1
|
Gao Y, Chen H, Yang W, Wang S, Gong D, Zhang X, Huang Y, Kumar V, Huang Q, Kandegama WMWW, Hao G. New avenues of combating antibiotic resistance by targeting cryptic pockets. Pharmacol Res 2024; 210:107495. [PMID: 39491636 DOI: 10.1016/j.phrs.2024.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Antibiotic resistance is a global health concern that is rapidly spreading among human and animal pathogens. Developing novel antibiotics is one of the most significant approaches to surmount antibiotic resistance. Given the difficult in identifying novel targets, cryptic binding sites provide new pockets for compounds design to combat antibiotic resistance. However, there exists a lack of comprehensive analysis and discussion on the successful utilization of cryptic pockets in overcoming antibiotic resistance. Here, we systematically analyze the crucial role of cryptic pockets in neutralizing antibiotic resistance. First, antibiotic resistance development and associated resistance mechanisms are summarized. Then, the advantages and mechanisms of cryptic pockets for overcoming antibiotic resistance were discussed. Specific cryptic pockets in resistant proteins and successful case studies of designed inhibitors are exemplified. This review provides insight into the discovery of cryptic pockets for drug design as an approach to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Huimin Chen
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China
| | - Weicheng Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Daohong Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Xiao Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Yuanqin Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Vinit Kumar
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Qiuqian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - W M W W Kandegama
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170 Sri Lanka
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Ennis A, Cochrane CS, Dome PA, Jeong P, Yu J, Lee H, Williams CS, Ha Y, Yang W, Zhou P, Hong J. Design and Evaluation of Pyridinyl Sulfonyl Piperazine LpxH Inhibitors with Potent Antibiotic Activity Against Enterobacterales. JACS AU 2024; 4:4383-4393. [PMID: 39610720 PMCID: PMC11600146 DOI: 10.1021/jacsau.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Enterobacterales, a large order of Gram-negative bacteria, including Escherichia coli and Klebsiella pneumoniae, are major causes of urinary tract and gastrointestinal infections, pneumonia, and other diseases in healthcare settings and communities. ESBL-producing Enterobacterales and carbapenem-resistant Enterobacterales can break down commonly used antibiotics, with some strains being resistant to all available antibiotics. This public health threat necessitates the development of novel antibiotics, ideally targeting new pathways in these bacteria. Gram-negative bacteria possess an outer membrane enriched with lipid A, a saccharolipid that serves as the membrane anchor of lipopolysaccharides and the active component of the bacterial endotoxin, causing septic shock. The biosynthesis of lipid A is crucial for the viability of Gram-negative bacteria, and as an essential enzyme in this process, LpxH has emerged as a promising target for developing novel antibiotics against multidrug-resistant Gram-negative pathogens. Here, we report the development of pyridinyl sulfonyl piperazine LpxH inhibitors. Among them, ortho-substituted pyridinyl compounds significantly boost LpxH inhibition and antibiotic activity over the original phenyl series. Structural and QM/MM analyses reveal that these improved activities are primarily due to the enhanced interaction between F141 of the LpxH insertion lid and the pyridinyl group. Incorporation of the N-methyl-N-phenyl-methanesulfonamide moiety into the pyridinyl sulfonyl piperazine backbone results in JH-LPH-106 and JH-LPH-107, both of which exhibit potent antibiotic activity against wild-type Enterobacterales such as K. pneumoniae and E. coli. JH-LPH-107 exhibits a low rate of spontaneous resistance and a high safety window in vitro, rendering it an excellent lead for further clinical development.
Collapse
Affiliation(s)
- Amanda
F. Ennis
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - C. Skyler Cochrane
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Biochemistry, Duke University School
of Medicine, Durham, North Carolina 27710, United States
| | - Patrick A. Dome
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pyeonghwa Jeong
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jincheng Yu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hyejin Lee
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Carly S. Williams
- Department
of Biochemistry, Duke University School
of Medicine, Durham, North Carolina 27710, United States
| | - Yang Ha
- Berkeley
Center for Structural Biology, Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Weitao Yang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pei Zhou
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Biochemistry, Duke University School
of Medicine, Durham, North Carolina 27710, United States
| | - Jiyong Hong
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Pharmacology and Cancer Biology, Duke
University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Benediktsdottir A, Sooriyaarachchi S, Cao S, Ottosson NE, Lindström S, Lundgren B, Kloditz K, Lola D, Bobileva O, Loza E, Hughes D, Jones TA, Mowbray SL, Zamaratski E, Sandström A, Karlén A. Design, synthesis, and in vitro biological evaluation of meta-sulfonamidobenzamide-based antibacterial LpxH inhibitors. Eur J Med Chem 2024; 278:116790. [PMID: 39236497 DOI: 10.1016/j.ejmech.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity. Our findings reveal that maintaining wild-type antibacterial activity necessitates removal of the N-methyl group when shifting the ortho-N-methyl-sulfonamide to the meta-position. This discovery led to the synthesis of meta-sulfonamidobenzamide analogs with potent antibacterial activity and enzyme inhibition. Moreover, we demonstrate that modifying the benzamide scaffold can alter blocking of the cardiac voltage-gated potassium ion channel hERG. Furthermore, two LpxH-bound X-ray structures show how the enzyme-ligand interactions of the meta-sulfonamidobenzamide analogs differ from those of the previously reported ortho analogs. Overall, our study has identified meta-sulfonamidobenzamide derivatives as promising LpxH inhibitors with the potential for optimization in future antibacterial hit-to-lead programs.
Collapse
Affiliation(s)
- Andrea Benediktsdottir
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden.
| | | | - Sha Cao
- Department of Medical Biochemistry and Microbiology, BMC, Box 582, SE-75123, Uppsala, Sweden
| | - Nina E Ottosson
- Department of Biomedical and Clinical Sciences, BKV, Linköping University, SE-581 85, Linköping, Sweden; Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Solna, Sweden
| | - Stefan Lindström
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Bo Lundgren
- Department of Biochemistry and Biophysics, Stockholm University, Biochemical and Cellular Assay Unit, Drug Discovery and Development Platform, Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
| | - Katharina Kloditz
- Department of Biochemistry and Biophysics, Stockholm University, Biochemical and Cellular Assay Unit, Drug Discovery and Development Platform, Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
| | - Daina Lola
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Olga Bobileva
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Einars Loza
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, BMC, Box 582, SE-75123, Uppsala, Sweden
| | - T Alwyn Jones
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75123, Uppsala, Sweden
| | - Sherry L Mowbray
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75123, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden
| | - Edouard Zamaratski
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-75123, Uppsala, Sweden.
| |
Collapse
|
4
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Ohra S, Sharma R, Kumar A. Repurposing of drugs against bacterial infections: A pharmacovigilance-based data mining approach. Drug Dev Res 2024; 85:e22211. [PMID: 38807372 DOI: 10.1002/ddr.22211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The World Health Organization (WHO) has published a list of priority pathogens that urgently require research to develop new antibiotics. The main aim of the current study is to identify potential marketed drugs that can be repurposed against bacterial infections. A pharmacovigilance-based drug repurposing approach was used to identify potential drugs. OpenVigil 2.1 tool was used to query the FDA Adverse Event Reporting System database. The reporting odds ratio (ROR) < 1, ROR95CI upper bound <1, and no. of cases ≥30 were used for filtering and sorting of drugs. Sunburst plot was used to represent drugs in a hierarchical order using the Anatomical Therapeutic Chemical classification. Molecular docking and dynamics were performed using the Maestro and Desmond modules of Schrodinger 2023 software respectively. A total of 40 drugs with different classes were identified based on the pharmacovigilance approach which has antibacterial potential. The molecular docking results have shown energetically favored binding conformation of lisinopril against 3-deoxy-manno-octulosonate cytidylyltransferase, UDP-2,3-diacylglucosamine hydrolase, and penicillin-binding protein 3 (PBP3) of Pseudomonas aeruginosa; olmesartan, atorvastatin against lipoteichoic acids flippase LtaA and rosiglitazone and varenicline against d-alanine ligase of Staphylococcus aureus; valsartan against peptidoglycan deacetylase (SpPgdA) and atorvastatin against CDP-activated ribitol for teichoic acid precursors of Streptococcus pneumoniae. Further, molecular dynamic results have shown the stability of identified drugs in the active site of bacterial targets except lisinopril with PBP3. Lisinopril, olmesartan, atorvastatin, rosiglitazone, varenicline, and valsartan have been identified as potential drugs for repurposing against bacterial infection.
Collapse
Affiliation(s)
- Simran Ohra
- Department of Clinical Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar
- Department of Clinical Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
6
|
Karthikeyan D, Kumar S, Jayaprakash NS. A comprehensive review of recent developments in the gram-negative bacterial UDP-2,3-diacylglucosamine hydrolase (LpxH) enzyme. Int J Biol Macromol 2024; 267:131327. [PMID: 38574903 DOI: 10.1016/j.ijbiomac.2024.131327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The emergence of multidrug resistance has provided a great challenge to treat nosocomial infections, which have become a major health threat around the globe. Lipid A (an active endotoxin component), the final product of the Raetz lipid A metabolism pathway, is a membrane anchor of lipopolysaccharide (LPS) of the gram-negative bacterial outer membrane. It shields bacterial cells and serves as a protective barrier from antibiotics, thereby eliciting host response and making it difficult to destroy. UDP-2,3-diacylglucosamine pyrophosphate hydrolase (LpxH), a crucial peripheral membrane enzyme of the Raetz pathway, turned out to be the potential target to inhibit the production of Lipid A. This review provides a comprehensive compilation of information regarding the structural and functional aspects of LpxH, as well as its analogous LpxI and LpxG. In addition, apart from by providing a broader understanding of the enzyme-inhibitor mechanism, this review facilitates the development of novel drug candidates that can inhibit the pathogenicity of the lethal bacterium.
Collapse
Affiliation(s)
- Divyapriya Karthikeyan
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sanjit Kumar
- Department of Biotechnology, School of Interdisciplinary Education and Research, Guru Ghasidas Vishwavidyalaya, Bilaspur (A Central University), Chhattisgarh 495009, India
| | - N S Jayaprakash
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
7
|
Huseby DL, Cao S, Zamaratski E, Sooriyaarachchi S, Ahmad S, Bergfors T, Krasnova L, Pelss J, Ikaunieks M, Loza E, Katkevics M, Bobileva O, Cirule H, Gukalova B, Grinberga S, Backlund M, Simoff I, Leber AT, Berruga-Fernández T, Antonov D, Konda VR, Lindström S, Olanders G, Brandt P, Baranczewski P, Vingsbo Lundberg C, Liepinsh E, Suna E, Jones TA, Mowbray SL, Hughes D, Karlén A. Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Proc Natl Acad Sci U S A 2024; 121:e2317274121. [PMID: 38579010 PMCID: PMC11009625 DOI: 10.1073/pnas.2317274121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-β-lactamase, metallo-β-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.
Collapse
Affiliation(s)
- Douglas L. Huseby
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Edouard Zamaratski
- Department of Medicinal Chemistry, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | | | - Shabbir Ahmad
- Department of Cell and Molecular Biology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Terese Bergfors
- Department of Cell and Molecular Biology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Laura Krasnova
- Latvian Institute of Organic Synthesis, RigaLV-1006, Latvia
| | - Juris Pelss
- Latvian Institute of Organic Synthesis, RigaLV-1006, Latvia
| | | | - Einars Loza
- Latvian Institute of Organic Synthesis, RigaLV-1006, Latvia
| | | | - Olga Bobileva
- Latvian Institute of Organic Synthesis, RigaLV-1006, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, RigaLV-1006, Latvia
| | - Baiba Gukalova
- Latvian Institute of Organic Synthesis, RigaLV-1006, Latvia
| | | | - Maria Backlund
- Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling, Uppsala University, UppsalaSE-75123, Sweden
| | - Ivailo Simoff
- Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling, Uppsala University, UppsalaSE-75123, Sweden
| | - Anna T. Leber
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Talía Berruga-Fernández
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Dmitry Antonov
- Department of Medicinal Chemistry, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Vivekananda R. Konda
- Department of Medicinal Chemistry, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Stefan Lindström
- Department of Medicinal Chemistry, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Gustav Olanders
- Department of Medicinal Chemistry, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Peter Brandt
- Department of Medicinal Chemistry, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Pawel Baranczewski
- Department of Pharmacy, SciLifeLab Drug Discovery and Development Platform, Uppsala University, UppsalaSE-75123, Sweden
| | | | | | - Edgars Suna
- Latvian Institute of Organic Synthesis, RigaLV-1006, Latvia
| | - T. Alwyn Jones
- Department of Cell and Molecular Biology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Sherry L. Mowbray
- Department of Cell and Molecular Biology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, UppsalaSE-75123, Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry, BMC, Uppsala University, UppsalaSE-75123, Sweden
| |
Collapse
|
8
|
Möller AM, Vázquez-Hernández M, Kutscher B, Brysch R, Brückner S, Marino EC, Kleetz J, Senges CHR, Schäkermann S, Bandow JE, Narberhaus F. Common and varied molecular responses of Escherichia coli to five different inhibitors of the lipopolysaccharide biosynthetic enzyme LpxC. J Biol Chem 2024; 300:107143. [PMID: 38458396 PMCID: PMC10998244 DOI: 10.1016/j.jbc.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raffael Brysch
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Kleetz
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christoph H R Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
9
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
10
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
11
|
Kwak SH, Cochrane CS, Cho J, Dome PA, Ennis AF, Kim JH, Zhou P, Hong J. Development of LpxH Inhibitors Chelating the Active Site Dimanganese Metal Cluster of LpxH. ChemMedChem 2023; 18:e202300023. [PMID: 37014664 PMCID: PMC10239344 DOI: 10.1002/cmdc.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Despite the widespread emergence of multidrug-resistant nosocomial Gram-negative bacterial infections and the major public health threat it brings, no new class of antibiotics for Gram-negative pathogens has been approved over the past five decades. Therefore, there is an urgent medical need for developing effective novel antibiotics against multidrug-resistant Gram-negative pathogens by targeting previously unexploited pathways in these bacteria. To fulfill this crucial need, we have been investigating a series of sulfonyl piperazine compounds targeting LpxH, a dimanganese-containing UDP-2,3-diacylglucosamine hydrolase in the lipid A biosynthetic pathway, as novel antibiotics against clinically important Gram-negative pathogens. Inspired by a detailed structural analysis of our previous LpxH inhibitors in complex with K. pneumoniae LpxH (KpLpxH), here we report the development and structural validation of the first-in-class sulfonyl piperazine LpxH inhibitors, JH-LPH-45 (8) and JH-LPH-50 (13), that achieve chelation of the active site dimanganese cluster of KpLpxH. The chelation of the dimanganese cluster significantly improves the potency of JH-LPH-45 (8) and JH-LPH-50 (13). We expect that further optimization of these proof-of-concept dimanganese-chelating LpxH inhibitors will ultimately lead to the development of more potent LpxH inhibitors for targeting multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Seung-Hwa Kwak
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - C. Skyler Cochrane
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Jae Cho
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States
| | - Patrick A. Dome
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Amanda F. Ennis
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Jea Hyun Kim
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Pei Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, United States
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
12
|
Romano K, Hung D. Targeting LPS biosynthesis and transport in gram-negative bacteria in the era of multi-drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119407. [PMID: 36543281 PMCID: PMC9922520 DOI: 10.1016/j.bbamcr.2022.119407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria pose a major threat to human health in an era fraught with multi-drug resistant bacterial infections. Despite extensive drug discovery campaigns over the past decades, no new antibiotic target class effective against gram-negative bacteria has become available to patients since the advent of the carbapenems in 1985. Antibiotic discovery efforts against gram-negative bacteria have been hampered by limited intracellular accumulation of xenobiotics, in large part due to the impermeable cell envelope comprising lipopolysaccharide (LPS) in the outer leaflet of the outer membrane, as well as a panoply of efflux pumps. The biosynthesis and transport of LPS are essential to the viability and virulence of most gram-negative bacteria. Thus, both LPS biosynthesis and transport are attractive pathways to target therapeutically. In this review, we summarize the LPS biosynthesis and transport pathways and discuss efforts to find small molecule inhibitors against targets within these pathways.
Collapse
Affiliation(s)
- K.P. Romano
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA,The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - D.T. Hung
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Department of Genetics, Harvard Medical School, Boston, MA, USA,Corresponding author at: The Broad Institute of MIT and Harvard, Cambridge, MA, USA. (D.T. Hung)
| |
Collapse
|
13
|
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
da Silva FEF, Ávila FDN, Pereira NMO, de Freitas MD, Pessoa ODL, da Fonseca AM, da Costa JGM, Santiago GMP. Semisynthesis, in silico study and in vitro antibacterial evaluation of fucosterol derivatives. Steroids 2023; 189:109137. [PMID: 36375680 DOI: 10.1016/j.steroids.2022.109137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Thirteen fucosterol derivatives were prepared by structural modification at the hydroxyl group in C-3 and catalytic hydrogenation at the carbon-carbon double bond in C-5(6) and C-24(28). The structures of all compounds were established based on their spectral data (IR, MS, and NMR). Fucosterol (1) and its derivatives (2-12, and a mixture of 13a and 13b) were evaluated for their in vitro antibacterial activity against Klebsiella pneumoniae (ATCC 10031), Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 15442), Streptococcus mutans (ATCC 0046) and Staphylococcus aureus using the microdilution method. Among them, 1, 8, 9, 10, and a mixture of 13a and 13b exhibited the best antibacterial activity. The derivative 7 was inactive against all bacterial strains evaluated (MIC ≥ 2.327 mM). In addition, the investigation of binding interactions of more active compounds (1, 8, 9, 10, and mixture of 13a and 13b) to appropriate proteins was performed using molecular docking. This paper registers for the first time the in silico studies on the antibacterial activity of compounds 1, 8, 9, 10, and mixture of 13a/13b, and the spectral data of compounds 4, 6, and 7.
Collapse
Affiliation(s)
- Francisco E F da Silva
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Fábio do N Ávila
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Nicaely M O Pereira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Maria D de Freitas
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Otília D L Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Aluísio M da Fonseca
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, 62785-000 Acarape, Ceará, Brazil
| | - José G M da Costa
- Departamento de Química Biológica, Universidade Regional do Cariri, 63105-010 Crato, Ceará, Brazil
| | - Gilvandete M P Santiago
- Departamento de Farmácia, Universidade Federal do Ceará, Campus do Porangabussu, 60430-370 Fortaleza, Ceará, Brazil.
| |
Collapse
|
15
|
Hassan BA, Liu ZA, Milicaj J, Kim MS, Tyson M, Sham YY, Taylor EA. Kinetic Characterization and Computational Modeling of Escherichia coli Heptosyltransferase II: Exploring the Role of Protein Dynamics in Catalysis for GT-B Glycosyltransferase. Biochemistry 2022; 61:1572-1584. [PMID: 35861590 DOI: 10.1021/acs.biochem.2c00329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosyltransferase (GT) enzymes promote the formation of glycosidic bonds between a sugar molecule and a diversity of substrates. Heptosyltransferase II (HepII) is a GT involved in the lipopolysaccharide (LPS) biosynthetic pathway that transfers the seven-carbon sugar (l-glycero-d-manno-heptose, Hep) onto a lipid-anchored glycopolymer (heptosylated Kdo2-Lipid A, Hep-Kdo2-Lipid A, or HLA). LPS plays a key role in Gram-negative bacterial sepsis, biofilm formation, and host colonization, and as such, LPS biosynthetic enzymes are targets for novel antimicrobial therapeutics. Three heptosyltransferases are involved in the inner-core LPS biosynthesis, with Escherichia coli HepII being the last to be quantitatively characterized in vivo. HepII shares modest sequence similarity with heptosyltransferase I (HepI) while maintaining a high degree of structural homology. Here, we report the first kinetic and biophysical characterization of HepII and demonstrate the properties of HepII that are shared with HepI, including sugar donor promiscuity and sugar acceptor-induced secondary structural changes, which results in significant thermal stabilization. HepII also has an increased catalytic efficiency and a significantly tighter binding affinity for both of its substrates compared to HepI. A structural model of the HepII ternary complex, refined by molecular dynamics simulations, was developed to probe the potentially important substrate-protein contacts. Ligand binding-induced changes in Trp fluorescence in HepII enabled the determination of substrate dissociation constants. Combined, these efforts meaningfully enhance our understanding of the heptosyltransferase family of enzymes and will aid in future efforts to design novel, potent, and specific inhibitors for this family of enzymes.
Collapse
Affiliation(s)
- Bakar A Hassan
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Zhiqi A Liu
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jozafina Milicaj
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Mia S Kim
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Meka Tyson
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Yuk Y Sham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erika A Taylor
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
16
|
Sacco MD, Defrees K, Zhang X, Lawless W, Nwanochie E, Balsizer A, Darch SE, Renslo AR, Chen Y. Structure-Based Ligand Design Targeting Pseudomonas aeruginosa LpxA in Lipid A Biosynthesis. ACS Infect Dis 2022; 8:1231-1240. [PMID: 35653508 DOI: 10.1021/acsinfecdis.1c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes involved in lipid A biosynthesis are promising antibacterial drug targets in Gram-negative bacteria. In this study, we use a structure-based design approach to develop a series of novel tetrazole ligands with low μM affinity for LpxA, the first enzyme in the lipid A pathway. Aided by previous structural data, X-ray crystallography, and surface plasmon resonance bioanalysis, we identify 17 hit compounds. Two of these hits were subsequently modified to optimize interactions with three regions of the LpxA active site. This strategy ultimately led to the discovery of ligand L13, which had a KD of 3.0 μM. The results reveal new chemical scaffolds as potential LpxA inhibitors, important binding features for ligand optimization, and protein conformational changes in response to ligand binding. Specifically, they show that a tetrazole ring is well-accommodated in a small cleft formed between Met169, the "hydrophobic-ruler" and His156, both of which demonstrate significant conformational flexibility. Furthermore, we find that the acyl-chain binding pocket is the most tractable region of the active site for realizing affinity gains and, along with a neighboring patch of hydrophobic residues, preferentially binds aliphatic and aromatic groups. The results presented herein provide valuable chemical and structural information for future inhibitor discovery against this important antibacterial drug target.
Collapse
Affiliation(s)
- Michael D. Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Kyle Defrees
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - William Lawless
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Emeka Nwanochie
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Amelia Balsizer
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Sophie E. Darch
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
17
|
The Proteobacterial Methanotroph Methylosinus trichosporium OB3b Remodels Membrane Lipids in Response to Phosphate Limitation. mBio 2022; 13:e0024722. [PMID: 35575546 PMCID: PMC9239053 DOI: 10.1128/mbio.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase in recent decades. Aerobic methanotrophs, bacteria that use methane as the sole carbon source, are an important biological sink for methane, and they are widely distributed in the natural environment. However, relatively little is known on how methanotroph activity is regulated by nutrients, particularly phosphorus (P). P is the principal nutrient constraining plant and microbial productivity in many ecosystems, ranging from agricultural land to the open ocean. Using a model methanotrophic bacterium, Methylosinus trichosporium OB3b, we demonstrate here that this bacterium can produce P-free glycolipids to replace membrane phospholipids in response to P limitation. The formation of the glycolipid monoglucuronic acid diacylglycerol requires plcP-agt genes since the plcP-agt mutant is unable to produce this glycolipid. This plcP-agt-mediated lipid remodeling pathway appears to be important for M. trichosporium OB3b to cope with P stress, and the mutant grew significantly slower under P limitation. Interestingly, comparative genomics analysis shows that the ability to perform lipid remodeling appears to be a conserved trait in proteobacterial methanotrophs; indeed, plcP is found in all proteobacterial methanotroph genomes, and plcP transcripts from methanotrophs are readily detectable in metatranscriptomics data sets. Together, our study provides new insights into the adaptation to P limitation in this ecologically important group of bacteria.
Collapse
|
18
|
Zhou P, Hong J. Structure- and Ligand-Dynamics-Based Design of Novel Antibiotics Targeting Lipid A Enzymes LpxC and LpxH in Gram-Negative Bacteria. Acc Chem Res 2021; 54:1623-1634. [PMID: 33720682 DOI: 10.1021/acs.accounts.0c00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial infections caused by multi-drug-resistant Gram-negative pathogens pose a serious threat to public health. Gram-negative bacteria are characterized by the enrichment of lipid A-anchored lipopolysaccharide (LPS) or lipooligosaccharide (LOS) in the outer leaflet of their outer membrane. Constitutive biosynthesis of lipid A via the Raetz pathway is essential for bacterial viability and fitness in the human host. The inhibition of early-stage lipid A enzymes such as LpxC not only suppresses the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp., and other clinically important Gram-negative pathogens but also sensitizes these bacteria to other antibiotics. The inhibition of late-stage lipid A enzymes such as LpxH is uniquely advantageous because it has an extra mechanism of bacterial killing through the accumulation of toxic lipid A intermediates, rendering LpxH inhibition additionally lethal to Acinetobacter baumannii. Because essential enzymes of the Raetz pathway have never been exploited by commercial antibiotics, they are excellent targets for the development of novel antibiotics against multi-drug-resistant Gram-negative infections.This Account describes the ongoing research on characterizing the structure and inhibition of LpxC and LpxH, the second and fourth enzymes of the Raetz pathway of lipid A biosynthesis, in the laboratories of Dr. Pei Zhou and Dr. Jiyong Hong at Duke University. Our studies have elucidated the molecular basis of LpxC inhibition by the first broad-spectrum inhibitor, CHIR-090, as well as the mechanism underlying its spectrum of activity. Such an analysis has provided a molecular explanation for the broad-spectrum antibiotic activity of diacetylene-based LpxC inhibitors. Through the structural and biochemical investigation of LpxC inhibition by diacetylene LpxC inhibitors and the first nanomolar LpxC inhibitor, L-161,240, we have elucidated the intrinsic conformational and dynamics difference in individual LpxC enzymes near the active site. A similar approach has been taken to investigate LpxH inhibition, leading to the establishment of the pharmacophore model of LpxH inhibitors and subsequent structural elucidation of LpxH in complex with its first reported small-molecule inhibitor based on a sulfonyl piperazine scaffold.Intriguingly, although our crystallographic analysis of LpxC- and LpxH-inhibitor complexes detected only a single inhibitor conformation in the crystal lattice, solution NMR studies revealed the existence of multiple ligand conformations that together delineate a cryptic ligand envelope expanding the ligand-binding footprint beyond that observed in the crystal structure. By harnessing the ligand dynamics information and structural insights, we demonstrate the feasibility to design potent LpxC and LpxH inhibitors by merging multiple ligand conformations. Such an approach has enabled us to rationally design compounds with significantly enhanced potency in enzymatic assays and outstanding antibiotic activities in vitro and in animal models of bacterial infection. We anticipate that continued efforts with structure and ligand dynamics-based lead optimization will ultimately lead to the discovery of LpxC- and LpxH-targeting clinical antibiotics against a broad range of Gram-negative pathogens.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
19
|
Troudi A, Pagès JM, Brunel JM. Chemical Highlights Supporting the Role of Lipid A in Efficient Biological Adaptation of Gram-Negative Bacteria to External Stresses. J Med Chem 2021; 64:1816-1834. [PMID: 33538159 DOI: 10.1021/acs.jmedchem.0c02185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria provides an efficient barrier against external noxious compounds such as antimicrobial agents. Associated with drug target modification, it contributes to the overall failure of chemotherapy. In the complex OM architecture, Lipid A plays an essential role by anchoring the lipopolysaccharide in the membrane and ensuring the spatial organization between lipids, proteins, and sugars. Currently, the targets of almost all antibiotics are intracellularly located and require translocation across membranes. We report herein an integrated view of Lipid A synthesis, membrane assembly, a structure comparison at the molecular structure level of numerous Gram-negative bacterial species, as well as its recent use as a target for original antibacterial molecules. This review paves the way for a new vision of a key membrane component that acts during bacterial adaptation to environmental stresses and for the development of new weapons against microbial resistance to usual antibiotics.
Collapse
Affiliation(s)
- Azza Troudi
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France.,Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1008, Tunisia
| | - Jean Marie Pagès
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| | - Jean Michel Brunel
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
20
|
Damale MG, Pathan SK, Patil RB, Sangshetti JN. Pharmacoinformatics approaches to identify potential hits against tetraacyldisaccharide 4'-kinase (LpxK) of Pseudomonas aeruginosa. RSC Adv 2020; 10:32856-32874. [PMID: 35516480 PMCID: PMC9056689 DOI: 10.1039/d0ra06675c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa infection can cause pneumonia and urinary tract infection and the management of Pseudomonas aeruginosa infection is critical in multidrug resistance, hospital-acquired bacteremia and ventilator-associated pneumonia. The key enzymes of lipid A biosynthesis in Pseudomonas aeruginosa are promising drug targets. However, the enzyme tetraacyldisaccharide 4'-kinase (LpxK) has not been explored as a drug target so far. Several pharmacoinformatics tools such as comparative metabolic pathway analysis (Metacyc), data mining from a database of essential genes (DEG), homology modeling, molecular docking, pharmacophore based virtual screening, ADMET prediction and molecular dynamics simulation were used in identifying novel lead compounds against this target. The top virtual hits STOCK6S-33288, 43621, 39892, 37164 and 35740 may serve as the templates for the design and synthesis of potent LpxK inhibitors in the management of serious Pseudomonas aeruginosa infection.
Collapse
Affiliation(s)
- Manoj G Damale
- Y.B. Chavan College of Pharmacy Dr. Rafiq Zakaria Campus, Rauza Baugh Aurangabad MS 431001 India
- Srinath College of Pharmacy Aurangabad MS India
| | - Shahebaaz K Pathan
- Y.B. Chavan College of Pharmacy Dr. Rafiq Zakaria Campus, Rauza Baugh Aurangabad MS 431001 India
| | - Rajesh B Patil
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy Pune-Saswad Road, Kondhwa (Bk) Pune 411048 India
| | - Jaiprakash N Sangshetti
- Y.B. Chavan College of Pharmacy Dr. Rafiq Zakaria Campus, Rauza Baugh Aurangabad MS 431001 India
| |
Collapse
|
21
|
Kwak SH, Cochrane CS, Ennis AF, Lim WY, Webster CG, Cho J, Fenton BA, Zhou P, Hong J. Synthesis and evaluation of sulfonyl piperazine LpxH inhibitors. Bioorg Chem 2020; 102:104055. [PMID: 32663666 DOI: 10.1016/j.bioorg.2020.104055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is essential in lipid A biosynthesis and has emerged as a promising target for the development of novel antibiotics against multidrug-resistant Gram-negative pathogens. Recently, we reported the crystal structure of Klebsiella pneumoniae LpxH in complex with 1 (AZ1), a sulfonyl piperazine LpxH inhibitor. The analysis of the LpxH-AZ1 co-crystal structure and ligand dynamics led to the design of 2 (JH-LPH-28) and 3 (JH-LPH-33) with enhanced LpxH inhibition. In order to harness our recent findings, we prepared and evaluated a series of sulfonyl piperazine analogs with modifications in the phenyl and N-acetyl groups of 3. Herein, we describe the synthesis and structure-activity relationship of sulfonyl piperazine LpxH inhibitors. We also report the structural analysis of an extended N-acyl chain analog 27b (JH-LPH-41) in complex with K. pneumoniae LpxH, revealing that 27b reaches an untapped polar pocket near the di-manganese cluster in the active site of K. pneumoniae LpxH. We expect that our findings will provide designing principles for new LpxH inhibitors and establish important frameworks for the future development of antibiotics against multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Seung-Hwa Kwak
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - C Skyler Cochrane
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Amanda F Ennis
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Won Young Lim
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Caroline G Webster
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Jae Cho
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States
| | - Benjamin A Fenton
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States
| | - Pei Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, United States; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States.
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, United States; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, United States.
| |
Collapse
|