1
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. Neurogenetics 2024; 25:425-433. [PMID: 39066872 PMCID: PMC11534842 DOI: 10.1007/s10048-024-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, Riyadh, 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Mustafa A Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - M Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Duan HD, Li H. Consensus, controversies, and conundrums of P4-ATPases: The emerging face of eukaryotic lipid flippases. J Biol Chem 2024; 300:107387. [PMID: 38763336 PMCID: PMC11225554 DOI: 10.1016/j.jbc.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
3
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24306843. [PMID: 38798571 PMCID: PMC11118633 DOI: 10.1101/2024.05.15.24306843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ATPase, class 1, type 8A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, mental retardation, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P. Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | | | | | - Maha A. Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers – Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Mustafa A. Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women’s and Children’s Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Solna, Sweden
| | - M. Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
4
|
Mogensen LS, Mikkelsen SA, Tadini-Buoninsegni F, Holm R, Matsell E, Vilsen B, Molday RS, Andersen JP. On the track of the lipid transport pathway of the phospholipid flippase ATP8A2 - Mutation analysis of residues of the transmembrane segments M1, M2, M3 and M4. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119570. [PMID: 37678495 DOI: 10.1016/j.bbamcr.2023.119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
P4-ATPases, also known as flippases, translocate specific lipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes, thereby generating an asymmetric lipid distribution essential for numerous cellular functions. A debated issue is which pathway within the protein the lipid substrate follows during the translocation. Here we present a comprehensive mutational screening of all amino acid residues in the transmembrane segments M1, M2, M3, and M4 of the flippase ATP8A2, thus allowing the functionally important residues in these transmembrane segments to be highlighted on a background of less important residues. Kinetic analysis of ATPase activity of 130 new ATP8A2 mutants, providing Vmax values as well as apparent affinities of the mutants for the lipid substrate, support a translocation pathway between M2 and M4 ("M2-M4 path"), extending from the entry site, where the lipid substrate binds from the exoplasmic leaflet, to a putative exit site at the cytoplasmic surface, formed by the divergence of M2 and M4. The effects of mutations in the M2-M4 path on the function of the entry site, including loss of lipid specificity in some mutants, suggest that the M2-M4 path and the entry site are conformationally coupled. Many of the residues of the M2-M4 path possess side chains with a potential for interacting with each other in a zipper-like mode, as well as with the head group of the lipid substrate, by ionic/hydrogen bonds. Thus, the translocation of the lipid substrate toward the cytoplasmic bilayer leaflet is comparable to unzipping a zipper of salt bridges/hydrogen bonds.
Collapse
Affiliation(s)
| | | | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Eli Matsell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
5
|
Dieudonné T, Kümmerer F, Laursen MJ, Stock C, Flygaard RK, Khalid S, Lenoir G, Lyons JA, Lindorff-Larsen K, Nissen P. Activation and substrate specificity of the human P4-ATPase ATP8B1. Nat Commun 2023; 14:7492. [PMID: 37980352 PMCID: PMC10657443 DOI: 10.1038/s41467-023-42828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
Asymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 Å overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P3 binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases.
Collapse
Affiliation(s)
- Thibaud Dieudonné
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Felix Kümmerer
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michelle Juknaviciute Laursen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Charlott Stock
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Joseph A Lyons
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University, Aarhus, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Herrera SA, Günther Pomorski T. Reconstitution of ATP-dependent lipid transporters: gaining insight into molecular characteristics, regulation, and mechanisms. Biosci Rep 2023; 43:BSR20221268. [PMID: 37417269 PMCID: PMC10412526 DOI: 10.1042/bsr20221268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid transporters play a crucial role in supporting essential cellular processes such as organelle assembly, vesicular trafficking, and lipid homeostasis by driving lipid transport across membranes. Cryo-electron microscopy has recently resolved the structures of several ATP-dependent lipid transporters, but functional characterization remains a major challenge. Although studies of detergent-purified proteins have advanced our understanding of these transporters, in vitro evidence for lipid transport is still limited to a few ATP-dependent lipid transporters. Reconstitution into model membranes, such as liposomes, is a suitable approach to study lipid transporters in vitro and to investigate their key molecular features. In this review, we discuss the current approaches for reconstituting ATP-driven lipid transporters into large liposomes and common techniques used to study lipid transport in proteoliposomes. We also highlight the existing knowledge on the regulatory mechanisms that modulate the activity of lipid transporters, and finally, we address the limitations of the current approaches and future perspectives in this field.
Collapse
Affiliation(s)
- Sara Abad Herrera
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Tadini-Buoninsegni F, Mikkelsen SA, Mogensen LS, Holm R, Molday RS, Andersen JP. Electrogenic reaction step and phospholipid translocation pathway of the mammalian P4-ATPase ATP8A2. FEBS Lett 2023; 597:495-503. [PMID: 35945663 DOI: 10.1002/1873-3468.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
ATP8A2 is a mammalian P4-ATPase (flippase) that translocates the negatively charged lipid substrate phosphatidylserine from the exoplasmic leaflet to the cytoplasmic leaflet of cellular membranes. Using an electrophysiological method based on solid supported membranes, we investigated the electrogenicity of specific reaction steps of ATP8A2 and explored a potential phospholipid translocation pathway involving residues with positively charged side chains. Changes to the current signals caused by mutations show that the main electrogenic event occurs in connection with the release of the bound phosphatidylserine to the cytoplasmic leaflet and support the hypothesis that the phospholipid interacts with specific lysine and arginine residues near the cytoplasmic border of the lipid bilayer during the translocation and reorientation required for insertion into the cytoplasmic leaflet.
Collapse
Affiliation(s)
| | | | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.,Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
8
|
Shin HW, Takatsu H. Regulatory Roles of N- and C-Terminal Cytoplasmic Regions of P4-ATPases. Chem Pharm Bull (Tokyo) 2022; 70:524-532. [DOI: 10.1248/cpb.c22-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | |
Collapse
|
9
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
11
|
Tancer RJ, Wang Y, Pawar S, Xue C, Wiedman GR. Development of Antifungal Peptides against Cryptococcus neoformans; Leveraging Knowledge about the cdc50Δ Mutant Susceptibility for Lead Compound Development. Microbiol Spectr 2022; 10:e0043922. [PMID: 35377230 PMCID: PMC9045296 DOI: 10.1128/spectrum.00439-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is a major fungal pathogen that often causes life-threatening meningitis in immunocompromised populations. This yeast pathogen is highly resistant to the echinocandin drug caspofungin. Previous studies showed that Cryptococcus lipid translocase (flippase) is required for the caspofungin resistance of that fungus. Mutants with a deleted subunit of lipid flippase, Cdc50, showed increased sensitivity to caspofungin. Here we designed an antifungal peptide targeting the P4-ATPase function. We synthesized stable peptides based on the Cdc50 loop region to identify peptides that can sensitize caspofungin by blocking flippase function and found that myristylated peptides based on the "AS15 sequence" was effective at high concentrations. A modified peptide, "AW9-Ma" showed a MIC of 64 μg/mL against H99 wild type and a fractional inhibitory concentration (FIC) index value of 0.5 when used in combination with caspofungin. Most notably, in the presence of the AW9-Ma peptide, C. neoformans wild type was highly sensitive to caspofungin with a MIC of 4 μg/mL, the same as the cdc50Δ mutant. Further assays with flow cytometry showed inhibition of the lipid flippase enzyme activity and significant accumulation of phosphatidylserine on the cell membrane surface. Using a fluorescently labeled peptide, we confirmed that the peptide co-localized with mCherry-tagged P4-ATPase protein Apt1 in C. neoformans. Structure-activity relationship studies of the AW9 sequence showed that two lysine residues on the peptide are likely responsible for the interaction with the P4-ATPase, hence critical for its antifungal activity. IMPORTANCE The authors have developed a lead compound peptide antifungal drug targeting a protein from the organism Cryptococcus neoformans. Binding of the drug to the target fungal protein causes charged lipid molecules to be retained on the surface. This peptide works in synergy with the existing antifungal drug caspofungin. Echinocandin drugs like caspofungin are one of the few classes of existing antifungals. Due to the high concentrations needed, caspofungin is rarely used to treat C. neoformans infections. The authors believe that their new compound provides a way to lower the concentration of caspofungin needed to treat such infections, thus opening the possibility for greater utility of these antifungal.
Collapse
Affiliation(s)
- Robert J. Tancer
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, USA
| | - Yina Wang
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Siddhi Pawar
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
12
|
Sun KX, Jiang XY, Li X, Su YJ, Wang JL, Zhang L, Yang YM, Zhu XJ. Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration. Zool Res 2021; 42:650-659. [PMID: 34472226 PMCID: PMC8455468 DOI: 10.24272/j.issn.2095-8137.2021.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The β subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null (mdx) mice and BaCl2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl2-injection. Compared to the control mice, the cKO mice showed decreased Pax7+ and MYH3+ SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kuan-Xiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China
| | - Xiao-Yan Jiang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiao Li
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yu-Jing Su
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ju-Lin Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ye-Ming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xian-Jun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China.,Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Henan 476000, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China. E-mail:
| |
Collapse
|
13
|
Structural Basis of Substrate-Independent Phosphorylation in a P4-ATPase Lipid Flippase. J Mol Biol 2021; 433:167062. [PMID: 34023399 DOI: 10.1016/j.jmb.2021.167062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022]
Abstract
P4-ATPases define a eukaryotic subfamily of the P-type ATPases, and are responsible for the transverse flip of specific lipids from the extracellular or luminal leaflet to the cytosolic leaflet of cell membranes. The enzymatic cycle of P-type ATPases is divided into autophosphorylation and dephosphorylation half-reactions. Unlike most other P-type ATPases, P4-ATPases transport their substrate during dephosphorylation only, i.e. the phosphorylation half-reaction is not associated with transport. To study the structural basis of the distinct mechanisms of P4-ATPases, we have determined cryo-EM structures of Drs2p-Cdc50p from Saccharomyces cerevisiae covering multiple intermediates of the cycle. We identify several structural motifs specific to Drs2p and P4-ATPases in general that decrease movements and flexibility of domains as compared to other P-type ATPases such as Na+/K+-ATPase or Ca2+-ATPase. These motifs include the linkers that connect the transmembrane region to the actuator (A) domain, which is responsible for dephosphorylation. Additionally, mutation of Tyr380, which interacts with conserved Asp340 of the distinct DGET dephosphorylation loop of P4-ATPases, highlights a functional role of these P4-ATPase specific motifs in the A-domain. Finally, the transmembrane (TM) domain, responsible for transport, also undergoes less extensive conformational changes, which is ensured both by a longer segment connecting TM helix 4 with the phosphorylation site, and possible stabilization by the auxiliary subunit Cdc50p. Collectively these adaptions in P4-ATPases are responsible for phosphorylation becoming transport-independent.
Collapse
|
14
|
López-Marqués RL, Davis JA, Harper JF, Palmgren M. Dynamic membranes: the multiple roles of P4 and P5 ATPases. PLANT PHYSIOLOGY 2021; 185:619-631. [PMID: 33822217 PMCID: PMC8133672 DOI: 10.1093/plphys/kiaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/24/2020] [Indexed: 05/31/2023]
Abstract
The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
15
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
16
|
Tadini-Buoninsegni F. Protein Adsorption on Solid Supported Membranes: Monitoring the Transport Activity of P-Type ATPases. Molecules 2020; 25:molecules25184167. [PMID: 32933017 PMCID: PMC7570688 DOI: 10.3390/molecules25184167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
P-type ATPases are a large family of membrane transporters that are found in all forms of life. These enzymes couple ATP hydrolysis to the transport of various ions or phospholipids across cellular membranes, thereby generating and maintaining crucial electrochemical potential gradients. P-type ATPases have been studied by a variety of methods that have provided a wealth of information about the structure, function, and regulation of this class of enzymes. Among the many techniques used to investigate P-type ATPases, the electrical method based on solid supported membranes (SSM) was employed to investigate the transport mechanism of various ion pumps. In particular, the SSM method allows the direct measurement of charge movements generated by the ATPase following adsorption of the membrane-bound enzyme on the SSM surface and chemical activation by a substrate concentration jump. This kind of measurement was useful to identify electrogenic partial reactions and localize ion translocation in the reaction cycle of the membrane transporter. In the present review, we discuss how the SSM method has contributed to investigate some key features of the transport mechanism of P-type ATPases, with a special focus on sarcoplasmic reticulum Ca2+-ATPase, mammalian Cu+-ATPases (ATP7A and ATP7B), and phospholipid flippase ATP8A2.
Collapse
|
17
|
Lyons JA, Timcenko M, Dieudonné T, Lenoir G, Nissen P. P4-ATPases: how an old dog learnt new tricks — structure and mechanism of lipid flippases. Curr Opin Struct Biol 2020; 63:65-73. [DOI: 10.1016/j.sbi.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022]
|
18
|
Tadini-Buoninsegni F, Palchetti I. Label-Free Bioelectrochemical Methods for Evaluation of Anticancer Drug Effects at a Molecular Level. SENSORS 2020; 20:s20071812. [PMID: 32218227 PMCID: PMC7181070 DOI: 10.3390/s20071812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
Cancer is a multifactorial family of diseases that is still a leading cause of death worldwide. More than 100 different types of cancer affecting over 60 human organs are known. Chemotherapy plays a central role for treating cancer. The development of new anticancer drugs or new uses for existing drugs is an exciting and increasing research area. This is particularly important since drug resistance and side effects can limit the efficacy of the chemotherapy. Thus, there is a need for multiplexed, cost-effective, rapid, and novel screening methods that can help to elucidate the mechanism of the action of anticancer drugs and the identification of novel drug candidates. This review focuses on different label-free bioelectrochemical approaches, in particular, impedance-based methods, the solid supported membranes technique, and the DNA-based electrochemical sensor, that can be used to evaluate the effects of anticancer drugs on nucleic acids, membrane transporters, and living cells. Some relevant examples of anticancer drug interactions are presented which demonstrate the usefulness of such methods for the characterization of the mechanism of action of anticancer drugs that are targeted against various biomolecules.
Collapse
Affiliation(s)
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Abstract
Here, we present a protocol for the functional characterization of the H+-coupled human peptide transporter PepT1 and sufficient notes to transfer the protocol to the Na+-coupled sugar transporter SGLT1, the organic cation transporter OCT2, the Na+/Ca2+ exchanger NCX, and the neuronal glutamate transporter EAAT3.The assay was developed for the commercially available SURFE2R N1 instrument (Nanion Technologies GmbH) which applies solid supported membrane (SSM)-based electrophysiology. This technique is widely used for the functional characterization of membrane transporters with more than 100 different transporters characterized so far. The technique is cost-effective, easy to use, and capable of high-throughput measurements.SSM-based electrophysiology utilizes SSM-coated gold sensors to physically adsorb membrane vesicles containing the protein of interest. A fast solution exchange provides the substrate and activates transport. For the measurement of PepT1 activity, we applied a peptide concentration jump to activate H+/peptide symport. Proton influx charges the sensor. A capacitive current is measured reflecting the transport activity of PepT1 . Multiple measurements on the same sensor allow for comparison of transport activity under different conditions. Here, we determine EC50 for PepT1-mediated glycylglycine transport and perform an inhibition experiment using the specific peptide inhibitor Lys[Z(NO2)]-Val.
Collapse
|