1
|
Vejerano EP, Ahn J, Scott GI. Aerosolized algal bloom toxins are not inert. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:1113-1128. [PMID: 39169920 PMCID: PMC11331395 DOI: 10.1039/d4ea00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Harmful algal blooms (HABs) are projected to become increasingly prevalent, extending over longer periods and wider geographic regions due to the warming surface ocean water and other environmental factors, including but not limited to nutrient concentrations and runoff for marine and freshwater environments. Incidents of respiratory distress linked to the inhalation of marine aerosols containing HAB toxins have been documented, though the risk is typically associated with the original toxins. However, aerosolized toxins in micrometer and submicrometer particles are vulnerable to atmospheric processing. This processing can potentially degrade HAB toxins and produce byproducts with varying potencies compared to the parent toxins. The inhalation of aerosolized HAB toxins, especially in conjunction with co-morbid factors such as exposure to air pollutants from increased commercial activities in ports, may represent a significant exposure pathway for a considerable portion of the global population. Understanding the chemistry behind the transformation of these toxins can enhance public protection by improving the existing HAB alert systems.
Collapse
Affiliation(s)
- Eric P Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences USA +1-803-777-6360
| | - Jeonghyeon Ahn
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| | - Geoffrey I Scott
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| |
Collapse
|
2
|
Lin D, Wang S, Xu W, Chen Y, Li P, Fang YG, Zhao W, Duan X, Yang X, Jiang Z, Fang WH, Zeng XC, Francisco JS, Gao Y. Topological wetting states of microdroplets on closed-loop structured surfaces: Breakdown of the Gibbs equation at the microscale. Proc Natl Acad Sci U S A 2024; 121:e2315730121. [PMID: 38557188 PMCID: PMC11009642 DOI: 10.1073/pnas.2315730121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Microdroplets are a class of soft matter that has been extensively employed for chemical, biochemical, and industrial applications. However, fabricating microdroplets with largely controllable contact-area shape and apparent contact angle, a key prerequisite for their applications, is still a challenge. Here, by engineering a type of surface with homocentric closed-loop microwalls/microchannels, we can achieve facile size, shape, and contact-angle tunability of microdroplets on the textured surfaces by design. More importantly, this class of surface topologies (with universal genus value = 1) allows us to reveal that the conventional Gibbs equation (widely used for assessing the edge effect on the apparent contact angle of macrodroplets) seems no longer applicable for water microdroplets or nanodroplets (evidenced by independent molecular dynamics simulations). Notably, for the flat surface with the intrinsic contact angle ~0°, we find that the critical contact angle on the microtextured counterparts (at edge angle 90°) can be as large as >130°, rather than 90° according to the Gibbs equation. Experiments show that the breakdown of the Gibbs equation occurs for microdroplets of different types of liquids including alcohol and hydrocarbon oils. Overall, the microtextured surface design and topological wetting states not only offer opportunities for diverse applications of microdroplets such as controllable chemical reactions and low-cost circuit fabrications but also provide testbeds for advancing the fundamental surface science of wetting beyond the Gibbs equation.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo315211, China
| | - Shixian Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wenwu Xu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo315211, China
| | - Yuhao Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo315211, China
| | - Pei Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo315211, China
| | - Ye-Guang Fang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wenhui Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo315211, China
| | - Xiangmei Duan
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo315211, China
| | - Xinju Yang
- Department of Physics, Fudan University, Shanghai200438, China
| | - Zuimin Jiang
- Department of Physics, Fudan University, Shanghai200438, China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Joseph S. Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA19104
| | - Yurui Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
3
|
Eatoo MA, Mishra H. Busting the myth of spontaneous formation of H 2O 2 at the air-water interface: contributions of the liquid-solid interface and dissolved oxygen exposed. Chem Sci 2024; 15:3093-3103. [PMID: 38425539 PMCID: PMC10901496 DOI: 10.1039/d3sc06534k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Recent reports on the spontaneous formation of hydrogen peroxide (H2O2) at the air-water and solid-water interfaces challenge our current understanding of aquatic chemistry and have ramifications on atmosphere chemistry models, surface science, and green chemistry. Suggested mechanisms underlying this chemical transformation include ultrahigh instantaneous electric fields at the air-water interface and the oxidation of water and reduction of the solid at the solid-water interface. Here, we revisit this curious problem with NMR spectroscopy (with an H2O2 detection limit ≥50 nM) and pay special attention to the effects of nebulizing gas, dissolved oxygen content, and the solid-water interface on this chemical transformation in condensed and sprayed water microdroplets. Experiments reveal that the reduction of dissolved oxygen at the solid-water interface predominantly contributes to the H2O2 formation (not the oxidation of hydroxyl ions at the air-water interface or the oxidation of water at the solid-water interface). We find that the H2O2 formation is accompanied by the consumption (i.e., reduction) of dissolved oxygen and the oxidation of the solid surface, i.e., in the absence of dissolved oxygen, the formation of H2O2(aq) is not observed within the detection limit of ≥50 nM. Remarkably, the tendency of the solids investigated in this work towards forming H2O2 in water followed the same order as their positions in the classic Galvanic series. These findings bust the prevailing myths surrounding H2O2 formation due to the air-water interface, the ultrahigh electric fields therein, or the micro-scale of droplets. The hitherto unrealized role of the oxidation of the solid surface due to dissolved oxygen in the formation of H2O2 is exposed. These findings are especially relevant to corrosion science, surface science, and electrochemistry, among others.
Collapse
Affiliation(s)
- Muzzamil Ahmad Eatoo
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Himanshu Mishra
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Zhou K, Su H, Gao J, Li H, Liu S, Yi X, Zhang Z, Wang W. Deciphering the Kinetics of Spontaneous Generation of H 2O 2 in Individual Water Microdroplets. J Am Chem Soc 2024; 146:2445-2451. [PMID: 38230586 DOI: 10.1021/jacs.3c09864] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Spontaneous generation of H2O2 in sub-10 μm-sized water microdroplets has received increasing interest since its first discovery in 2019. On the other hand, due to the short lifetime of these microdroplets (rapid evaporation) and lack of suitable tools to real-time monitor the generation of H2O2 in individual microdroplets, such a seemingly thermodynamically unfavorable process has also raised vigorous debates on the origin of H2O2 and the underlying mechanism. Herein, we prepared water microdroplets with a long lifetime (>1 h) by virtue of microwell confinement and dynamically monitored the spontaneous generation of H2O2 in individual microdroplets via time-lapsed fluorescence imaging. It was unveiled that H2O2 was continuously generated in the as-prepared water microdroplets and an apparent equilibrium concentration of ∼3 μM of H2O2 in the presence of a H2O2-consuming reaction can be obtained. Through engineering the geometry of these microdroplets, we further revealed that the generation rates of H2O2 in individual microdroplets were positively proportional to their surface-to-volume ratios. This also allowed us to extract a maximal H2O2 generation rate of 7.7 nmol m-2 min-1 in the presence of a H2O2-consuming reaction and derive the corresponding probability of spontaneous conversion of interfacial H2O into H2O2 for the first time, that is, ∼1 of 65,000 water molecules in 1 s. These findings delivered strong evidence that the spontaneous generation of H2O2 indeed occurs at the surface of microdroplets and provided us with an important starting point to further enhance the yield of H2O2 in water microdroplets for future applications.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuannuo Yi
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhibing Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Ju Y, Zhang H, Wang X, Liu Y, Yang Y, Kan G, Yu K, Jiang J. Abiotic synthesis with plausible emergence for primitive phospholipid in aqueous microdroplets. J Colloid Interface Sci 2023; 634:535-542. [PMID: 36549202 DOI: 10.1016/j.jcis.2022.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Phospholipids are the protective layer of modern cells, but it is challenging for the formation of phospholipids that require a simple abiotic synthesis before the advent of primitive cells. Here, we reported the abiotic synthesis for lysophosphatidic acids (LPAs) with prebiotically plausible reactants in aqueous microdroplets under ambient conditions. The LPAs formation is carried out by fusing two microdroplets streams: one contains glycerol and pyrophosphate in water and the other one contains fatty acids in acetonitrile. Compared with the bulk solution, LPAs were generated in microdroplets without the addition of catalyst and heating. Conditions of reactant concentrations and microdroplet size varied and suggested that LPAs formation occurred near or at the microdroplet surface. The LPAs formation also showed chemoselective toward on chain-length of fatty acids. Finally, the formation of LPAs underwent two-step reactions with glycerol phosphorylation eliminating one water molecule followed by esterification with fatty acids. These results also implicated that pyrophosphate functioned as both catalysts and precursors in prebiotic LPAs synthesis. The approach using fusion aqueous microdroplets has desirable features in studying the substance exchange and interaction in atmosphere.
Collapse
Affiliation(s)
- Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Yali Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| |
Collapse
|
6
|
Basuri P, Chakraborty A, Ahuja T, Mondal B, Kumar JS, Pradeep T. Spatial reorganization of analytes in charged aqueous microdroplets. Chem Sci 2022; 13:13321-13329. [PMID: 36507174 PMCID: PMC9682915 DOI: 10.1039/d2sc04589c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
Imprinted charged aqueous droplets of micrometer dimensions containing spherical gold and silver nanoparticles, gold nanorods, proteins and simple molecules were visualized using dark-field and transmission electron microscopies. With such studies, we hoped to understand the unusual chemistry exhibited by microdroplets. These droplets with sizes in the range of 1-100 μm were formed using a home-built electrospray source with nitrogen as the nebulization gas. Several remarkable features such as mass/size-selective segregation and spatial localization of solutes in nanometer-thin regions of microdroplets were visualized, along with the formation of micro-nano vacuoles. Electrospray parameters such as distance between the spray tip and surface, voltage and nebulization gas pressure influenced particle distribution within the droplets. We relate these features to unusual phenomena such as the enhancement of rates of chemical reactions in microdroplets.
Collapse
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Amrita Chakraborty
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Tripti Ahuja
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Biswajit Mondal
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Jenifer Shantha Kumar
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Thalappil Pradeep
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
- International Centre for Clean Water Chennai Tamil Nadu 600113 India
| |
Collapse
|
7
|
Gallo A, Musskopf NH, Liu X, Yang Z, Petry J, Zhang P, Thoroddsen S, Im H, Mishra H. On the formation of hydrogen peroxide in water microdroplets. Chem Sci 2022; 13:2574-2583. [PMID: 35340850 PMCID: PMC8890092 DOI: 10.1039/d1sc06465g] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Recent reports on the formation of hydrogen peroxide (H2O2) in water microdroplets produced via pneumatic spraying or capillary condensation have garnered significant attention. How covalent bonds in water could break under such mild conditions challenges our textbook understanding of physical chemistry and water. While there is no definitive answer, it has been speculated that ultrahigh electric fields at the air-water interface are responsible for this chemical transformation. Here, we report on our comprehensive experimental investigation of H2O2 formation in (i) water microdroplets sprayed over a range of liquid flow-rates, (shearing) air flow rates, and air composition, and (ii) water microdroplets condensed on hydrophobic substrates formed via hot water or humidifier under controlled air composition. Specifically, we assessed the contributions of the evaporative concentration and shock waves in sprays and the effects of trace O3(g) on the H2O2 formation. Glovebox experiments revealed that the H2O2 formation in water microdroplets was most sensitive to the air-borne ozone (O3) concentration. In the absence of O3(g), we could not detect H2O2(aq) in sprays or condensates (detection limit ≥250 nM). In contrast, microdroplets exposed to atmospherically relevant O3(g) concentration (10-100 ppb) formed 2-30 µM H2O2(aq), increasing with the gas-liquid surface area, mixing, and contact duration. Thus, the water surface area facilitates the O3(g) mass transfer, which is followed by the chemical transformation of O3(aq) into H2O2(aq). These findings should also help us understand the implications of this chemistry in natural and applied contexts.
Collapse
Affiliation(s)
- Adair Gallo
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Nayara H Musskopf
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xinlei Liu
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Ziqiang Yang
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jeferson Petry
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Peng Zhang
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Sigurdur Thoroddsen
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hong Im
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Himanshu Mishra
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
8
|
Rastgar S, Pleis S, Zhang Y, Wittstock G. Dispensing Single Drops as Electrochemical Reactors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shokoufeh Rastgar
- Carl von Ossietzky University of Oldenburg: Carl von Ossietzky Universitat Oldenburg Institute of Chemistry GERMANY
| | - Sebastian Pleis
- Carl von Ossietzky University of Oldenburg: Carl von Ossietzky Universitat Oldenburg Institute of Chemistry GERMANY
| | - Yanzhen Zhang
- China University of Petroleum Huadong - Qingdao Campus College of Mechanical and Electronic Engineering CHINA
| | - Gunther Wittstock
- Carl von Ossietzky University of Oldenburg: Carl von Ossietzky Universitat Oldenburg Institute of Chemistry Carl von Ossietzky Str. 9-11 W3 1-105 26111 Oldenburg GERMANY
| |
Collapse
|
9
|
Basuri P, Shantha Kumar J, Unni K, Manna S, Pradeep T. Aggregation of molecules is controlled in microdroplets. Chem Commun (Camb) 2022; 58:12657-12660. [DOI: 10.1039/d2cc04587g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence microscopy reveals the control of aggregation and de-aggregation of molecules in microdroplets, which is strikingly different from that in the bulk.
Collapse
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Jenifer Shantha Kumar
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Keerthana Unni
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sujan Manna
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- International Centre for Clean Water, Chennai, Tamil Nadu 600113, India
| |
Collapse
|
10
|
Duca G. Hydrogen Peroxide in Ecological and Environmental Chemistry. CHEMISTRY JOURNAL OF MOLDOVA 2021. [DOI: 10.19261/cjm.2021.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This review paper is focused on the detailed consideration of the structure, properties and reactions of H2O2. The paper highlights the importance of revealing these processes’ mechanisms, since they have been insufficiently studied so far, or the related data have a fragmentary and incomplete character. A special attention is given to catalytic oxidation reactions, formation and properties of intermediates, their role in the natural environment.
Collapse
|
11
|
Musskopf NH, Gallo A, Zhang P, Petry J, Mishra H. The Air-Water Interface of Water Microdroplets Formed by Ultrasonication or Condensation Does Not Produce H 2O 2. J Phys Chem Lett 2021; 12:11422-11429. [PMID: 34792369 DOI: 10.1021/acs.jpclett.1c02953] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent reports on the production of hydrogen peroxide (H2O2) on the surface of condensed water microdroplets without the addition of catalysts or additives have sparked significant interest. The underlying mechanism is thought to be ultrahigh electric fields at the air-water interface; smaller droplets present larger interfacial areas and produce higher (detectable) H2O2 yields. To gain insights into this phenomenon, we performed condensation experiments and quantified H2O2 formation as a function of the vapor source. Specifically, we compared the H2O2 concentration in water microdroplets condensed from the vapor realized via (i) heating water in the range of 50-70 °C and (ii) ultrasonic humidification (as exploited in the original report). Experimental results revealed that the H2O2 level inside water microdroplets condensed via heating water was below our detection limit (≥0.25 μM), regardless of the droplet size or the substrate wettability. In contrast, water droplets condensed via ultrasonic humidification contained significantly higher (∼1 μM) H2O2 concentrations. We conclude that the ultrasonic humidifiers contribute to H2O2 production, not droplet interfacial effects.
Collapse
Affiliation(s)
- Nayara H Musskopf
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Adair Gallo
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Peng Zhang
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Jeferson Petry
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Himanshu Mishra
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets. Proc Natl Acad Sci U S A 2021; 118:2025726118. [PMID: 34161273 DOI: 10.1073/pnas.2025726118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enzymes are molecules that catalyze reactions critical to life. These catalysts are often studied in bulk water, where the influence of water volume on reactivity is neglected. Here, we demonstrate rate enhancement of up to two orders of magnitude for enzymes trapped in submicrometer water nanodroplets suspended in 1,2-dichloroethane. When single nanodroplets irreversibly adsorb onto an ultramicroelectrode surface, enzymatic activity is apparent in the amperometric current-time trace if the ultramicroelectrode generates the enzyme cofactor. Nanodroplet volume is easily accessible by integrating the current-time response and using Faraday's Law. The single nanodroplet technique allows us to plot the enzyme's activity as a function of nanodroplet size, revealing a strong inverse relationship. Finite element simulations confirm our experimental results and offer insights into parameters influencing single nanodroplet enzymology. These results provide a framework to profoundly influence the understanding of chemical reactivity at the nanoscale.
Collapse
|
13
|
Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. Molecular reactions at aqueous interfaces. Nat Rev Chem 2020; 4:459-475. [PMID: 37127962 DOI: 10.1038/s41570-020-0203-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
This Review aims to critically analyse the emerging field of chemical reactivity at aqueous interfaces. The subject has evolved rapidly since the discovery of the so-called 'on-water catalysis', alluding to the dramatic acceleration of reactions at the surface of water or at its interface with hydrophobic media. We review critical experimental studies in the fields of atmospheric and synthetic organic chemistry, as well as related research exploring the origins of life, to showcase the importance of this phenomenon. The physico-chemical aspects of these processes, such as the structure, dynamics and thermodynamics of adsorption and solvation processes at aqueous interfaces, are also discussed. We also present the basic theories intended to explain interface catalysis, followed by the results of advanced ab initio molecular-dynamics simulations. Although some topics addressed here have already been the focus of previous reviews, we aim at highlighting their interconnection across diverse disciplines, providing a common perspective that would help us to identify the most fundamental issues still incompletely understood in this fast-moving field.
Collapse
|