Rokitskaya TI, Antonenko YN, Siletsky SA, Popov PA, Zagryadskaya YA, Soloviov DV, Chizhov IV, Zabelskii DV, Ryzhykau YL, Vlasov AV, Kuklin AI, Bogorodskiy AO, Mikhailov AE, Sidorov DV, Bukhalovich S, Tsybrov F, Bukhdruker S, Vlasova AD, Borshchevskiy VI, Dolgikh DA, Kirpichnikov MP, Bamberg E, Gordeliy VI. Mirror proteorhodopsins. Commun Chem 2023; 6:88. [PMID: 37130895 PMCID: PMC10154332 DOI: 10.1038/s42004-023-00884-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.
Collapse
Affiliation(s)
- Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Lada E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr A Popov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Igor V Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil V Sidorov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin I Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, Grenoble, France.
| |
Collapse
|
21
|
Jurburg SD, Hom EFY, Chatzinotas A. Beyond pathogenesis: Detecting the full spectrum of ecological interactions in the virosphere. PLoS Biol 2023; 21:e3002109. [PMID: 37186573 PMCID: PMC10184920 DOI: 10.1371/journal.pbio.3002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The public perception of viruses has historically been negative. We are now at a stage where the development of tools to study viruses is at an all-time high, but society's perception of viruses is at an all-time low. The literature regarding viral interactions has been skewed towards negative (i.e., pathogenic) symbioses, whereas viral mutualisms remain relatively underexplored. Viral interactions with their hosts are complex and some non-pathogenic viruses could have potential benefits to society. However, viral research is seldom designed to identify viral mutualists, a gap that merits considering new experimental designs. Determining whether antagonisms, mutualisms, and commensalisms are equally common ecological strategies requires more balanced research efforts that characterize the full spectrum of viral interactions.
Collapse
Affiliation(s)
- Stephanie D. Jurburg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Erik F. Y. Hom
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, Mississippi, United States of America
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
22
|
Ha AD, Moniruzzaman M, Aylward FO. Assessing the biogeography of marine giant viruses in four oceanic transects. ISME COMMUNICATIONS 2023; 3:43. [PMID: 37120676 PMCID: PMC10148842 DOI: 10.1038/s43705-023-00252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Viruses of the phylum Nucleocytoviricota are ubiquitous in ocean waters and play important roles in shaping the dynamics of marine ecosystems. In this study, we leveraged the bioGEOTRACES metagenomic dataset collected across the Atlantic and Pacific Oceans to investigate the biogeography of these viruses in marine environments. We identified 330 viral genomes, including 212 in the order Imitervirales and 54 in the order Algavirales. We found that most viruses appeared to be prevalent in shallow waters (<150 m), and that viruses of the Mesomimiviridae (Imitervirales) and Prasinoviridae (Algavirales) are by far the most abundant and diverse groups in our survey. Five mesomimiviruses and one prasinovirus are particularly widespread in oligotrophic waters; annotation of these genomes revealed common stress response systems, photosynthesis-associated genes, and oxidative stress modulation genes that may be key to their broad distribution in the pelagic ocean. We identified a latitudinal pattern in viral diversity in one cruise that traversed the North and South Atlantic Ocean, with viral diversity peaking at high latitudes of the northern hemisphere. Community analyses revealed three distinct Nucleocytoviricota communities across latitudes, categorized by latitudinal distance towards the equator. Our results contribute to the understanding of the biogeography of these viruses in marine systems.
Collapse
Affiliation(s)
- Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
23
|
Gilbert NE, LeCleir GR, Pound HL, Strzepek RF, Ellwood MJ, Twining BS, Roux S, Boyd PW, Wilhelm SW. Giant Virus Infection Signatures Are Modulated by Euphotic Zone Depth Strata and Iron Regimes of the Subantarctic Southern Ocean. mSystems 2023; 8:e0126022. [PMID: 36794943 PMCID: PMC10134803 DOI: 10.1128/msystems.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Viruses can alter the abundance, evolution, and metabolism of microorganisms in the ocean, playing a key role in water column biogeochemistry and global carbon cycles. Large efforts to measure the contribution of eukaryotic microorganisms (e.g., protists) to the marine food web have been made, yet the in situ activities of the ecologically relevant viruses that infect these organisms are not well characterized. Viruses within the phylum Nucleocytoviricota ("giant viruses") are known to infect a diverse range of ecologically relevant marine protists, yet how these viruses are influenced by environmental conditions remains under-characterized. By employing metatranscriptomic analyses of in situ microbial communities along a temporal and depth-resolved gradient, we describe the diversity of giant viruses at the Southern Ocean Time Series (SOTS), a site within the subpolar Southern Ocean. Using a phylogeny-guided taxonomic assessment of detected giant virus genomes and metagenome-assembled genomes, we observed depth-dependent structuring of divergent giant virus families mirroring dynamic physicochemical gradients in the stratified euphotic zone. Analyses of transcribed metabolic genes from giant viruses suggest viral metabolic reprogramming of hosts from the surface to a 200-m depth. Lastly, using on-deck incubations reflecting a gradient of iron availability, we show that modulating iron regimes influences the activity of giant viruses in the field. Specifically, we show enhanced infection signatures of giant viruses under both iron-replete and iron-limited conditions. Collectively, these results expand our understanding of how the water column's vertical biogeography and chemical surroundings affect an important group of viruses within the Southern Ocean. IMPORTANCE The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members. Here, we address this gap in our understanding by characterizing the diversity and activity of "giant" viruses within an important region in the sub-Antarctic Southern Ocean. Giant viruses are double-stranded DNA (dsDNA) viruses of the phylum Nucleocytoviricota and are known to infect a wide range of eukaryotic hosts. By employing a metatranscriptomics approach using both in situ samples and microcosm manipulations, we illuminated both the vertical biogeography and how changing iron availability affects this primarily uncultivated group of protist-infecting viruses. These results serve as a foundation for our understanding of how the open ocean water column structures the viral community, which can be used to guide models of the viral impact on marine and global biogeochemical cycling.
Collapse
Affiliation(s)
- Naomi E. Gilbert
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gary R. LeCleir
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Helena L. Pound
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Robert F. Strzepek
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip W. Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
24
|
Rius M, Rest JS, Filloramo GV, Novák Vanclová AMG, Archibald JM, Collier JL. Horizontal Gene Transfer and Fusion Spread Carotenogenesis Among Diverse Heterotrophic Protists. Genome Biol Evol 2023; 15:7048456. [PMID: 36805209 PMCID: PMC10016063 DOI: 10.1093/gbe/evad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/21/2023] Open
Abstract
Thraustochytrids (phylum: Labyrinthulomycota) are nonphotosynthetic marine protists. Some thraustochytrids have crtIBY, a trifunctional fusion gene encoding a protein capable of β-carotene biosynthesis from geranylgeranyl pyrophosphate. Here we show that crtIBY is essential in, and encodes the sole pathway for, carotenoid biosynthesis in the thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381. We explore the evolutionary origins of CrtIBY and discover that the closest related protein domains are present in a small but diverse group of other heterotrophic protists, including the apusomonad Thecamonas trahens and the dinoflagellates Oxyrrhis marina and Noctiluca scintillans. Each organism within this cluster also contains one or more β-carotene 15-15' oxygenase genes (blh and rpe65), suggesting that the acquisition of β-carotene biosynthesis genes may have been related to the production of retinal. Our findings support a novel origin of eukaryotic (apo)carotenoid biosynthesis by horizontal gene transfer from Actinobacteria, Bacteroidetes, and/or Archaea. This reveals a remarkable case of parallel evolution of eukaryotic (apo)carotenogenesis in divergent protistan lineages by repeated gene transfers.
Collapse
Affiliation(s)
- Mariana Rius
- School of Marine and Atmospheric Sciences, Stony Brook University
| | - Joshua S Rest
- Department of Ecology and Evolution, Stony Brook University
| | - Gina V Filloramo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anna M G Novák Vanclová
- Faculty of Science, Charles University, BIOCEV, Vestec, Czechia.,Present address: Institut de Biologie de l'École Normale Supérieure, Paris 75005, France
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University
| |
Collapse
|
25
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
He S, Linz AM, Stevens SLR, Tran PQ, Moya-Flores F, Oyserman BO, Dwulit-Smith JR, Forest KT, McMahon KD. Diversity, distribution, and expression of opsin genes in freshwater lakes. Mol Ecol 2023; 32:2798-2817. [PMID: 36799010 DOI: 10.1111/mec.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
28
|
Ha AD, Moniruzzaman M, Aylward FO. Assessing the biogeography of marine giant viruses in four oceanic transects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526306. [PMID: 36778472 PMCID: PMC9915497 DOI: 10.1101/2023.01.30.526306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Viruses of the phylum Nucleocytoviricota are ubiquitous in ocean waters and play important roles in shaping the dynamics of marine ecosystems. In this study, we leveraged the bioGEOTRACES metagenomic dataset collected across the Atlantic and Pacific Oceans to investigate the biogeography of these viruses in marine environments. We identified 330 viral genomes, including 212 in the order Imitervirales and 54 in the order Algavirales . We found that most viruses appeared to be prevalent in shallow waters (<150 meters), and that viruses of the Mesomimiviridae ( Imitervirales ) and Prasinoviridae ( Algavirales ) are by far the most abundant and diverse groups in our survey. Five mesomimiviruses and one prasinovirus are particularly widespread in oligotrophic waters; annotation of these genomes revealed common stress response systems, photosynthesis-associated genes, and oxidative stress modulation that may be key to their broad distribution in the pelagic ocean. We identified a latitudinal pattern in viral diversity in one cruise that traversed the North and South Atlantic Ocean, with viral diversity peaking at high latitudes of the northern hemisphere. Community analyses revealed three distinct Nucleocytoviricota communities across latitudes, categorized by latitudinal distance towards the equator. Our results contribute to the understanding of the biogeography of these viruses in marine systems.
Collapse
Affiliation(s)
- Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg VA, 24061
| | - Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables FL 33149
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg VA, 24061
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg VA, 24061
| |
Collapse
|
29
|
Pedraza-González L, Barneschi L, Marszałek M, Padula D, De Vico L, Olivucci M. Automated QM/MM Screening of Rhodopsin Variants with Enhanced Fluorescence. J Chem Theory Comput 2023; 19:293-310. [PMID: 36516450 DOI: 10.1021/acs.jctc.2c00928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a computational protocol for the fast and automated screening of excited-state hybrid quantum mechanics/molecular mechanics (QM/MM) models of rhodopsins to be used as fluorescent probes based on the automatic rhodopsin modeling protocol (a-ARM). Such "a-ARM fluorescence screening protocol" is implemented through a general Python-based driver, PyARM, that is also proposed here. The implementation and performance of the protocol are benchmarked using different sets of rhodopsin variants whose absorption and, more relevantly, emission spectra have been experimentally measured. We show that, despite important limitations that make unsafe to use it as a black-box tool, the protocol reproduces the observed trends in fluorescence and it is capable of selecting novel potentially fluorescent rhodopsins. We also show that the protocol can be used in mechanistic investigations to discern fluorescence enhancement effects associated with a near degeneracy of the S1/S2 states or, alternatively, with a barrier generated via coupling of the S0/S1 wave functions.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Leonardo Barneschi
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Michał Marszałek
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiaǹskiego 27, 50-370 Wrocław, Poland
| | - Daniele Padula
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
30
|
Kim KE, Joo HM, Lee TK, Kim HJ, Kim YJ, Kim BK, Ha SY, Jung SW. Covariance of Marine Nucleocytoplasmic Large DNA Viruses with Eukaryotic Plankton Communities in the Sub-Arctic Kongsfjorden Ecosystem: A Metagenomic Analysis of Marine Microbial Ecosystems. Microorganisms 2023; 11:microorganisms11010169. [PMID: 36677461 PMCID: PMC9862967 DOI: 10.3390/microorganisms11010169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) infect various marine eukaryotes. However, little is known about NCLDV diversity and their relationships with eukaryotic hosts in marine environments, the elucidation of which will advance the current understanding of marine ecosystems. This study characterizes the interplay between NCLDVs and the eukaryotic plankton community (EPC) in the sub-Arctic area using metagenomics and metabarcoding to investigate NCLDVs and EPC, respectively, in the Kongsfjorden ecosystem of Svalbard (Norway) in April and June 2018. Gyrodinium helveticum (Dinophyceae) is the most prevalent eukaryotic taxon in the EPC in April, during which time Mimiviridae (31.8%), Poxviridae (25.1%), Phycodnaviridae (14.7%) and Pandoraviridae (13.1%) predominate. However, in June, the predominant taxon is Aureococcus anophagefferens (Pelagophyceae), and the NCLDVs, Poxviridae (32.9%), Mimiviridae (29.1%), and Phycodnaviridae (18.5%) appear in higher proportions with an increase in Pelagophyceae, Bacillariophyceae, and Chlorophyta groups. Thus, differences in NCLDVs may be caused by changes in EPC composition in response to environmental changes, such as increases in water temperature and light intensity. Taken together, these findings are particularly relevant considering the anticipated impact of NCLDV-induced EPC control mechanisms on polar regions and, therefore, improve the understanding of the Sub-Arctic Kongsfjorden ecosystem.
Collapse
Affiliation(s)
- Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyoung Min Joo
- Unit of Next Generation IBRV Building Program, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Bo Kyung Kim
- Division of Polar Ocean Science Research, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sun-Yong Ha
- Division of Polar Ocean Science Research, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Correspondence: (S.-Y.H.); (S.W.J.)
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
- Correspondence: (S.-Y.H.); (S.W.J.)
| |
Collapse
|
31
|
Fuchsman CA, Garcia Prieto D, Hays MD, Cram JA. Associations between picocyanobacterial ecotypes and cyanophage host genes across ocean basins and depth. PeerJ 2023; 11:e14924. [PMID: 36874978 PMCID: PMC9983427 DOI: 10.7717/peerj.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Background Cyanophages, viruses that infect cyanobacteria, are globally abundant in the ocean's euphotic zone and are a potentially important cause of mortality for marine picocyanobacteria. Viral host genes are thought to increase viral fitness by either increasing numbers of genes for synthesizing nucleotides for virus replication, or by mitigating direct stresses imposed by the environment. The encoding of host genes in viral genomes through horizontal gene transfer is a form of evolution that links viruses, hosts, and the environment. We previously examined depth profiles of the proportion of cyanophage containing various host genes in the Eastern Tropical North Pacific Oxygen Deficient Zone (ODZ) and at the subtropical North Atlantic (BATS). However, cyanophage host genes have not been previously examined in environmental depth profiles across the oceans. Methodology We examined geographical and depth distributions of picocyanobacterial ecotypes, cyanophage, and their viral-host genes across ocean basins including the North Atlantic, Mediterranean Sea, North Pacific, South Pacific, and Eastern Tropical North and South Pacific ODZs using phylogenetic metagenomic read placement. We determined the proportion of myo and podo-cyanophage containing a range of host genes by comparing to cyanophage single copy core gene terminase (terL). With this large dataset (22 stations), network analysis identified statistical links between 12 of the 14 cyanophage host genes examined here with their picocyanobacteria host ecotypes. Results Picyanobacterial ecotypes, and the composition and proportion of cyanophage host genes, shifted dramatically and predictably with depth. For most of the cyanophage host genes examined here, we found that the composition of host ecotypes predicted the proportion of viral host genes harbored by the cyanophage community. Terminase is too conserved to illuminate the myo-cyanophage community structure. Cyanophage cobS was present in almost all myo-cyanophage and did not vary in proportion with depth. We used the composition of cobS phylotypes to track changes in myo-cyanophage composition. Conclusions Picocyanobacteria ecotypes shift with changes in light, temperature, and oxygen and many common cyanophage host genes shift concomitantly. However, cyanophage phosphate transporter gene pstS appeared to instead vary with ocean basin and was most abundant in low phosphate regions. Abundances of cyanophage host genes related to nutrient acquisition may diverge from host ecotype constraints as the same host can live in varying nutrient concentrations. Myo-cyanophage community in the anoxic ODZ had reduced diversity. By comparison to the oxic ocean, we can see which cyanophage host genes are especially abundant (nirA, nirC, and purS) or not abundant (myo psbA) in ODZs, highlighting both the stability of conditions in the ODZ and the importance of nitrite as an N source to ODZ endemic LLV Prochlorococcus.
Collapse
Affiliation(s)
- Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - David Garcia Prieto
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Matthew D Hays
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Jacob A Cram
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| |
Collapse
|
32
|
Zhao J, Wang Z, Li C, Shi T, Liang Y, Jiao N, Zhang Y. Significant Differences in Planktonic Virus Communities Between "Cellular Fraction" (0.22 ~ 3.0 µm) and "Viral Fraction" (< 0.22 μm) in the Ocean. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02167-6. [PMID: 36585490 DOI: 10.1007/s00248-022-02167-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Compared to free-living viruses (< 0.22 m) in the ocean, planktonic viruses in the "cellular fraction" (0.22 ~ 3.0 μm) are now far less well understood, and the differences between them remain largely unexplored. Here, we revealed that even in the same seawater samples, the "cellular fraction" comprised significantly distinct virus communities from the free virioplankton, with only 13.87% overlap in viral contigs at the species level. Compared to the viral genomes deposited in NCBI RefSeq database, 99% of the assembled viral genomes in the "cellular fraction" represented novel genera. Notably, the assembled (near-) complete viral genomes within the "cellular fraction" were significantly larger than that in the "viral fraction," and the "cellular fraction" contained three times more species of giant viruses or jumbo phages with genomes > 200 kb than the "viral fraction." The longest complete genomes of jumbo phage (~ 252 kb) and giant virus (~ 716 kb) were both detected only in the "cellular fraction." Moreover, a relatively higher proportion of proviruses were predicted within the "cellular fraction" than "viral fraction." Besides the substantial divergence in viral community structure, the different fractions also contained their unique viral auxiliary metabolic genes; e.g., those potentially participating in inorganic carbon fixation in deep sea were detected only in the "cellular-fraction" viromes. In addition, there was a considerable divergence in the community structure of both "cellular fraction" and "viral fraction" viromes between the surface and deep-sea habitats, suggesting that they might have similar environmental adaptation properties. The findings deepen our understanding of the complexity of viral community structure and function in the ocean.
Collapse
Affiliation(s)
- Jiulong Zhao
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengcheng Li
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Tongmei Shi
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yantao Liang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yongyu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Bachy C, Baudoux AC. [Diversity and ecological importance of viruses in the marine environment]. Med Sci (Paris) 2022; 38:1008-1015. [PMID: 36692280 DOI: 10.1051/medsci/2022165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ocean is the largest reservoir of viruses on the planet with estimates of up to several billions per liter. These viruses represent a major driving force not only for the evolution and for structuring the microbial world, but also for the functioning and the balance of marine ecosystems. With the advances in high throughput sequencing techniques, we are beginning to uncover the diversity and the complexity of this marine virosphere. This review synthesizes milestones in the field of marine viral ecology, including the diversity of these fascinating microorganisms, their impact on microbial mortality and cycling of nutrients and energy in the ocean.
Collapse
Affiliation(s)
- Charles Bachy
- Sorbonne Université, CNRS, FR2424, Station biologique de Roscoff, Roscoff, 29680, France
| | - Anne-Claire Baudoux
- Sorbonne université, CNRS, Station biologique de Roscoff, Laboratoire adaptation et diversité en milieu marin, UMR7144, Roscoff, 29680, France
| |
Collapse
|
34
|
Farzad R, Ha AD, Aylward FO. Diversity and genomics of giant viruses in the North Pacific Subtropical Gyre. Front Microbiol 2022; 13:1021923. [PMID: 36504832 PMCID: PMC9732441 DOI: 10.3389/fmicb.2022.1021923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
Large double-stranded DNA viruses of the phylum Nucleocytoviricota, often referred to as "giant viruses," are ubiquitous members of marine ecosystems that are important agents of mortality for eukaryotic plankton. Although giant viruses are known to be prevalent in marine systems, their activities in oligotrophic ocean waters remain unclear. Oligotrophic gyres constitute the majority of the ocean and assessing viral activities in these regions is therefore critical for understanding overall marine microbial processes. In this study, we generated 11 metagenome-assembled genomes (MAGs) of giant viruses from samples previously collected from Station ALOHA in the North Pacific Subtropical Gyre. Phylogenetic analyses revealed that they belong to the orders Imitervirales (n = 6), Algavirales (n = 4), and Pimascovirales (n = 1). Genome sizes ranged from ~119-574 kbp, and several of the genomes encoded predicted TCA cycle components, cytoskeletal proteins, collagen, rhodopsins, and proteins potentially involved in other cellular processes. Comparison with other marine metagenomes revealed that several have broad distribution across ocean basins and represent abundant viral constituents of pelagic surface waters. Our work sheds light on the diversity of giant viruses present in oligotrophic ocean waters across the globe.
Collapse
Affiliation(s)
- Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States,Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, United States,*Correspondence: Frank O. Aylward,
| |
Collapse
|
35
|
Genomes from Uncultivated Pelagiphages Reveal Multiple Phylogenetic Clades Exhibiting Extensive Auxiliary Metabolic Genes and Cross-Family Multigene Transfers. mSystems 2022; 7:e0152221. [PMID: 35972150 PMCID: PMC9599517 DOI: 10.1128/msystems.01522-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter, they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter. Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality.
Collapse
|
36
|
Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, Tonetti M, Van Etten JL, De Castro C. The Astounding World of Glycans from Giant Viruses. Chem Rev 2022; 122:15717-15766. [PMID: 35820164 PMCID: PMC9614988 DOI: 10.1021/acs.chemrev.2c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| | - Anna Notaro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Chantal Abergel
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Rosa Lanzetta
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Todd L. Lowary
- Institute
of Biological Chemistry, Academia Sinica, Academia Road, Section 2, Nangang 11529, Taipei, Taiwan
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Michela Tonetti
- Department
of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - James L. Van Etten
- Nebraska
Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, United States
- Department
of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, United States
| | - Cristina De Castro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| |
Collapse
|
37
|
Rigou S, Santini S, Abergel C, Claverie JM, Legendre M. Past and present giant viruses diversity explored through permafrost metagenomics. Nat Commun 2022; 13:5853. [PMID: 36207343 PMCID: PMC9546926 DOI: 10.1038/s41467-022-33633-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Giant viruses are abundant in aquatic environments and ecologically important through the metabolic reprogramming of their hosts. Less is known about giant viruses from soil even though two of them, belonging to two different viral families, were reactivated from 30,000-y-old permafrost samples. This suggests an untapped diversity of Nucleocytoviricota in this environment. Through permafrost metagenomics we reveal a unique diversity pattern and a high heterogeneity in the abundance of giant viruses, representing up to 12% of the sum of sequence coverage in one sample. Pithoviridae and Orpheoviridae-like viruses were the most important contributors. A complete 1.6 Mb Pithoviridae-like circular genome was also assembled from a 42,000-y-old sample. The annotation of the permafrost viral sequences revealed a patchwork of predicted functions amidst a larger reservoir of genes of unknown functions. Finally, the phylogenetic reconstructions not only revealed gene transfers between cells and viruses, but also between viruses from different families.
Collapse
Affiliation(s)
- Sofia Rigou
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Sébastien Santini
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Jean-Michel Claverie
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France.
| |
Collapse
|
38
|
A divergent bacterium lives in association with bacterivorous protists in the ocean. Nat Microbiol 2022; 7:1335-1336. [PMID: 36002745 DOI: 10.1038/s41564-022-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate. Nat Microbiol 2022; 7:1466-1479. [PMID: 35970961 PMCID: PMC9418006 DOI: 10.1038/s41564-022-01174-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete ‘Comchoano’ genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella’s that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs. Choanoflagellates are the closest living unicellular relatives of animals and are important bacterivorous predators in the ocean. Here the authors show that the microbiome of this predator includes an obligate, host resource-dependent bacterial associate.
Collapse
|
40
|
Aylward FO, Moniruzzaman M. Viral Complexity. Biomolecules 2022; 12:1061. [PMID: 36008955 PMCID: PMC9405923 DOI: 10.3390/biom12081061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Although traditionally viewed as streamlined and simple, discoveries over the last century have revealed that viruses can exhibit surprisingly complex physical structures, genomic organization, ecological interactions, and evolutionary histories. Viruses can have physical dimensions and genome lengths that exceed many cellular lineages, and their infection strategies can involve a remarkable level of physiological remodeling of their host cells. Virus-virus communication and widespread forms of hyperparasitism have been shown to be common in the virosphere, demonstrating that dynamic ecological interactions often shape their success. And the evolutionary histories of viruses are often fraught with complexities, with chimeric genomes including genes derived from numerous distinct sources or evolved de novo. Here we will discuss many aspects of this viral complexity, with particular emphasis on large DNA viruses, and provide an outlook for future research.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mohammad Moniruzzaman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL 33149, USA;
| |
Collapse
|
41
|
Schulz F, Abergel C, Woyke T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol 2022; 20:721-736. [PMID: 35902763 DOI: 10.1038/s41579-022-00754-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet's biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chantal Abergel
- Aix Marseille University, CNRS, IGS UMR7256, IMM FR3479, IM2B, IO, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,University of California Merced, Merced, CA, USA.
| |
Collapse
|
42
|
Brahim Belhaouari D, Pires De Souza GA, Lamb DC, Kelly SL, Goldstone JV, Stegeman JJ, Colson P, La Scola B, Aherfi S. Metabolic arsenal of giant viruses: Host hijack or self-use? eLife 2022; 11:e78674. [PMID: 35801640 PMCID: PMC9270025 DOI: 10.7554/elife.78674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and β-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.
Collapse
Affiliation(s)
- Djamal Brahim Belhaouari
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| |
Collapse
|
43
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
44
|
Khalifeh D, Neveu E, Fasshauer D. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 2022; 23:414-425. [PMID: 35701729 PMCID: PMC9546365 DOI: 10.1111/tra.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.
Collapse
Affiliation(s)
- Dany Khalifeh
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Neveu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
A light-sensing system in the common ancestor of the fungi. Curr Biol 2022; 32:3146-3153.e3. [PMID: 35675809 PMCID: PMC9616733 DOI: 10.1016/j.cub.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Diverse light-sensing organs (i.e., eyes) have evolved across animals. Interestingly, several subcellular analogs have been found in eukaryotic microbes.1 All of these systems have a common “recipe”: a light occluding or refractory surface juxtaposed to a membrane-layer enriched in type I rhodopsins.1, 2, 3, 4 In the fungi, several lineages have been shown to detect light using a diversity of non-homologous photo-responsive proteins.5, 6, 7 However, these systems are not associated with an eyespot-like organelle with one exception found in the zoosporic fungus Blastocladiella emersonii (Be).8Be possesses both elements of this recipe: an eyespot composed of lipid-filled structures (often called the side-body complex [SBC]), co-localized with a membrane enriched with a gene-fusion protein composed of a type I (microbial) rhodopsin and guanylyl cyclase enzyme domain (CyclOp-fusion protein).8,9 Here, we identify homologous pathway components in four Chytridiomycota orders (Chytridiales, Synchytriales, Rhizophydiales, and Monoblepharidiales). To further explore the architecture of the fungal zoospore and its lipid organelles, we reviewed electron microscopy data (e.g., the works of Barr and Hartmann10 and Reichle and Fuller11) and performed fluorescence-microscopy imaging of four CyclOp-carrying zoosporic fungal species, showing the presence of a variety of candidate eyespot-cytoskeletal ultrastructure systems. We then assessed the presence of canonical photoreceptors across the fungi and inferred that the last common fungal ancestor was able to sense light across a range of wavelengths using a variety of systems, including blue-green-light detection. Our data imply, independently of how the fungal tree of life is rooted, that the apparatus for a CyclOp-organelle light perception system was an ancestral feature of the fungi. A wide diversity of flagellated fungi possess the CyclOp light response circuit The same fungi possess the subcellular equipment to build lipid-based eyespots The last common ancestor of fungi possessed the CyclOp eyespot system The ancestral fungus could see a rainbow of light wavelengths
Collapse
|
46
|
Brown LS. Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183867. [PMID: 35051382 DOI: 10.1016/j.bbamem.2022.183867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
In the last twenty years, our understanding of the rules and mechanisms for the outward light-driven proton transport (and underlying proton transfers) by microbial rhodopsins has been changing dramatically. It transitioned from a very detailed atomic-level understanding of proton transport by bacteriorhodopsin, the prototypical proton pump, to a confounding variety of sequence motifs, mechanisms, directions, and modes of transport in its newly found homologs. In this review, we will summarize and discuss experimental data obtained on new microbial rhodopsin variants, highlighting their contribution to the refinement and generalization of the ideas crystallized in the previous century. In particular, we will focus on the proton transport (and transfers) vectoriality and their structural determinants, which, in many cases, remain unidentified.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
47
|
Vanni C, Schechter MS, Acinas SG, Barberán A, Buttigieg PL, Casamayor EO, Delmont TO, Duarte CM, Eren AM, Finn RD, Kottmann R, Mitchell A, Sánchez P, Siren K, Steinegger M, Gloeckner FO, Fernàndez-Guerra A. Unifying the known and unknown microbial coding sequence space. eLife 2022; 11:e67667. [PMID: 35356891 PMCID: PMC9132574 DOI: 10.7554/elife.67667] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes. By analyzing 415,971,742 genes predicted from 1749 metagenomes and 28,941 bacterial and archaeal genomes, we quantify the extent of the unknown fraction, its diversity, and its relevance across multiple organisms and environments. The unknown sequence space is exceptionally diverse, phylogenetically more conserved than the known fraction and predominantly taxonomically restricted at the species level. From the 71 M genes identified to be of unknown function, we compiled a collection of 283,874 lineage-specific genes of unknown function for Cand. Patescibacteria (also known as Candidate Phyla Radiation, CPR), which provides a significant resource to expand our understanding of their unusual biology. Finally, by identifying a target gene of unknown function for antibiotic resistance, we demonstrate how we can enable the generation of hypotheses that can be used to augment experimental data.
Collapse
Affiliation(s)
- Chiara Vanni
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
- Jacobs University BremenBremenGermany
| | - Matthew S Schechter
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Albert Barberán
- Department of Environmental Science, University of ArizonaTucsonUnited States
| | - Pier Luigi Buttigieg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Alfred Wegener InstituteBremerhavenGermany
| | - Emilio O Casamayor
- Center for Advanced Studies of Blanes CEAB-CSIC, Spanish Council for ResearchBlanesSpain
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-SaclayEvryFrance
| | - Carlos M Duarte
- Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - A Murat Eren
- Department of Medicine, University of ChicagoChicagoUnited States
- Josephine Bay Paul Center, Marine Biological LaboratoryWoods HoleUnited States
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusHinxtonUnited Kingdom
| | - Renzo Kottmann
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Alex Mitchell
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusHinxtonUnited Kingdom
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Kimmo Siren
- Section for Evolutionary Genomics, The GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Martin Steinegger
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Frank Oliver Gloeckner
- Jacobs University BremenBremenGermany
- University of Bremen and Life Sciences and ChemistryBremenGermany
- Computing Center, Helmholtz Center for Polar and Marine ResearchBremerhavenGermany
| | - Antonio Fernàndez-Guerra
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
48
|
Pedraza-González L, Barneschi L, Padula D, De Vico L, Olivucci M. Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol. Top Curr Chem (Cham) 2022; 380:21. [PMID: 35291019 PMCID: PMC8924150 DOI: 10.1007/s41061-022-00374-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 10/27/2022]
Abstract
In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
49
|
Suzuki K, Del Carmen Marín M, Konno M, Bagherzadeh R, Murata T, Inoue K. Structural characterization of proton-pumping rhodopsin lacking a cytoplasmic proton donor residue by X-ray crystallography. J Biol Chem 2022; 298:101722. [PMID: 35151692 PMCID: PMC8927995 DOI: 10.1016/j.jbc.2022.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
DTG/DTS rhodopsin, which was named based on a three-residue motif (DTG or DTS) that is important for its function, is a light-driven proton-pumping microbial rhodopsin using a retinal chromophore. In contrast to other light-driven ion-pumping rhodopsins, DTG/DTS rhodopsin does not have a cytoplasmic proton donor residue, such as Asp, Glu, or Lys. Because of the lack of cytoplasmic proton donor residue, proton directly binds to the retinal chromophore from the cytoplasmic solvent. However, mutational experiments that showed the complicated effects of mutations were not able to clarify the roles played by each residue, and the detail of proton uptake pathway is unclear because of the lack of structural information. To understand the proton transport mechanism of DTG/DTS rhodopsin, here we report the three-dimensional structure of one of the DTG/DTS rhodopsins, PspR from Pseudomonas putida, by X-ray crystallography. We show that the structure of the cytoplasmic side of the protein is significantly different from that of bacteriorhodopsin, the best-characterized proton-pumping rhodopsin, and large cytoplasmic cavities were observed. We propose that these hydrophilic cytoplasmic cavities enable direct proton uptake from the cytoplasmic solvent without the need for a specialized cytoplasmic donor residue. The introduction of carboxylic residues homologous to the cytoplasmic donors in other proton-pumping rhodopsins resulted in higher pumping activity with less pH dependence, suggesting that DTG/DTS rhodopsins are advantageous for producing energy and avoiding intracellular alkalization in soil and plant-associated bacteria.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | | | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Reza Bagherzadeh
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan; Membrane Protein Research and Molecular Chirality Research Centers, Chiba University, Inage, Chiba, Japan.
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
50
|
Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D, Alekseev A, Rosselli R, Gushchin I, Okhrimenko I. Microbial Rhodopsins. Methods Mol Biol 2022; 2501:1-52. [PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being "nearly the same." The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function-structure relationships.
Collapse
Affiliation(s)
- Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitrii Zabelskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Riccardo Rosselli
- Departamento de Fisiología, Genetica y Microbiología. Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|