1
|
Liu R, Liu N, Ma L, Liu Y, Huang Z, Peng X, Zhuang C, Niu J, Yu J, Du J. Research Progress on NMDA Receptor Enhancement Drugs for the Treatment of Depressive Disorder. CNS Drugs 2024; 38:985-1002. [PMID: 39379772 DOI: 10.1007/s40263-024-01123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness with a complex etiology. Currently, many medications employed in clinical treatment exhibit limitations such as delayed onset of action and a high incidence of adverse reactions. Therefore, there is a pressing need to develop antidepressants that exhibit enhanced efficacy and safety. The N-methyl-D-aspartate receptor (NMDAR), a distinctive glutamate-gated ion channel receptor, has been implicated in the onset and progression of depressive disorder, as evidenced by both preclinical and clinical research. The NMDAR antagonist, ketamine, exhibits rapid and sustained antidepressant effects, holding promise as a novel therapeutic approach for depressive disorder. However, its psychotomimetic impact and potential for addiction have restricted its widespread clinical application. Notably, over the past decade, studies have suggested that enhancing NMDAR functionality can produce antidepressant effects with improved safety, especially with the emergence of NMDAR-positive allosteric modulators (PAMs). We view this as a potential novel strategy for treating depression, forming the basis for the narrative review that follows.
Collapse
Affiliation(s)
- Ruyun Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Xiaodong Peng
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Juan Du
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Gomes I, Gupta A, Margolis EB, Fricker LD, Devi LA. Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors. Mol Pharmacol 2024; 106:240-252. [PMID: 39187388 PMCID: PMC11493337 DOI: 10.1124/molpharm.124.000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.
Collapse
Affiliation(s)
- Ivone Gomes
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Achla Gupta
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Elyssa B Margolis
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lloyd D Fricker
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lakshmi A Devi
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| |
Collapse
|
3
|
Kupferberg A, Hasler G. From antidepressants and psychotherapy to oxytocin, vagus nerve stimulation, ketamine and psychedelics: how established and novel treatments can improve social functioning in major depression. Front Psychiatry 2024; 15:1372650. [PMID: 39469469 PMCID: PMC11513289 DOI: 10.3389/fpsyt.2024.1372650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
Social cognitive deficits and social behavior impairments are common in major depressive disorder (MDD) and affect the quality of life and recovery of patients. This review summarizes the impact of standard and novel treatments on social functioning in MDD and highlights the potential of combining different approaches to enhance their effectiveness. Standard treatments, such as antidepressants, psychotherapies, and brain stimulation, have shown mixed results in improving social functioning, with some limitations and side effects. Newer treatments, such as intranasal oxytocin, mindfulness-based cognitive therapy, and psychedelic-assisted psychotherapy, have demonstrated positive effects on social cognition and behavior by modulating self-referential processing, empathy, and emotion regulation and through enhancement of neuroplasticity. Animal models have provided insights into the neurobiological mechanisms underlying these treatments, such as the role of neuroplasticity. Future research should explore the synergistic effects of combining different treatments and investigate the long-term outcomes and individual differences in response to these promising interventions.
Collapse
Affiliation(s)
- Aleksandra Kupferberg
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
| | - Gregor Hasler
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
- University Psychiatry Research Unit, Freiburg Mental Health Network, Villars-sur-Glâne, Switzerland
- Department of Neuropsychology, Lake Lucerne Institute, Vitznau, Switzerland
| |
Collapse
|
4
|
Stopera CJ, Bartlett MJ, Liu C, Esqueda A, Parmar R, Heien ML, Sherman SJ, Falk T. Differential effects of opioid receptor antagonism on the anti-dyskinetic and anti-parkinsonian effects of sub-anesthetic ketamine treatment in a preclinical model. Neuropharmacology 2024; 257:110047. [PMID: 38889877 DOI: 10.1016/j.neuropharm.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Sub-anesthetic ketamine treatment has been shown to be an effective therapy for treatment-resistant depression and chronic pain. Our group has previously shown that sub-anesthetic ketamine produces acute anti-parkinsonian, and acute anti-dyskinetic effects in preclinical models of Parkinson's disease (PD). Ketamine is a multifunctional drug and exerts effects through blockade of N-methyl-d-aspartate receptors but also through interaction with the opioid system. In this report, we provide detailed pharmacokinetic rodent data on ketamine and its main metabolites following an intraperitoneal injection, and second, we explore the pharmacodynamic properties of ketamine in a rodent PD model with respect to the opioid system, using naloxone, a pan-opioid receptor antagonist, in unilateral 6-hydroxydopamine-lesioned male rats, treated with 6 mg/kg levodopa (l-DOPA) to establish a model of l-DOPA-induced dyskinesia (LID). As previously reported, we showed that ketamine (20 mg/kg) is highly efficacious in reducing LID and now report that the magnitude of this effect is resistant to naloxone (3 and 5 mg/kg). The higher naloxone dose of 5 mg/kg, however, led to an extension of the time-course of the LID, indicating that opioid receptor activation, while not a prerequisite for the anti-dyskinetic effects of ketamine, still exerts an acute modulatory effect. In contrast to the mild modulatory effect on LID, we found that naloxone added to the anti-parkinsonian activity of ketamine, further reducing the akinetic phenotype. In conclusion, our data show opioid receptor blockade differentially modulates the acute anti-parkinsonian and anti-dyskinetic actions of ketamine, providing novel mechanistic information to support repurposing ketamine for individuals with LID.
Collapse
Affiliation(s)
- Carolyn J Stopera
- Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ, 85724, USA.
| | | | - Chenxi Liu
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Alexander Esqueda
- Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA.
| | - Raveena Parmar
- Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA.
| | - M Leandro Heien
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Scott J Sherman
- Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA.
| | - Torsten Falk
- Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ, 85724, USA; Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA; Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
5
|
Anna O, Michael A, Apostolakis M, Mammadov E, Mitka A, Kalatta MA, Koumas M, Georgiou A, Chatzittofis A, Panayiotou G, Gergiou P, Zarate CA, Zanos P. Ketamine and hydroxynorketamine as novel pharmacotherapies for the treatment of Opioid-Use Disorders. Biol Psychiatry 2024:S0006-3223(24)01591-9. [PMID: 39293647 DOI: 10.1016/j.biopsych.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Opioid use disorder (OUD) has reached epidemic proportions, with many countries facing high opioid use and related fatalities. Although currently-prescribed medications for OUD (MOUD) are considered life-saving, they inadequately address negative affect and cognitive impairment, resulting in high relapse rates to non-medical opioid use, even years after drug cessation (protracted abstinence). Evidence supports the notion that ketamine, an anesthetic and rapid-acting antidepressant drug, holds promise as a candidate for OUD treatment, including the management of acute withdrawal somatic symptoms, negative affect during protracted opioid abstinence and prevention of re-taking non-medical opioids. In this review, we comprehensively discuss preclinical and clinical research evaluating ketamine and its metabolites as potential novel therapeutic strategies for treating OUDs. We further examine evidence supporting the relevance of the molecular targets of ketamine and its metabolites in relation to their potential effects and therapeutic outcomes in OUDs. Overall, existing evidence demonstrates that ketamine and its metabolites can effectively modulate pathophysiological processes affected in OUD, suggesting their promising therapeutic role in the treatment of OUD and the prevention of return to opioid use during abstinence.
Collapse
Affiliation(s)
- Onisiforou Anna
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Markos Apostolakis
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Elmar Mammadov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Angeliki Mitka
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Maria A Kalatta
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andrea Georgiou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Medical School, University of Cyprus, Nicosia, Cyprus
| | - Georgia Panayiotou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Gergiou
- Department of Psychology, University of Wisconsin-Milwaukee, Wisconsin, 53211, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA.
| |
Collapse
|
6
|
Park H, Ryu H, Zhang S, Rhee J, Chung C. Mu-opioid receptor activation in the habenula modulates synaptic transmission and depression-like behaviors. Neurobiol Dis 2024; 198:106543. [PMID: 38821376 DOI: 10.1016/j.nbd.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Opioid system dysregulation in response to stress is known to lead to psychiatric disorders including major depression. Among three different types of opioid receptors, the mu-type receptors (mORs) are highly expressed in the habenula complex, however, the action of mORs in this area and its interaction with stress exposure is largely unknown. Therefore, we investigated the roles of mORs in the habenula using male rats of an acute learned helplessness (aLH) model. First, we found that mOR activation decreased both excitatory and inhibitory synaptic transmission onto the lateral habenula (LHb). Intriguingly, this mOR-induced synaptic depression was reduced in an animal model of depression compared to that of controls. In naïve animals, we found an unexpected interaction between mORs and the endocannabinoid (eCB) signaling occurring in the LHb, which mediates presynaptic alteration occurring with mOR activation. However, we did not observe presynaptic alteration by mOR activation after stress exposure. Moreover, selective mOR activation in the habenula before, but not after, stress exposure effectively reduced helpless behaviors compared to aLH animals. Our observations are consistent with clinical reports suggesting the involvement of mOR signaling in depression, and additionally reveal a critical time window of mOR action in the habenula for ameliorating helplessness symptoms.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeehae Rhee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Jiang Y, Dong Y, Hu H. The N-methyl-d-aspartate receptor hypothesis of ketamine's antidepressant action: evidence and controversies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230225. [PMID: 38853549 PMCID: PMC11343275 DOI: 10.1098/rstb.2023.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
Substantial clinical evidence has unravelled the superior antidepressant efficacy of ketamine: in comparison to traditional antidepressants targeting the monoamine systems, ketamine, as an N-methyl-d-aspartate receptor (NMDAR) antagonist, acts much faster and more potently. Surrounding the antidepressant mechanisms of ketamine, there is ample evidence supporting an NMDAR-antagonism-based hypothesis. However, alternative arguments also exist, mostly derived from the controversial clinical results of other NMDAR inhibitors. In this article, we first summarize the historical development of the NMDAR-centred hypothesis of rapid antidepressants. We then classify different NMDAR inhibitors based on their mechanisms of inhibition and evaluate preclinical as well as clinical evidence of their antidepressant effects. Finally, we critically analyse controversies and arguments surrounding ketamine's NMDAR-dependent and NMDAR-independent antidepressant action. A better understanding of ketamine's molecular targets and antidepressant mechanisms should shed light on the future development of better treatment for depression. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Yihao Jiang
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| | - Yiyan Dong
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| |
Collapse
|
8
|
Wang H, Lyu N, Zhao Q. Case report: Dezocine's rapid and sustained antidepressant effects. Front Pharmacol 2024; 15:1411119. [PMID: 39092225 PMCID: PMC11291242 DOI: 10.3389/fphar.2024.1411119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Anhedonia and motivational impairments are cardinal features of depression, against which conventional antidepressants demonstrate limited efficacy. Preclinical investigations and extant clinical trial data substantiate the promise of opioid receptor modulators in addressing anhedonia, depression, and anxiety. While synthetic opioid agents like dezocine are conventionally employed for analgesia, their distinctive pharmacological profile has engendered interest in their potential antidepressant properties and translational applications. Herein, we present a case in which persistent bupropion treatment was ineffective. However, the incidental administration of a single low-dose intravenous injection of dezocine resulted in a rapid and sustained amelioration of depressive symptoms, particularly anhedonia and motivational deficits. Our findings posit a potentially novel role for the "legacy drug" dezocine.
Collapse
Affiliation(s)
- Han Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Nan Lyu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Qian Zhao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Johnston JN, Zarate CA, Kvarta MD. Esketamine in depression: putative biomarkers from clinical research. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01865-1. [PMID: 38997425 DOI: 10.1007/s00406-024-01865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
The discovery of racemic (R, S)-ketamine as a rapid-acting antidepressant and the subsequent FDA approval of its (S)-enantiomer, esketamine, for treatment-resistant depression (TRD) are significant advances in the development of novel neuropsychiatric therapeutics. Esketamine is now recognized as a powerful tool for addressing persistent symptoms of TRD compared to traditional oral antidepressants. However, research on biomarkers associated with antidepressant response to esketamine has remained sparse and, to date, has been largely extrapolated from racemic ketamine studies. Genetic, proteomic, and metabolomic profiles suggest that inflammation and mitochondrial function may play a role in esketamine's antidepressant effects, though these preliminary results require verification. In addition, neuroimaging research has consistently implicated the prefrontal cortex, striatum, and anterior cingulate cortex in esketamine's effects. Esketamine also shows promise in perioperative settings for reducing depression and anxiety, and these effects appear to correlate with increased peripheral biomarkers such as brain-derived neurotrophic factor and serotonin. Further indications are likely to be identified with the continued repurposing of racemic ketamine, providing further opportunity for biomarker study and mechanistic understanding of therapeutic effects. Novel methodologies and well-designed biomarker-focused clinical research trials are needed to more clearly elucidate esketamine's therapeutic actions as well as biologically identify those most likely to benefit from this agent, allowing for the improved personalization of antidepressant treatment.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mark D Kvarta
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Gillman MA. Study of Antidepressant Actions of Subanesthetic Nitrous Oxide: Importance of Adequate Blinding and Opioid Receptors. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100331. [PMID: 38883867 PMCID: PMC11179068 DOI: 10.1016/j.bpsgos.2024.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 06/18/2024] Open
Affiliation(s)
- Mark A Gillman
- South African Brain Research Institute, Johannesburg, South Africa
| |
Collapse
|
11
|
Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02625-2. [PMID: 38816586 DOI: 10.1038/s41380-024-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity-including via serotonergic interventions-to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Helen and Arthur E. Johnson Depression Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korrina A Duffy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Zhou L, Duan J. The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neurosci Ther 2024; 30:e14464. [PMID: 37680076 PMCID: PMC11017467 DOI: 10.1111/cns.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND As a phencyclidine (PCP) analog, ketamine can generate rapid-onset and substantial anesthetic effects. Contrary to traditional anesthetics, ketamine is a dissociative anesthetic and can induce loss of consciousness in patients. Recently, the subanaesthetic dose of ketamine was found to produce rapid-onset and lasting antidepressant effects. AIM However, how different concentrations of ketamine can induce diverse actions remains unclear. Furthermore, the molecular mechanisms underlying the NMDAR-mediated anesthetic and antidepressant effects of ketamine are not fully understood. METHOD In this review, we have introduced ketamine and its metabolism, summarized recent advances in the molecular mechanisms underlying NMDAR inhibition in the anesthetic and antidepressant effects of ketamine, explored the possible functions of NMDAR subunits in the effects of ketamine, and discussed the future directions of ketamine-based anesthetic and antidepressant drugs. RESULT Both the anesthetic and antidepressant effects of ketamine were thought to be mediated by N-methyl-D-aspartate receptor (NMDAR) inhibition. CONCLUSION The roles of NMDARs have been extensively studied in the anaesthetic effects of ketamine. However, the roles of NMDARs in antidepressant effects of ketamine are complicated and controversial.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of MedicineSunYat‐sen UniversityGuangzhouChina
| |
Collapse
|
13
|
Strumberger CD, D'Epagnier EJ, Nguyen KH, Rogers JD, Meyer MP, Malhotra Y, Hinman JE, Jansen EL, Minervini V. Antinociceptive and adverse effects of morphine:ketamine mixtures in rats. Behav Pharmacol 2024; 35:122-131. [PMID: 38451024 DOI: 10.1097/fbp.0000000000000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Prescription opioids are the gold standard for treating moderate to severe pain despite their well-documented adverse effects. Of all prescription medications, opioids are abused most widely, and fatal overdoses have reached epidemic levels. One strategy for improving the margin of safety of opioids is combining them with non-opioid drugs to decrease the opioid dose needed for pain relief, thereby reducing adverse effects that occur with larger doses. The N-methyl-D-aspartate receptor antagonist ketamine has been used safely as an analgesic but only under a very limited range of conditions. The current studies characterized the antinociceptive, behavioral suppressant, and gastrointestinal effects of morphine and ketamine alone and in mixtures to determine their interaction in 24 adult male Sprague-Dawley rats (n = 8 per assay). Given alone, both morphine and ketamine produced antinociception, decreased responding for food, and reduced gastrointestinal transit (i.e. produced constipation). The effects of morphine:ketamine mixtures generally were additive, except for the antinociceptive effects of 1:1 mixtures for which the difference in slope (i.e. non-parallel shift) between the observed and predicted effects suggested synergy at smaller doses and additivity at larger doses. The potency of morphine to produce constipation was not enhanced by administration of morphine:ketamine mixtures with antinociceptive effects. The nature of the interaction between morphine and ketamine for adverse effects such as dependence, withdrawal, abuse, or respiratory depression remains unknown but also might be related to the ratio of each drug in mixtures. It will be important to identify conditions that produce the largest potential therapeutic window in humans.
Collapse
Affiliation(s)
- Conor D Strumberger
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pomrenze MB, Vaillancourt S, Llorach P, Rijsketic DR, Casey AB, Gregory N, Salgado JS, Malenka RC, Heifets BD. Opioid receptor expressing neurons of the central amygdala gate behavioral effects of ketamine in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583196. [PMID: 38496451 PMCID: PMC10942405 DOI: 10.1101/2024.03.03.583196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ketamine has anesthetic, analgesic, and antidepressant properties which may involve multiple neuromodulatory systems. In humans, the opioid receptor (OR) antagonist naltrexone blocks the antidepressant effect of ketamine. It is unclear whether naltrexone blocks a direct effect of ketamine at ORs, or whether normal functioning of the OR system is required to realize the full antidepressant effects of treatment. In mice, the effect of ketamine on locomotion, but not analgesia or the forced swim test, was sensitive to naltrexone and was therefore used as a behavioral readout to localize the effect of naltrexone in the brain. We performed whole-brain imaging of cFos expression in ketamine-treated mice, pretreated with naltrexone or vehicle, and identified the central amygdala (CeA) as the area with greatest difference in cFos intensity. CeA neurons expressing both μOR (MOR) and PKCμ were strongly activated by naltrexone but not ketamine, and selectively interrupting MOR function in the CeA either pharmacologically or genetically blocked the locomotor effects of ketamine. These data suggest that MORs expressed in CeA neurons gate behavioral effects of ketamine but are not direct targets of ketamine.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Sam Vaillancourt
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Pierre Llorach
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Ryskamp Rijsketic
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Austen B. Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas Gregory
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Juliana S. Salgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Boris D. Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
15
|
Levinstein MR, De Oliveira PA, Casajuana-Martin N, Quiroz C, Budinich RC, Rais R, Rea W, Ventriglia EN, Llopart N, Casadó-Anguera V, Moreno E, Walther D, Glatfelter GC, Weinshenker D, Zarate CA, Casadó V, Baumann MH, Pardo L, Ferré S, Michaelides M. Unique pharmacodynamic properties and low abuse liability of the µ-opioid receptor ligand (S)-methadone. Mol Psychiatry 2024; 29:624-632. [PMID: 38145984 PMCID: PMC11221360 DOI: 10.1038/s41380-023-02353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.
Collapse
Affiliation(s)
- Marjorie R Levinstein
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Paulo A De Oliveira
- Integrative Neurobiology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Nil Casajuana-Martin
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Cesar Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Reece C Budinich
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Neurology and Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Emilya N Ventriglia
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Natàlia Llopart
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institut de Biomedicina de la Universitat de Barcelona, 08028, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institut de Biomedicina de la Universitat de Barcelona, 08028, Barcelona, Spain
| | - Estefanía Moreno
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institut de Biomedicina de la Universitat de Barcelona, 08028, Barcelona, Spain
| | - Donna Walther
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Grant C Glatfelter
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health Intramural Research Program, Bethesda, MD, 20892, USA
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institut de Biomedicina de la Universitat de Barcelona, 08028, Barcelona, Spain
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Lewis V, Rurak G, Salmaso N, Aguilar-Valles A. An integrative view on the cell-type-specific mechanisms of ketamine's antidepressant actions. Trends Neurosci 2024; 47:195-208. [PMID: 38220554 DOI: 10.1016/j.tins.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Over the past six decades, the use of ketamine has evolved from an anesthetic and recreational drug to the first non-monoaminergic antidepressant approved for treatment-resistant major depressive disorder (MDD). Subanesthetic doses of ketamine and its enantiomer (S)-ketamine (esketamine) directly bind to several neurotransmitter receptors [including N-methyl-d-aspartic acid receptor (NMDAR), κ and μ opioid receptor (KOR and MOR)] widely distributed in the brain and across different cell types, implicating several potential molecular mechanisms underlying the action of ketamine as an antidepressant. This review examines preclinical studies investigating cell-type-specific mechanisms underlying the effects of ketamine on behavior and synapses. Cell-type-specific approaches are crucial for disentangling the critical mechanisms involved in the therapeutic effect of ketamine.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Gareth Rurak
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Argel Aguilar-Valles
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
17
|
Wen Y, Mao M, Wang X, Xu C, Shi X, Li P, Tian Z, Jiang M, Yuan H, Feng S. Efficacy and safety of perioperative application of esketamine on postpartum depression: A meta-analysis of randomized controlled studies. Psychiatry Res 2024; 333:115765. [PMID: 38330640 DOI: 10.1016/j.psychres.2024.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Postpartum depression (PPD) seriously impairs the physical and mental health of mothers and their offspring, so how to prevent the occurrence of PPD has essential significance. Esketamine is a common general anesthetic that produces rapid and sustained antidepressant effects. However, the efficacy and safety of perioperative esketamine administration for PPD prevention remain uncertain. We conducted a meta-analysis to determine the effect of perioperative intravenous esketamine on PPD. Randomized controlled trials were included. The primary outcome was the prevalence of PPD and postpartum Edinburgh Postnatal Depression Scale (EPDS) scores. Secondary outcomes included postoperative pain scores and esketamine-related adverse effects. Seven studies included 669 patients treated with esketamine and 619 comparisons. Esketamine could effectively reduce EPDS scores and the incidence of PPD after cesarean section. Even at 42 days postpartum, the incidence of PPD was still significantly lower in the esketamine group. Esketamine did not increase the incidence of postoperative nausea and vomiting, dizziness, and drowsiness. In the esketamine low-dose subgroup, postoperative nausea and vomiting were significantly lower in the esketamine group. The two groups had no significant difference in postoperative pain scores. In conclusion, using esketamine during the perioperative period can reduce the incidence of PPD without increasing adverse effects.
Collapse
Affiliation(s)
- Yazhou Wen
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Mingjie Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Xian Wang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Chenyang Xu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Xueduo Shi
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ping Li
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Zijun Tian
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ming Jiang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Hongmei Yuan
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| |
Collapse
|
18
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
19
|
Jiang C, DiLeone RJ, Pittenger C, Duman RS. The endogenous opioid system in the medial prefrontal cortex mediates ketamine's antidepressant-like actions. Transl Psychiatry 2024; 14:90. [PMID: 38346984 PMCID: PMC10861497 DOI: 10.1038/s41398-024-02796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) are blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupts the behavioral effects of ketamine. Ketamine treatment rapidly increases levels of β-endorphin and the expression of the μ-opioid receptor gene (Oprm1) in the mPFC, and the expression of gene that encodes proopiomelanocortin, the precursor of β-endorphin, in the hypothalamus, in vivo. Finally, neutralization of β-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolishes both behavioral and molecular effects. Together, these findings indicate that presence of β-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychology, Yale University School of Arts and Sciences, New Haven, CT, USA.
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, USA.
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Di Ianni T, Ewbank SN, Levinstein MR, Azadian MM, Budinich RC, Michaelides M, Airan RD. Sex dependence of opioid-mediated responses to subanesthetic ketamine in rats. Nat Commun 2024; 15:893. [PMID: 38291050 PMCID: PMC10828511 DOI: 10.1038/s41467-024-45157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Subanesthetic ketamine is increasingly used for the treatment of varied psychiatric conditions, both on- and off-label. While it is commonly classified as an N-methyl D-aspartate receptor (NMDAR) antagonist, our picture of ketamine's mechanistic underpinnings is incomplete. Recent clinical evidence has indicated, controversially, that a component of the efficacy of subanesthetic ketamine may be opioid dependent. Using pharmacological functional ultrasound imaging in rats, we found that blocking opioid receptors suppressed neurophysiologic changes evoked by ketamine, but not by a more selective NMDAR antagonist, in limbic regions implicated in the pathophysiology of depression and in reward processing. Importantly, this opioid-dependent response was strongly sex-dependent, as it was not evident in female subjects and was fully reversed by surgical removal of the male gonads. We observed similar sex-dependent effects of opioid blockade affecting ketamine-evoked postsynaptic density and behavioral sensitization, as well as in opioid blockade-induced changes in opioid receptor density. Together, these results underscore the potential for ketamine to induce its affective responses via opioid signaling, and indicate that this opioid dependence may be strongly influenced by subject sex. These factors should be more directly assessed in future clinical trials.
Collapse
Affiliation(s)
- Tommaso Di Ianni
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Departments of Psychiatry & Behavioral Sciences and Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Sedona N Ewbank
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marjorie R Levinstein
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Matine M Azadian
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Reece C Budinich
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Raag D Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Abstract
Major depressive disorder (MDD) is a leading cause of suicide in the world. Monoamine-based antidepressant drugs are a primary line of treatment for this mental disorder, although the delayed response and incomplete efficacy in some patients highlight the need for improved therapeutic approaches. Over the past two decades, ketamine has shown rapid onset with sustained (up to several days) antidepressant effects in patients whose MDD has not responded to conventional antidepressant drugs. Recent preclinical studies have started to elucidate the underlying mechanisms of ketamine's antidepressant properties. Herein, we describe and compare recent clinical and preclinical findings to provide a broad perspective of the relevant mechanisms for the antidepressant action of ketamine.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kanzo Suzuki
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| | - Lisa M Monteggia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
22
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
23
|
Schatzberg AF, Mathew SJ. The why, when, where, how, and so what of so-called rapidly acting antidepressants. Neuropsychopharmacology 2024; 49:189-196. [PMID: 37460770 PMCID: PMC10700639 DOI: 10.1038/s41386-023-01647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 12/08/2023]
Abstract
Developing antidepressants that are not only more effective but are rapidly acting is the Holy Grail for psychiatry. We review multiple issues that arise in determining rapid responses in antidepressant trials. The current status of purportedly rapid acting agents is first reviewed. Then, a number of key questions/issues are addressed: Is there a unifying definition for rapid response across studies? Should rapid response criteria be based on required measurable effects on overall improvement? On specific symptoms such as psychomotor retardation, depressed mood, or anhedonia? In associated symptoms such as anxiety or insomnia? When should onset be considered rapid-by Day 3? Day7? Day 14? If there is a rapid response, for how long should the effects be maintained? Is maintenance of effect dependent on continuing the medication? Is rapid response associated with specific mechanisms of action? Do the mechanisms of action suggest possible risk for drug abuse? How important is rapid response really in an often chronic or recurrent depressive disorder? In which types of patients could rapid response be particularly important? What are the study design issues that need to be considered for assessing rapid response, including: selection of specific types of depressed patients, multiple doses of drug studied, designation of primary and secondary outcome measures, specific time points at which to determine efficacy, requirements for demonstrating durability, etc. A framework for approaching this complex area is developed for both researchers and clinicians.
Collapse
Affiliation(s)
- Alan F Schatzberg
- Kenneth T. Norris, Jr., Professor of Psychiatry and Behavioral Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sanjay J Mathew
- Marjorie Bintliff Johnson and Raleigh White Johnson, Jr. Chair for Research in Psychiatry, Menninger Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Costi S. Ketamine for Major Depressive Disorder. Curr Top Behav Neurosci 2024; 66:131-147. [PMID: 37922100 DOI: 10.1007/7854_2023_453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide. Conventional antidepressant treatment is characterised by a significant time to onset of therapeutic action (approximately 2 weeks) and fails to achieve a stable remission of symptoms in one-third of subjects with MDD. In the last 20 years the discovery of antidepressant effects of the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine as a rapid acting (within hours) and sustained (up to 7 days) antidepressant has represented a major paradigm shift in the field.The present chapter reviews the pharmacology, safety, and efficacy of ketamine as a novel therapeutic agent for MDD and specifically for subjects who did not respond to conventional antidepressant (treatment resistant depression). The impact of ketamine on suicidal ideation, the availability of brain biomarkers of ketamine treatment response and the association of ketamine and psychotherapy are considered.
Collapse
Affiliation(s)
- Sara Costi
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
- Oxford Health Foundation Trust, Warneford Hospital, Oxford, UK.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Sharp T, Collins H. Mechanisms of SSRI Therapy and Discontinuation. Curr Top Behav Neurosci 2024; 66:21-47. [PMID: 37955823 DOI: 10.1007/7854_2023_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
SSRIs are one of the most widely used drug therapies in primary care and psychiatry, and central to the management of the most common mental health problems in today's society. Despite this, SSRIs suffer from a slow onset of therapeutic effect and relatively poor efficacy as well as adverse effects, with recent concerns being focused on a disabling SSRI discontinuation syndrome. The mechanism underpinning their therapeutic effect has long shifted away from thinking that SSRIs act simply by increasing 5-HT in the synapse. Rather, a current popular view is that increased 5-HT is just the beginning of a series of complex downstream signalling events, which trigger changes in neural plasticity at the functional and structural level. These changes in plasticity are then thought to interact with neuropsychological processes to enhance re-learning of emotional experiences that ultimately brings about changes in mood. This compelling view of SSRI action is underpinning attempts to understand fast-acting antidepressants, such as ketamine and psychedelic drugs, and aid the development of future therapies. An important gap in the theory is evidence that changes in plasticity are causally linked to relevant behavioural effects. Also, predictions that the SSRI-induced neural plasticity might have applicability in other areas of medicine have not yet been borne out. In contrast to the sophisticated view of the antidepressant action of SSRIs, the mechanism underpinning SSRI discontinuation is little explored. Nevertheless, evidence of rebound increases in 5-HT neuron excitability immediately on cessation of SSRI treatment provide a starting point for future investigation. Indeed, this evidence allows formulation of a mechanistic explanation of SSRI discontinuation which draws on parallels with the withdrawal states of other psychotropic drugs.
Collapse
Affiliation(s)
- Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
28
|
Hope J, Copolov D, Tiller J, Galbally M, Hopwood M, Newton R, Keks NA. What clinicians need to know about intranasal esketamine for treatment-resistant depression? Australas Psychiatry 2023; 31:841-845. [PMID: 37961848 PMCID: PMC10725109 DOI: 10.1177/10398562231211171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVE To review the usefulness of esketamine for treatment-resistant depression. METHOD Pivotal trials of intranasal esketamine in treatment-resistant depression were synthesized as a narrative review. RESULTS Esketamine is postulated to act through antagonism of N-methyl-D-aspartate (NMDA) glutamate receptors, but opioidergic effects may also be involved. Unlike intravenous ketamine, esketamine is given intranasally (under clinical observation), usually in addition to an oral antidepressant. Trials compared esketamine plus antidepressant versus placebo plus antidepressant. At 4 weeks, remission was 37% higher with esketamine/antidepressant than placebo/antidepressant. Speed of response and improvement in suicidality were comparable. In stable remitters on esketamine/antidepressant, 45% relapsed when esketamine was withdrawn over the following 6 months (whereas 25% relapsed on esketamine/antidepressant). Response appears less likely in patients with multiple antidepressant failures. Adverse effects include dissociation, dizziness, nausea, sedation, and headache but no psychosis. Hypertension affected 13%, especially older patients. Dose frequency is twice-weekly for 4 weeks, then weekly/fortnightly thereafter. No abuse has been reported. Unsubsidised cost may be beyond the reach of many Australians. CONCLUSION Intranasal esketamine plus antidepressant has been approved by regulators as moderately effective and acceptably tolerable for treatment-resistant depression. Cost is a drawback. Use often needs to be long-term and vigilance for abuse is essential.
Collapse
Affiliation(s)
- Judy Hope
- Mental Health Program, Eastern Health, Box Hill, VIC, Australia; Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia; Centre of Mental Health Education and Research, Delmont Private Hospital, Burwood, VIC, Australia
| | - David Copolov
- Department of Psychiatry, Monash University, Clayton, VIC, Australia
| | - John Tiller
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Megan Galbally
- Department of Psychiatry, Monash University, Clayton, VIC, Australia; Mental Health Program Monash Health, Clayton, VIC, Australia; Centre of Women's and Children's Mental Health, Melbourne, VIC, Australia
| | - Malcolm Hopwood
- Department of Psychiatry, University of Melbourne, VIC, Australia
| | - Richard Newton
- Peninsula Health, Frankston, VIC, Australia; Monash University, Clayton, VIC, Australia
| | - Nicholas A Keks
- Monash Medical Centre, Clayton, VIC, Australia; Centre of Mental Health Education and Research, Delmont Private Hospital, Burwood, VIC, Australia
| |
Collapse
|
29
|
Lii TR, Smith AE, Flohr JR, Okada RL, Nyongesa CA, Cianfichi LJ, Hack LM, Schatzberg AF, Heifets BD. Randomized trial of ketamine masked by surgical anesthesia in patients with depression. NATURE MENTAL HEALTH 2023; 1:876-886. [PMID: 38188539 PMCID: PMC10769130 DOI: 10.1038/s44220-023-00140-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/14/2023] [Indexed: 01/09/2024]
Abstract
Ketamine may have antidepressant properties, but its acute psychoactive effects complicate successful masking in placebo-controlled trials. We present a single-center, parallel-arm, triple-masked, randomized, placebo-controlled trial assessing the antidepressant efficacy of intravenous ketamine masked by surgical anesthesia (ClinicalTrials.gov, NCT03861988). Forty adult patients with major depressive disorder who were scheduled for routine surgery were randomized to a single infusion of ketamine (0.5 mg/kg) or placebo (saline) during usual anesthesia. All participants, investigators, and direct patient care staff were masked to treatment allocation. The primary outcome was depression severity measured by the Montgomery-Åsberg Depression Rating Scale (MADRS) at 1, 2, and 3 days post-infusion. After all follow-up visits, participants were asked to guess which intervention they received. A mixed-effects model showed no evidence of effect of treatment assignment on the primary outcome (-5.82, 95% CI -13.3 to 1.64, p=0.13). 36.8% of participants guessed their treatment assignment correctly; both groups allocated their guesses in similar proportions. In conclusion, a single dose of intravenous ketamine delivered during surgical anesthesia had no greater effect than placebo in acutely reducing the severity of depressive symptoms in adults with major depressive disorder. This trial successfully masked treatment allocation in moderate-to-severely depressed patients using surgical anesthesia. Although this masking strategy is impractical for most placebo-controlled trials, future studies of novel antidepressants with acute psychoactive effects should make efforts to fully mask treatment assignment in order to minimize subject-expectancy bias.
Collapse
Affiliation(s)
- Theresa R Lii
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ashleigh E Smith
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Josephine R Flohr
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin L Okada
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Cynthia A Nyongesa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa J Cianfichi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura M Hack
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Pittenger C, Jiang C, DiLeone R, Duman R. The endogenous opioid system in the medial prefrontal cortex mediates ketamine's antidepressant-like actions. RESEARCH SQUARE 2023:rs.3.rs-3190391. [PMID: 37886526 PMCID: PMC10602058 DOI: 10.21203/rs.3.rs-3190391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) were blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupted the behavioral effects of ketamine. Ketamine treatment rapidly increased levels of β-endorphin and the expression of the μ-opioid receptor gene (Oprm1) in the mPFC, and the expression of the gene that encodes proopiomelanocortin, the precursor of β-endorphin, in the hypothalamus, in vivo. Finally, neutralization of β-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolished both behavioral and molecular effects. Together, these findings indicate that presence of β-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.
Collapse
Affiliation(s)
| | | | | | - Ronald Duman
- Department of Psychiatry, Yale School of Medicine
| |
Collapse
|
31
|
Qiu Y, Li L, Duan A, Wang M, Xie M, Chen Z, Wang Z. The efficacy and tolerability of inhaled nitrous oxide in major depressive disorder: a systematic review and meta-analysis. Psychopharmacology (Berl) 2023; 240:2033-2043. [PMID: 37608194 DOI: 10.1007/s00213-023-06449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Nitrous oxide (N2O) has been initially confirmed by clinical trials to benefit to patients with major depressive disorder (MDD). However, there needs to be a meta-analysis to compare the efficacy and tolerability of N2O in MDD. METHODS PubMed, EMBASE, and Cochrane Library were searched for relevant studies up to Jan 1st, 2023. The meta-analysis mainly compared the outcome of the change in depression severity scores, response, remission, and adverse events in patients with MDD receiving 50% N2O and placebo. RESULTS Four studies with 133 patients were eventually identified. We found that the N2O group and control group showed an overall significant difference in the change in depression severity score for patients at 2 h, 24 h, and 2 weeks or more (2 h, SMD = - 0.64, 95% CI - 0.01 to - 0.28, p < 0.0001) (24 h, SMD = - 0.65, 95% CI - 1.01 to - 0.29, p < 0.0001) (2 weeks, SMD = - 0.76, 95% CI - 1.16 to - 0.36, p < 0.0001). For the response and remission rate, the long-term effect of N2O was also statistically significant (for the response, RR = 2.33, 95% CI 1.23 to 4.44, p = 0.01) (for the remission, RR = 4.68, 95% CI 1.49 to 14.68, p = 0.008). For safety outcomes, patients treated with N2O had higher odds of nausea or vomiting (RR = 10.15, 95% CI 1.96 to 52.59, p = 0.009). CONCLUSION Our study suggested that N2O has a rapid and long-lasting antidepressant effect in patients with MDD. However, the efficacy of lower or titrated concentration of N2O should be further investigated.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Suzhou Medical College of Soochow USniversity, Suzhou, 215002, Jiangsu Province, China
| | - Minjia Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
32
|
Boucherie DE, Reneman L, Ruhé HG, Schrantee A. Neurometabolite changes in response to antidepressant medication: A systematic review of 1H-MRS findings. Neuroimage Clin 2023; 40:103517. [PMID: 37812859 PMCID: PMC10563053 DOI: 10.1016/j.nicl.2023.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), serotonin and noradrenaline reuptake inhibitors (SNRIs), and (es)ketamine are used to treat major depressive disorder (MDD). These different types of medication may involve common neural pathways related to glutamatergic and GABAergic neurotransmitter systems, both of which have been implicated in MDD pathology. We conducted a systematic review of pharmacological proton Magnetic Resonance Spectroscopy (1H-MRS) studies in healthy volunteers and individuals with MDD to explore the potential impact of these medications on glutamatergic and GABAergic systems. We searched PubMed, Web of Science and Embase and included randomized controlled trials or cohort studies, which assessed the effects of SSRIs, SNRIs, or (es)ketamine on glutamate, glutamine, Glx or GABA using single-voxel 1H-MRS or Magnetic Resonance Spectroscopic Imaging (MRSI). Additionally, studies were included when they used a field strength > 1.5 T, and when a comparison of metabolite levels between antidepressant treatment and placebo or baseline with post-medication metabolite levels was done. We excluded animal studies, duplicate publications, or articles with 1H-MRS data already described in another included article. Twenty-nine studies were included in this review. Fifteen studies investigated the effect of administration or treatment with SSRIs or SNRIs, and fourteen studies investigated the effect of (es)ketamine on glutamatergic and GABAergic metabolite levels. Studies on SSRIs and SNRIs were highly variable, generally underpowered, and yielded no consistent findings across brain regions or specific populations. Although studies on (es)ketamine were also highly variable, some demonstrated an increase in glutamate levels in the anterior cingulate cortex in a time-dependent manner after administration. Our findings highlight the need for standardized study and acquisition protocols. Additionally, measuring metabolites dynamically over time or combining 1H-MRS with whole brain functional imaging techniques could provide valuable insights into the effects of these medications on glutamate and GABAergic neurometabolism.
Collapse
Affiliation(s)
- Daphne E Boucherie
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands.
| | - Liesbeth Reneman
- Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands; Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands
| |
Collapse
|
33
|
Lullau APM, Haga EMW, Ronold EH, Dwyer GE. Antidepressant mechanisms of ketamine: a review of actions with relevance to treatment-resistance and neuroprogression. Front Neurosci 2023; 17:1223145. [PMID: 37614344 PMCID: PMC10442706 DOI: 10.3389/fnins.2023.1223145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023] Open
Abstract
Concurrent with recent insights into the neuroprogressive nature of depression, ketamine shows promise in interfering with several neuroprogressive factors, and has been suggested to reverse neuropathological patterns seen in depression. These insights come at a time of great need for novel approaches, as prevalence is rising and current treatment options remain inadequate for a large number of people. The rapidly growing literature on ketamine's antidepressant potential has yielded multiple proposed mechanisms of action, many of which have implications for recently elucidated aspects of depressive pathology. This review aims to provide the reader with an understanding of neuroprogressive aspects of depressive pathology and how ketamine is suggested to act on it. Literature was identified through PubMed and Google Scholar, and the reference lists of retrieved articles. When reviewing the evidence of depressive pathology, a picture emerges of four elements interacting with each other to facilitate progressive worsening, namely stress, inflammation, neurotoxicity and neurodegeneration. Ketamine acts on all of these levels of pathology, with rapid and potent reductions of depressive symptoms. Converging evidence suggests that ketamine works to increase stress resilience and reverse stress-induced dysfunction, modulate systemic inflammation and neuroinflammation, attenuate neurotoxic processes and glial dysfunction, and facilitate synaptogenesis rather than neurodegeneration. Still, much remains to be revealed about ketamine's antidepressant mechanisms of action, and research is lacking on the durability of effect. The findings discussed herein calls for more longitudinal approaches when determining efficacy and its relation to neuroprogressive factors, and could provide relevant considerations for clinical implementation.
Collapse
Affiliation(s)
- August P. M. Lullau
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Emily M. W. Haga
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Eivind H. Ronold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Gerard E. Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Srivastava S, Arenkiel BR, Salas R. Habenular molecular targets for depression, impulsivity, and addiction. Expert Opin Ther Targets 2023; 27:757-761. [PMID: 37705488 PMCID: PMC10591939 DOI: 10.1080/14728222.2023.2257390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Institute, Texas Children’s Hospital, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Institute, Texas Children’s Hospital, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- The Menninger Clinic, Houston TX, USA
- Department of Neurosciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Adzic M, Lukic I, Mitic M, Glavonic E, Dragicevic N, Ivkovic S. Contribution of the opioid system to depression and to the therapeutic effects of classical antidepressants and ketamine. Life Sci 2023:121803. [PMID: 37245840 DOI: 10.1016/j.lfs.2023.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Glavonic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
36
|
Szumiec L, Bugno R, Szumiec L, Przewlocki R. The Differential Influence of PZM21, A Nonrewarding μ-opioid Receptor Agonist With G Protein Bias, on Behavioural Despair and Fear Response in Mice. Behav Brain Res 2023; 449:114466. [PMID: 37146718 DOI: 10.1016/j.bbr.2023.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
A growing body of evidence points out the involvement of the µ-opioid receptors in the modulation of stress-related behaviour. It has been suggested that µ-opioid receptor agonists may attenuate behavioural despair following animals' exposure to an acute, inescapable stressor. Moreover, morphine was shown to ameliorate fear memories caused by a traumatic experience. As typical µ-opioid receptor agonists entail a risk of serious side effects and addiction, novel, possibly safer and less addictive agonists of this receptor are currently under investigation. One of them, PZM21, preferentially acting via the G protein signalling pathway, was previously shown to be analgesic, but less addictive than morphine. Here, we aimed to further test this ligand in stress-related behavioural paradigms in mice. The study has shown that, unlike morphine, PZM21 does not decrease immobility in the forced swimming and tail suspension tests. On the other hand, we observed that both mice treated with PZM21 and those receiving morphine presented a slight attenuation of freezing across the consecutive fear memory retrievals in the fear conditioning test. Therefore, our study implies that at the range of tested doses, PZM21, a nonrewarding representative of G protein-biased µ-opioid receptor agonists, may interfere with fear memory consolidation while having no beneficial effects on behavioural despair in mice.
Collapse
Affiliation(s)
- Lucja Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
37
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Cardona-Acosta AM, Bolaños-Guzmán CA. Role of the mesolimbic dopamine pathway in the antidepressant effects of ketamine. Neuropharmacology 2023; 225:109374. [PMID: 36516891 PMCID: PMC9839658 DOI: 10.1016/j.neuropharm.2022.109374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Depression is a complex and highly heterogeneous disorder which diagnosis is based on an exceedingly variable set of clinical symptoms. Current treatments focus almost exclusively on the manipulation of monoamine neurotransmitter systems, but despite considerable efforts, these remain inadequate for a significant proportion of those afflicted by the disorder. The emergence of racemic (R, S)-ketamine as a fast-acting antidepressant has provided an exciting new path for the study of major depressive disorder (MDD) and the search for better therapeutics for its treatment. Previous work suggested that ketamine's mechanism of action is primarily mediated via blockaded of N-methyl-d-aspartate (NMDA) receptors, however, this is an area of active research and clinical and preclinical evidence now indicate that ketamine acts on multiple systems. The last couple of decades have cemented the mesolimbic dopamine reward pathway's involvement in the pathogenesis of MDD and related mood disorders. Exposure to negative stress dysregulates dopamine neuronal activity disrupting reward and motivational processes resulting in anhedonia (lack of pleasure), a hallmark symptom of depression. Although the mechanism(s) underlying ketamine's antidepressant activity continue to be elucidated, current evidence indicate that its therapeutic effects are mediated, at least in part, via long-lasting synaptic changes and subsequent molecular adaptations in brain regions within the mesolimbic dopamine system. Notwithstanding, ketamine is a drug of abuse, and this liability may pose limitations for long term use as an antidepressant. This review outlines the current knowledge of ketamine's actions within the mesolimbic dopamine system and its abuse potential. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
Quintanilla B, Medeiros GC, Greenstein D, Yuan P, Johnston JN, Park LT, Goes F, Gould TD, Zarate CA. κ-Opioid Receptor Plasma Levels Are Associated With Sex and Diagnosis of Major Depressive Disorder But Not Response to Ketamine. J Clin Psychopharmacol 2023; 43:89-96. [PMID: 36821406 PMCID: PMC9992159 DOI: 10.1097/jcp.0000000000001663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Preclinical evidence indicates that the κ-opioid receptor (KOR)/dynorphin pathway is implicated in depressive-like behaviors. Ketamine is believed to partly exert its antidepressant effects by modulating the opioid system. This post hoc study examined the following research questions: (1) at baseline, were there differences in KOR or dynorphin plasma levels between individuals with major depressive disorder (MDD) and healthy volunteers (HVs) or between men and women? (2) in individuals with MDD, did KOR or dynorphin baseline plasma levels moderate ketamine's therapeutic effects or adverse effects? and (3) in individuals with MDD, were KOR or dynorphin plasma levels affected after treatment with ketamine compared with placebo? METHODS Thirty-nine unmedicated individuals with MDD (23 women) and 25 HVs (16 women) received intravenous ketamine (0.5 mg/kg) and placebo in a randomized, crossover, double-blind trial. Blood was obtained from all participants at baseline and at 3 postinfusion time points (230 minutes, day 1, day 3). Linear mixed model regressions were used. RESULTS At baseline, participants with MDD had lower KOR plasma levels than HVs ( F1,60 = 13.16, P < 0.001), and women (MDD and HVs) had higher KOR plasma levels than men ( F1,60 = 4.98, P = 0.03). Diagnosis and sex had no significant effects on baseline dynorphin levels. Baseline KOR and dynorphin levels did not moderate ketamine's therapeutic or adverse effects. Compared with placebo, ketamine was not associated with postinfusion changes in KOR or dynorphin levels. CONCLUSIONS In humans, diagnosis of MDD and biological sex are involved with changes in components of the KOR/dynorphin pathway. Neither KOR nor dynorphin levels consistently moderated ketamine's therapeutic effects or adverse effects, nor were levels altered after ketamine infusion. TRIAL REGISTRATION NCT00088699 ( ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Brandi Quintanilla
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Gustavo C. Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Dede Greenstein
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Jenessa N. Johnston
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lawrence T. Park
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Fernando Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| |
Collapse
|
40
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
41
|
Flerlage WJ, Langlois LD, Rusnak M, Simmons SC, Gouty S, Armstrong RC, Cox BM, Symes AJ, Tsuda MC, Nugent FS. Involvement of Lateral Habenula Dysfunction in Repetitive Mild Traumatic Brain Injury-Induced Motivational Deficits. J Neurotrauma 2023; 40:125-140. [PMID: 35972745 PMCID: PMC9917318 DOI: 10.1089/neu.2022.0224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Affective disorders including depression (characterized by reduced motivation, social withdrawal, and anhedonia), anxiety, and irritability are frequently reported as long-term consequences of mild traumatic brain injury (mTBI) in addition to cognitive deficits, suggesting a possible dysregulation within mood/motivational neural circuits. One of the important brain regions that control motivation and mood is the lateral habenula (LHb), whose hyperactivity is associated with depression. Here, we used a repetitive closed-head injury mTBI model that is associated with social deficits in adult male mice and explored the possible long-term alterations in LHb activity and motivated behavior 10-18 days post-injury. We found that mTBI increased the proportion of spontaneous tonically active LHb neurons yet decreased the proportion of LHb neurons displaying bursting activity. Additionally, mTBI diminished spontaneous glutamatergic and GABAergic synaptic activity onto LHb neurons, while synaptic excitation and inhibition (E/I) balance was shifted toward excitation through a greater suppression of GABAergic transmission. Behaviorally, mTBI increased the latency in grooming behavior in the sucrose splash test suggesting reduced self-care motivated behavior following mTBI. To show whether limiting LHb hyperactivity could restore motivational deficits in grooming behavior, we then tested the effects of Gi (hM4Di)-DREADD-mediated inhibition of LHb activity in the sucrose splash test. We found that chemogenetic inhibition of LHb glutamatergic neurons was sufficient to reverse mTBI-induced delays in grooming behavior. Overall, our study provides the first evidence for persistent LHb neuronal dysfunction due to an altered synaptic integration as causal neural correlates of dysregulated motivational states by mTBI.
Collapse
Affiliation(s)
- William J. Flerlage
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ludovic D. Langlois
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sarah C. Simmons
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Shawn Gouty
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Regina C. Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian M. Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Mumeko C. Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Fereshteh S. Nugent
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Address correspondence to: Fereshteh S. Nugent, PhD, Uniformed Services University of the Health Sciences,, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
42
|
Zhang K, Yao Y, Hashimoto K. Ketamine and its metabolites: Potential as novel treatments for depression. Neuropharmacology 2023; 222:109305. [PMID: 36354092 DOI: 10.1016/j.neuropharm.2022.109305] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Depression is a well-known serious mental illness, and the onset of treatment using traditional antidepressants is frequently delayed by several weeks. Moreover, numerous patients with depression fail to respond to therapy. One major breakthrough in antidepressant therapy is that subanesthetic ketamine doses can rapidly alleviate depressive symptoms within hours of administering a single dose, even in treatment-resistant patients. However, specific mechanisms through which ketamine exerts its antidepressant effects remain elusive, leading to concerns regarding its rapid and long-lasting antidepressant effects. N-methyl-d-aspartate receptor (NMDAR) antagonists like ketamine are reportedly associated with serious side effects, such as dissociative symptoms, cognitive impairment, and abuse potential, limiting the large-scale clinical use of ketamine as an antidepressant. Herein, we reviewed the pharmacological properties of ketamine and the mechanisms of action underlying the rapid antidepressant efficacy, including the disinhibition hypothesis and synaptogenesis, along with common downstream effector pathways such as enhanced brain-derived neurotrophic factor and tropomyosin-related kinase B signaling, activation of the mechanistic target of rapamycin complex 1 and transforming growth factor β1. We focused on evidence supporting the relevance of these potential mechanisms of ketamine and its metabolites in mediating the clinical efficacy of the drug. Given its reported antidepressant efficacy in preclinical studies and limited undesirable adverse effects, (R)-ketamine may be a safer, more controllable, rapid antidepressant. Overall, understanding the potential mechanisms of action of ketamine and its metabolites in combination with pharmacology may help develop a new generation of rapid antidepressants that maximize antidepressant effects while avoiding unfavorable adverse effects. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
| | - Yitan Yao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
43
|
Esmethadone (REL-1017) and Other Uncompetitive NMDAR Channel Blockers May Improve Mood Disorders via Modulation of Synaptic Kinase-Mediated Signaling. Int J Mol Sci 2022; 23:ijms232012196. [PMID: 36293063 PMCID: PMC9602945 DOI: 10.3390/ijms232012196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
This article presents a mechanism of action hypothesis to explain the rapid antidepressant effects of esmethadone (REL-1017) and other uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists and presents a corresponding mechanism of disease hypothesis for major depressive disorder (MDD). Esmethadone and other uncompetitive NMDAR antagonists may restore physiological neural plasticity in animal models of depressive-like behavior and in patients with MDD via preferential tonic block of pathologically hyperactive GluN2D subtypes. Tonic Ca2+ currents via GluN2D subtypes regulate the homeostatic availability of synaptic proteins. MDD and depressive behaviors may be determined by reduced homeostatic availability of synaptic proteins, due to upregulated tonic Ca2+ currents through GluN2D subtypes. The preferential activity of low-potency NMDAR antagonists for GluN2D subtypes may explain their rapid antidepressant effects in the absence of dissociative side effects.
Collapse
|
44
|
Yang L, Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Alterations of functional connectivity of the lateral habenula in subclinical depression and major depressive disorder. BMC Psychiatry 2022; 22:588. [PMID: 36064380 PMCID: PMC9442927 DOI: 10.1186/s12888-022-04221-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common cause of disability and morbidity, affecting about 10% of the population worldwide. Subclinical depression (SD) can be understood as a precursor of MDD, and therefore provides an MDD risk indicator. The pathogenesis of MDD and SD in humans is still unclear, and the current diagnosis lacks accurate biomarkers and gold standards. METHODS A total of 40 MDD, 34 SD, and 40 healthy control (HC) participants matched by age, gender, and education were included in this study. Resting-state functional magnetic resonance images (rs-fMRI) were used to analyze the functional connectivity (FC) of the posterior parietal thalamus (PPtha), which includes the lateral habenula, as the region of interest. Analysis of variance with the post hoc t-test test was performed to find significant differences in FC and clarify the variations in FC among the HC, SD, and MDD groups. RESULTS Increased FC was observed between PPtha and the left inferior temporal gyrus (ITG) for MDD versus SD, and between PPtha and the right ITG for SD versus HC. Conversely, decreased FC was observed between PPtha and the right middle temporal gyrus (MTG) for MDD versus SD and MDD versus HC. The FC between PPtha and the middle frontal gyrus (MFG) in SD was higher than that in MDD and HC. Compared with the HC group, the FC of PPtha-ITG (left and right) increased in both the SD and MDD groups, PPtha-MTG (right) decreased in both the SD and MDD groups and PPtha-MFG (right) increased in the SD group and decreased in the MDD group. CONCLUSION Through analysis of FC measured by rs-fMRI, the altered FC between PPtha and several brain regions (right and left ITG, right MTG, and right MFG) has been identified in participants with SD and MDD. Different alterations in FC between PPtha and these regions were identified for patients with depression. These findings might provide insights into the potential pathophysiological mechanisms of SD and MDD, especially related to PPtha and the lateral habenula.
Collapse
Affiliation(s)
- Lei Yang
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China. .,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Yueyang Teng
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- grid.217309.e0000 0001 2180 0654Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, USA
| | - Xiuhang Ruan
- grid.79703.3a0000 0004 1764 3838Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- grid.79703.3a0000 0004 1764 3838Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
45
|
The Opioid System in Depression. Neurosci Biobehav Rev 2022; 140:104800. [PMID: 35914624 PMCID: PMC10166717 DOI: 10.1016/j.neubiorev.2022.104800] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022]
Abstract
Opioid receptors are widely distributed throughout the brain and play an essential role in modulating aspects of human mood, reward, and well-being. Accumulating evidence indicates the endogenous opioid system is dysregulated in depression and that pharmacological modulators of mu, delta, and kappa opioid receptors hold potential for the treatment of depression. Here we review animal and clinical data, highlighting evidence to support: dysregulation of the opioid system in depression, evidence for opioidergic modulation of behavioural processes and brain regions associated with depression, and evidence for opioidergic modulation in antidepressant responses. We evaluate clinical trials that have examined the safety and efficacy of opioidergic agents in depression and consider how the opioid system may be involved in the effects of other treatments, including ketamine, that are currently understood to exert antidepressant effects through non-opioidergic actions. Finally, we explore key neurochemical and molecular mechanisms underlying the potential therapeutic effects of opioid system engagement, that together provides a rationale for further investigation into this relevant target in the treatment of depression.
Collapse
|
46
|
Wulf HA, Browne CA, Zarate CA, Lucki I. Mediation of the behavioral effects of ketamine and (2R,6R)-hydroxynorketamine in mice by kappa opioid receptors. Psychopharmacology (Berl) 2022; 239:2309-2316. [PMID: 35459958 DOI: 10.1007/s00213-022-06118-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
Emerging evidence has implicated the endogenous opioid system in mediating ketamine's antidepressant activity in subjects with major depressive disorder. To date, mu opioid receptors have been suggested as the primary opioid receptor of interest. However, this hypothesis relies primarily on observations that the opioid antagonist naltrexone blocked the effects of ketamine in humans and rodents. This report confirms previous findings that pretreatment with naltrexone (1 mg/kg) just prior to ketamine (10 mg/kg) administration effectively blocks the behavioral effect of ketamine in the mouse forced swim test 24 h post-treatment. Furthermore, pharmacological blockade of kappa opioid receptors prior to ketamine administration with the selective, short-acting antagonist LY2444296 successfully blocked ketamine's effects in the forced swim test. Likewise, the ability of the ketamine metabolite (2R,6R)-hydroxynorketamine to reduce immobility scores in the forced swim test was also blocked following pretreatment with either naltrexone or LY2444296. These data support a potential role of kappa opioid receptors in mediating the behavioral activity of ketamine and its non-dissociate metabolite (2R,6R)-hydroxynorketamine.
Collapse
Affiliation(s)
- Hildegard A Wulf
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Carlos A Zarate
- National Institute on Mental Health, MD, 20814, Bethesda, USA
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
47
|
Lewis V, Rodrigue B, Arsenault E, Zhang M, Taghavi-Abkuh FF, Silva WCC, Myers M, Matta-Camacho E, Aguilar-Valles A. Translational control by ketamine and its implications for comorbid cognitive deficits in depressive disorders. J Neurochem 2022. [PMID: 35680556 DOI: 10.1111/jnc.15652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Ketamine has shown antidepressant effects in patients with major depressive disorder (MDD) resistant to first-line treatments and approved for use in this patient population. Ketamine induces several forms of synaptic plasticity, which are proposed to underlie its antidepressant effects. However, the molecular mechanism of action directly responsible for ketamine's antidepressant effects remains under active investigation. It was recently demonstrated that the effectors of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, namely, eukaryotic initiation factor 4E (eIF4E) binding proteins 1 and 2 (4E-BP1 and 4E-BP2), are central in mediating ketamine-induced synaptic plasticity and behavioural antidepressant-like effect. 4E-BPs are a family of messenger ribonucleic acid (mRNA) translation repressors inactivated by mTORC1. We observed that their expression in inhibitory interneurons mediates ketamine's effects in the forced swim and novelty suppressed feeding tests and the long-lasting inhibition of GABAergic neurotransmission in the hippocampus. In addition, another effector pathway that regulates translation elongation downstream of mTORC1, the eukaryotic elongation factor 2 kinase (eEF2K), has been implicated in ketamine's behavioural effects. We will discuss how ketamine's rapid antidepressant effect depends on the activation of neuronal mRNA translation through 4E-BP1/2 and eEF2K. Furthermore, given that these pathways also regulate cognitive functions, we will discuss the evidence of ketamine's effect on cognitive function in MDD. Overall, the data accrued from pre-clinical research have implicated the mRNA translation pathways in treating mood symptoms of MDD. However, it is yet unclear whether the pro-cognitive potential of subanesthetic ketamine in rodents also engages these pathways and whether such an effect is consistently observed in the treatment-resistant MDD population.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Molly Zhang
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Mysa Myers
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Edna Matta-Camacho
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
48
|
Artin H, Bentley S, Mehaffey E, Liu FX, Sojourner K, Bismark AW, Printz D, Lee EE, Martis B, De Peralta S, Baker DG, Mishra J, Ramanathan D. Effects of intranasal ( S)-ketamine on Veterans with co-morbid treatment-resistant depression and PTSD: A retrospective case series. EClinicalMedicine 2022; 48:101439. [PMID: 35706484 PMCID: PMC9092498 DOI: 10.1016/j.eclinm.2022.101439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND (S)-ketamine is a glutamatergic drug with potent and rapid acting effects for the treatment of depression. Little is known about the effectiveness of intranasal (S)-ketamine for treating patients with comorbid depression and post-traumatic stress disorder (PTSD). METHODS We performed a retrospective case series analysis of clinical outcomes in 35 Veterans with co-morbid depression and PTSD who were treated with intranasal (S)-ketamine treatments at the VA San Diego Neuromodulation Clinic between Jan 2020 and March 2021. Veterans were not randomized or blinded to treatment. The primary outcome measured was a change in patient health questionnaire-9 (PHQ-9) and PTSD Checklist for DSM-5 (PCL-5) scores across the first 8 treatments (induction period) using a repeated measures analysis of variance (ANOVA). In a smaller sub-group (n = 19) of Veterans who received at least 8 additional treatments, we analyzed whether intranasal (S)-ketamine continued to show treatment effects. Finally, we performed a sub-group and correlation analyses to understand how changes in PHQ-9 and PCL-5 scores were related across treatments. FINDINGS During the induction phase of treatment there was an absolute reduction of 5.1 (SEM 0.7) on the patient health questionnaire-9 (PHQ-9) rating scale for depression, from 19.8 (SEM 0.7) at treatment 1 to 14.7 (SEM 0.8) at treatment 8 (week 4) (F(7238) = 8.3, p = 1e-6, partial η2 = 0.2). Five Veterans (14%) showed a clinically meaningful response (50% reduction in PHQ-9 score) at treatment 8. There was an absolute reduction of 15.5 +/- 2.4 on the patient checklist 5 (PCL-5) rating scale for PTSD, from 54.8 (SEM 2) at treatment 1 down to 39.3 (SEM 2.5) at treatment 8 (F(7238) = 15.5, p = 2e-7, partial η2 = 0.31). Sixteen Veterans (46%) showed a clinically meaningful response (reduction in PCL-5 of > 30%) in PTSD. Change in PHQ-9 correlated with change in PCL-5 at treatment 8 (r = 0.47, p = 0.005), but a decrease in PTSD symptoms were observable in some individuals with minimal anti-depressant response. INTERPRETATIONS While this is an open-label retrospective analysis, our results indicate that both depression and PTSD symptoms in Veterans with dual-diagnoses may improve with repeated intranasal (S)-ketamine treatment. The effects of (S)-ketamine on PTSD symptoms were temporally and individually distinct from those on depression, suggesting potentially different modes of action on the two disorders. This work may warrant formal randomized controlled studies on the effects of intranasal (S)-ketamine for individuals with co-morbid MDD and PTSD. FUNDING VA Center of Excellence in Stress and Mental Health, VA ORD (Career Development Award to DSR), Burroughs-Wellcome Fund Award (DSR), NIMH (EL).
Collapse
Affiliation(s)
- Hewa Artin
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Sean Bentley
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Eamonn Mehaffey
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Fred X. Liu
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Kevin Sojourner
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
| | - Andrew W. Bismark
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - David Printz
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Ellen E. Lee
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Brian Martis
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Sharon De Peralta
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Dewleen G. Baker
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Jyoti Mishra
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Dhakshin Ramanathan
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
- Corresponding author at: Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Effects of stress on endophenotypes of suicide across species: A role for ketamine in risk mitigation. Neurobiol Stress 2022; 18:100450. [PMID: 35685678 PMCID: PMC9170747 DOI: 10.1016/j.ynstr.2022.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
Suicide is a leading cause of death and morbidity worldwide, yet few interventions are available to mitigate its risk. Barriers to effective treatments involve a limited understanding of factors that predict the onset of suicidal thoughts and behaviors. In the context of suicide risk, stress is a precipitating factor that is largely overlooked in the literature. Indeed, the pathophysiology of stress and suicide are heavily interconnected, underscoring the need to target the stress system in suicide prevention. In this review, we integrate findings from the preclinical and clinical literature that links stress and suicide. We focus specifically on the effects of stress on underlying biological functions and processes associated with suicide, allowing for the review of research using animal models. Owing to the rapid anti-suicidal effects of (R,S)-ketamine, we discuss its ability to modulate various stress-related endophenotypes of suicide, as well as its potential role in preventing suicide in those with a history of chronic life stress (e.g., early life adversity). We highlight future research directions that could advance our understanding of stress-related effects on suicide risk, advocating a dimensional, endophenotype approach to suicide research. Suicide and chronic stress pathophysiology are interconnected. Chronic stress has profound impacts on several endophenotypes of suicide. Animal and human research points to stress as a precipitating factor in suicide. Ketamine modulates specific biological processes associated with stress and suicide. Suicide research into endophenotypes can help inform risk-mitigation strategies.
Collapse
|
50
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|