1
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
2
|
Kweon TH, Jung H, Ko JY, Kang J, Kim W, Kim Y, Kim HB, Yi EC, Ku NO, Cho JW, Yang WH. O-GlcNAcylation of RBM14 contributes to elevated cellular O-GlcNAc through regulation of OGA protein stability. Cell Rep 2024; 43:114163. [PMID: 38678556 DOI: 10.1016/j.celrep.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation. By investigating the correlation between elevated O-GlcNAcylation and increased RBM14 expression in lung cancer cells, we discovered that RBM14 promotes ubiquitin-dependent proteasomal degradation of OGA, ultimately mediating cellular O-GlcNAcylation levels. In addition, RBM14 itself is O-GlcNAcylated at serine 521, regulating its interaction with the E3 ligase TRIM33, consequently affecting OGA protein stability. Moreover, we demonstrated that mutation of serine 521 to alanine abrogated the oncogenic properties of RBM14. Collectively, our findings reveal a previously unknown mechanism for the regulation of OGA and suggest a potential therapeutic target for the treatment of cancers with dysregulated O-GlcNAcylation.
Collapse
Affiliation(s)
- Tae Hyun Kweon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Yeon Ko
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jingu Kang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wonyoung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han Byeol Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin Won Cho
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Li Z, Liao Y, Tang C, Xu L, Peng B, Xu X. RBM14 promotes DNA end resection during homologous recombination repair. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1864-1873. [PMID: 37559455 PMCID: PMC10753362 DOI: 10.3724/abbs.2023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is crucial for the maintenance of genome stability and integrity. In this study, we aim to identify novel RNA binding proteins (RBPs) involved in HR repair because little is known about RBP function in HR. For this purpose, we carry out pulldown assays using a synthetic ssDNA/dsDNA structure coated with replication protein A (RPA) to mimic resected DNA, a crucial intermediate in HR-mediated DSB repair. Using this approach, we identify RNA-binding motif protein 14 (RBM14) as a potential binding partner. We further show that RBM14 interacts with an essential HR repair factor, CtIP. RBM14 is crucial for CtIP recruitment to DSB sites and for subsequent RPA coating and RAD51 replacement, facilitating efficient HR repair. Moreover, inhibition of RBM14 expression sensitizes cancer cells to X-ray irradiation. Together, our results demonstrate that RBM14 promotes DNA end resection to ensure HR repair and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zheng Li
- College of Life SciencesCapital Normal UniversityBeijing100048China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Yanting Liao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Chen Tang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100091China
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM)Dehua HospitalDehua362500China
| | - Linli Xu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| |
Collapse
|
4
|
Wang Y, Zhu W, Jang Y, Sommers JA, Yi G, Puligilla C, Croteau DL, Yang Y, Kai M, Liu Y. The RNA-binding motif protein 14 regulates telomere integrity at the interface of TERRA and telomeric R-loops. Nucleic Acids Res 2023; 51:12242-12260. [PMID: 37930826 PMCID: PMC10711441 DOI: 10.1093/nar/gkad967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Telomeric repeat-containing RNA (TERRA) and its formation of RNA:DNA hybrids (or TERRA R-loops), influence telomere maintenance, particularly in human cancer cells that use homologous recombination-mediated alternative lengthening of telomeres. Here, we report that the RNA-binding motif protein 14 (RBM14) is associated with telomeres in human cancer cells. RBM14 negatively regulates TERRA expression. It also binds to TERRA and inhibits it from forming TERRA R-loops at telomeres. RBM14 depletion has several effects, including elevated TERRA levels, telomeric R-loops, telomere dysfunction-induced DNA damage foci formation, particularly in the presence of DNA replication stress, pRPA32 accumulation at telomeres and telomere signal-free ends. Thus, RBM14 protects telomere integrity via modulating TERRA levels and its R-loop formation at telomeres.
Collapse
Affiliation(s)
- Yajun Wang
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wei Zhu
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Yumi Jang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua A Sommers
- Translational Gerontology Branch, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Gong Yi
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Chandrakala Puligilla
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mihoko Kai
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
5
|
Gómez-González B, Aguilera A. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe? EMBO Rep 2023; 24:e57801. [PMID: 37818834 DOI: 10.15252/embr.202357801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
6
|
Wang J, Muste Sadurni M, Saponaro M. RNAPII response to transcription-blocking DNA lesions in mammalian cells. FEBS J 2023; 290:4382-4394. [PMID: 35731652 PMCID: PMC10952651 DOI: 10.1111/febs.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 09/21/2023]
Abstract
RNA polymerase II moves along genes to decode genetic information stored in the mammalian genome into messenger RNA and different forms of non-coding RNA. However, the transcription process is frequently challenged by DNA lesions caused by exogenous and endogenous insults, among which helix-distorting DNA lesions and double-stranded DNA breaks are particularly harmful for cell survival. In response to such DNA damage, RNA polymerase II transcription is regulated both locally and globally by multi-layer mechanisms, whereas transcription-blocking lesions are repaired before transcription can recover. Failure in DNA damage repair will cause genome instability and cell death. Although recent studies have expanded our understanding of RNA polymerase II regulation confronting DNA lesions, it is still not always clear what the direct contribution of RNA polymerase II is in the DNA damage repair processes. In this review, we focus on how RNA polymerase II and transcription are both repressed by transcription stalling lesions such as DNA-adducts and double strand breaks, as well as how they are actively regulated to support the cellular response to DNA damage and favour the repair of lesions.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Martina Muste Sadurni
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| |
Collapse
|
7
|
Refaat AM, Nakata M, Husain A, Kosako H, Honjo T, Begum NA. HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Rep 2023; 42:112284. [PMID: 36943867 DOI: 10.1016/j.celrep.2023.112284] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
B cells generate functionally different classes of antibodies through class-switch recombination (CSR), which requires classical non-homologous end joining (C-NHEJ) to join the DNA breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA-repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and single-stranded DNA (ssDNA) accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA-repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.
Collapse
Affiliation(s)
- Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Hidetaka Kosako
- Division of Cell Signaling, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Meng X, Wang Q, Hao R, Li X, Li M, Hu R, Du H, Hu Z, Yu B, Li S. RNA-binding protein MAC5A interacts with the 26S proteasome to regulate DNA damage response in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:446-462. [PMID: 36331331 PMCID: PMC9806599 DOI: 10.1093/plphys/kiac510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Quanhui Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ruili Hao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xudong Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
9
|
Awwad SW, Darawshe MM, Machour FE, Arman I, Ayoub N. Recruitment of RBM6 to DNA Double-Strand Breaks Fosters Homologous Recombination Repair. Mol Cell Biol 2023; 43:130-142. [PMID: 36941773 PMCID: PMC10038030 DOI: 10.1080/10985549.2023.2187105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65. Here, we describe a splicing-independent function of RBM6 in promoting HR repair of DSBs. We show that RBM6 is recruited to DSB sites and PARP1 activity indirectly regulates RBM6 recruitment to DNA breakage sites. Deletion mapping analysis revealed a region containing five glycine residues within the G-patch domain that regulates RBM6 accumulation at DNA damage sites. We further ascertain that RBM6 interacts with Rad51, and this interaction is attenuated in RBM6 mutant lacking the G-patch domain (RBM6del(G-patch)). Consequently, RBM6del(G-patch) cells exhibit reduced levels of Rad51 foci after ionizing radiation. In addition, while RBM6 deletion mutant lacking the G-patch domain has no detectable effect on the expression levels of its splicing targets Fe65 and Eya2, it fails to restore the integrity of HR. Altogether, our results suggest that RBM6 recruitment to DSB promotes HR repair, irrespective of its splicing activity.HIGHLIGHTSPARP1 activity indirectly regulates RBM6 recruitment to DNA damage sites.Five glycine residues within the G-patch domain of RBM6 are critical for its recruitment to DNA damage sites, but dispensable for its splicing activity.RBM6 G-patch domain fosters its interaction with Rad51 and promotes Rad51 foci formation following irradiation.RBM6 recruitment to DSB sites underpins HR repair.
Collapse
Affiliation(s)
- Samah W. Awwad
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Malak M. Darawshe
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Feras E. Machour
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Inbar Arman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
12
|
Guo B, Jiang T, Wu F, Ni H, Ye J, Wu X, Ni C, Jiang M, Ye L, Li Z, Zheng X, Li S, Yang Q, Wang Z, Huang X, Zhao C. LncRNA RP5-998N21.4 promotes immune defense through upregulation of IFIT2 and IFIT3 in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:11. [PMID: 35232977 PMCID: PMC8888552 DOI: 10.1038/s41537-021-00195-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a complex polygenic disease that is affected by genetic, developmental, and environmental factors. Accumulating evidence indicates that environmental factors such as maternal infection and excessive prenatal neuroinflammation may contribute to the onset of schizophrenia by affecting epigenetic modification. We recently identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA) RP5-998N21.4 by transcriptomic analysis of monozygotic twins discordant for schizophrenia. Importantly, we found that genes coexpressed with RP5-998N21.4 were enriched in immune defense-related biological processes in twin subjects and in RP5-998N21.4-overexpressing (OE) SK-N-SH cell lines. We then identified two genes encoding an interferon-induced protein with tetratricopeptide repeat (IFIT) 2 and 3, which play an important role in immune defense, as potential targets of RP5-998N21.4 by integrative analysis of RP5-998N21.4OE-induced differentially expressed genes (DEGs) in SK-N-SH cells and RP5-998N21.4-coexpressed schizophrenia-associated DEGs from twin subjects. We further demonstrated that RP5-998N21.4 positively regulates the transcription of IFIT2 and IFIT3 by binding to their promoter regions and affecting their histone modifications. In addition, as a general nuclear coactivator, RMB14 (encoding RNA binding motif protein 14) was identified to facilitate the regulatory role of RP5-998N21.4 in IFIT2 and IFIT3 transcription. Finally, we observed that RP5-998N21.4OE can enhance IFIT2- and IFIT3-mediated immune defense responses through activation of signal transducer and activator of transcription 1 (STAT1) signaling pathway in U251 astrocytoma cells under treatment with the viral mimetic polyinosinic: polycytidylic acid (poly I:C). Taken together, our findings suggest that lncRNA RP5-998N21.4 is a critical regulator of immune defense, providing etiological and therapeutic implications for schizophrenia.
Collapse
Affiliation(s)
- Bo Guo
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Fengchun Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Hongyu Ni
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Junping Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wu
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoying Ni
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Jiang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linyan Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongwei Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzhen Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shufen Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Yang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingbing Huang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China.
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China. .,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China. .,Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Res 2021; 49:11728-11745. [PMID: 34718776 PMCID: PMC8599715 DOI: 10.1093/nar/gkab980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Collapse
Affiliation(s)
- Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie-Noelle Guilly
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Le Bars
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vincent Paget
- IRS[N]/PSE-SANTE/SERAMED/LRMed, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de Radiopathologie, UMR Stabilité Génétique Cellules Souches et Radiations, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18 Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Haser Sutcu
- IRS[N]/PSE-SANTE/SERAMED/LRAcc, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Cécile Mathé
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie Hullo
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Denis Biard
- Service d'étude des prions et maladies atypiques (SEPIA), DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - François Leteurtre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Vilma Barroca
- Laboratoire Réparation et Transcription dans les cellules Souches, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Youenn Corre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Lamya Irbah
- Plateforme de Microscopie, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U12745, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Emilie Rass
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Benoit Theze
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Pascale Bertrand
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Jeroen A A Demmers
- Proteomics Center, Room Ee-679A | Faculty Building, Erasmus University Medical Center Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Jozo Delic
- To whom correspondence should be addressed. Tel: +33 1 4654 7552;
| |
Collapse
|
14
|
Machour FE, Abu-Zhayia ER, Awwad SW, Bidany-Mizrahi T, Meinke S, Bishara LA, Heyd F, Aqeilan RI, Ayoub N. RBM6 splicing factor promotes homologous recombination repair of double-strand breaks and modulates sensitivity to chemotherapeutic drugs. Nucleic Acids Res 2021; 49:11708-11727. [PMID: 34718714 PMCID: PMC8599755 DOI: 10.1093/nar/gkab976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Samah W Awwad
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tirza Bidany-Mizrahi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Stefan Meinke
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Laila A Bishara
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
16
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Murashko MM, Stasevich EM, Schwartz AM, Kuprash DV, Uvarova AN, Demin DE. The Role of RNA in DNA Breaks, Repair and Chromosomal Rearrangements. Biomolecules 2021; 11:biom11040550. [PMID: 33918762 PMCID: PMC8069526 DOI: 10.3390/biom11040550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis's primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.
Collapse
Affiliation(s)
- Matvey Mikhailovich Murashko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Ekaterina Mikhailovna Stasevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Anton Markovich Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, 141701 Moscow, Russia
| | - Dmitriy Vladimirovich Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Aksinya Nicolaevna Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Denis Eriksonovich Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Correspondence:
| |
Collapse
|
18
|
Gonzalez-Leal C, Ladurner AG. A triskelion of nucleic acids drives protein aggregation in A-T. Mol Cell 2021; 81:1367-1369. [PMID: 33798413 DOI: 10.1016/j.molcel.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mutations in ataxia telangiectasia mutated (ATM) kinase lead to cerebellar neurodegeneration. In this issue of Molecular Cell, Lee et al. (2021) revealed how transcription-induced reactive oxygen species and DNA-RNA hybrids activate PARP enzymes, generating the nucleic acid poly-ADP-ribose, which promotes the accumulation of protein aggregates in A-T-like disorders.
Collapse
Affiliation(s)
- Claudia Gonzalez-Leal
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, 82152 Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, Am Klopferspitz 19, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
19
|
R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 2021; 23:305-313. [PMID: 33837288 DOI: 10.1038/s41556-021-00663-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demonstrated to accumulate in cis to DSBs, especially those induced in transcriptionally active loci. In this Review, we discuss whether R-loops actively participate in DSB repair or are detrimental by-products that must be removed to avoid genome instability.
Collapse
|
20
|
Qin H, Qu Y, Yuan YF, Li YY, Qiao J. RBM14 Modulates Tubulin Acetylation and Regulates Spindle Morphology During Meiotic Maturation in Mouse Oocytes. Front Cell Dev Biol 2021; 9:635728. [PMID: 33604343 PMCID: PMC7884444 DOI: 10.3389/fcell.2021.635728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
RBM14 is an RNA-binding protein that regulates spindle integrity in mitosis; however, its functions during meiosis are still unclear. In this study, we discovered that RBM14 expression was down-regulated in oocytes from old mice. The RBM14 distribution at different stages of meiosis was explored, while it presents overlapped localization patterns with α-tubulin in MI- and MII-stage oocytes. Treatment of MI-stage oocytes with spindle-perturbing agents revealed that RBM14 was co-localized with microtubules. RBM14 knockdown with RBM14-specific morpholino showed that RBM14-depleted oocytes underwent symmetric division compared to the controls. RBM14 knockdown also resulted in spindle defects and chromosome abnormalities during oocyte maturation, presumably due to α-tubulin hyperacetylation. Co-immunoprecipitation analysis demonstrated that RBM14 is interacted with endogenous α-tubulin in mammalian cells. These findings indicate that RBM14 is an essential modulator of oocyte meiotic maturation by regulating α-tubulin acetylation to affect spindle morphology and chromosome alignment. Consequently, RBM14 represents a potential biomarker of oocyte quality and a novel therapeutic target in women with oocyte maturation failure.
Collapse
Affiliation(s)
- Hao Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yi Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yi-Feng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yang-Yang Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Peking University, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Chong S, Mir M. Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions. J Mol Biol 2020; 433:166724. [PMID: 33248138 DOI: 10.1016/j.jmb.2020.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
A substantial portion of the proteome consists of intrinsically disordered regions (IDRs) that do not fold into well-defined 3D structures yet perform numerous biological functions and are associated with a broad range of diseases. It has been a long-standing enigma how different IDRs successfully execute their specific functions. Further putting a spotlight on IDRs are recent discoveries of functionally relevant biomolecular assemblies, which in some cases form through liquid-liquid phase separation. At the molecular level, the formation of biomolecular assemblies is largely driven by weak, multivalent, but selective IDR-IDR interactions. Emerging experimental and computational studies suggest that the primary amino acid sequences of IDRs encode a variety of their interaction behaviors. In this review, we focus on findings and insights that connect sequence-derived features of IDRs to their conformations, propensities to form biomolecular assemblies, selectivity of interaction partners, functions in the context of physiology and disease, and regulation of function. We also discuss directions of future research to facilitate establishing a comprehensive sequence-function paradigm that will eventually allow prediction of selective interactions and specificity of function mediated by IDRs.
Collapse
Affiliation(s)
- Shasha Chong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States; The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, United States.
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
22
|
Ketley RF, Gullerova M. Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays Biochem 2020; 64:721-735. [PMID: 32618336 PMCID: PMC7592198 DOI: 10.1042/ebc20200008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
The mechanisms by which RNA acts in the DNA damage response (DDR), specifically in the repair of DNA double-strand breaks (DSBs), are emerging as multifaceted and complex. Different RNA species, including but not limited to; microRNA (miRNA), long non-coding RNA (lncRNA), RNA:DNA hybrid structures, the recently identified damage-induced lncRNA (dilncRNA), damage-responsive transcripts (DARTs), and DNA damage-dependent small RNAs (DDRNAs), have been shown to play integral roles in the DSB response. The diverse properties of these RNAs, such as sequence, structure, and binding partners, enable them to fulfil a variety of functions in different cellular contexts. Additionally, RNA can be modified post-transcriptionally, a process which is regulated in response to cellular stressors such as DNA damage. Many of these mechanisms are not yet understood and the literature contradictory, reflecting the complexity and expansive nature of the roles of RNA in the DDR. However, it is clear that RNA is pivotal in ensuring the maintenance of genome integrity. In this review, we will discuss and summarise recent evidence which highlights the roles of these various RNAs in preserving genomic integrity, with a particular focus on the emerging role of RNA in the DSB repair response.
Collapse
Affiliation(s)
- Ruth F Ketley
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
23
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
24
|
Sukhanova MV, Singatulina AS, Pastré D, Lavrik OI. Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA. Int J Mol Sci 2020; 21:E7020. [PMID: 32987654 PMCID: PMC7582374 DOI: 10.3390/ijms21197020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
The fused in sarcoma (FUS) protein combines prion-like properties with a multifunctional DNA/RNA-binding domain and has functions spanning the regulation of RNA metabolism, including transcription, pre-mRNA splicing, mRNA transport and translation. In addition to its roles in RNA metabolism, FUS is implicated in the maintenance of DNA integrity. In this review, we examine the participation of FUS in major DNA repair pathways, focusing on DNA repair associated with poly(ADP-ribosyl)ation events and on how the interaction of FUS with poly(ADP-ribose) may orchestrate transient compartmentalisation of DNA strand breaks. Unravelling how prion-like RNA-binding proteins control DNA repair pathways will deepen our understanding of the pathogenesis of some neurological diseases and cancer as well as provide the basis for the development of relevant innovative therapeutic technologies. This knowledge may also extend the range of applications of poly(ADP-ribose) polymerase inhibitors to the treatment of neurodegenerative diseases related to RNA-binding proteins in the cell, e.g., amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204, Université Paris-Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| |
Collapse
|
25
|
|