1
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024; 17:1672-1686. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Jin Y, Du X, Jiang C, Ji W, Yang P. Disentangling sources of gene tree discordance for Hordeum species via target-enriched sequencing assays. Mol Phylogenet Evol 2024; 199:108160. [PMID: 39019201 DOI: 10.1016/j.ympev.2024.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.
Collapse
Affiliation(s)
- Yanlong Jin
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Hu X, Yasir M, Zhuo Y, Cai Y, Ren X, Rong J. Genomic insights into glume pubescence in durum wheat: GWAS and haplotype analysis implicates TdELD1-1A as a candidate gene. Gene 2024; 909:148309. [PMID: 38417687 DOI: 10.1016/j.gene.2024.148309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Glume pubescence is an important morphological trait for the characterization of wheat cultivars. It shows tolerance to biotic and abiotic stresses to some extent. Hg1 (formerly named Hg) locus on chromosome 1AS controls glume pubescence in wheat. Its genetic analysis, fine-mapping and candidate gene analysis have been widely studied recently, however, the cloning of Hg1 has not yet been reported. Here, we conducted a GWAS between a dense panel of 171,103 SNPs and glume pubescence (Gp) in a durum wheat population of 145 lines, and further analyzed the candidate genes of Hg1 combined with the gene expression, functional annotation, and haplotype analysis. As a results, TRITD0Uv1G104670 (TdELD1-1A), encoding glycosyltransferase-like ELD1/KOBITO 1, was detected as the most promising candidate gene of Hg1 for glume pubescence in durum wheat. Our findings not only contribute to a deeper understanding of its cloning and functional validation but also underscore the significance of accurate genome sequences and annotations. Additionally, our study highlights the relevance of unanchored sequences in chrUn and the application of bioinformatics analysis for gene discovery in durum wheat.
Collapse
Affiliation(s)
- Xin Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Yujie Zhuo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Yijing Cai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
4
|
Wang Y, Wang Z, Chen Y, Lan T, Wang X, Liu G, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Guo W, Peng H. Genomic insights into the origin and evolution of spelt (Triticum spelta L.) as a valuable gene pool for modern wheat breeding. PLANT COMMUNICATIONS 2024; 5:100883. [PMID: 38491771 PMCID: PMC11121738 DOI: 10.1016/j.xplc.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Spelt (Triticum aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource. However, relatively little is known about the origins and maintenance of spelt populations. Here, using resequencing data from 416 worldwide wheat accessions, including representative spelt wheat, we demonstrate that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We propose a haplotype-based "spelt index" to identify spelt-type wheat varieties and to quantify utilization of the spelt gene pool in modern wheat cultivars. This study reveals the genetic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.
Collapse
Affiliation(s)
- Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Tianyu Lan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Institute for Plant Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Gang Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Bian Y, Li L, Tian X, Xu D, Sun M, Li F, Xie L, Liu S, Liu B, Xia X, He Z, Cao S. Rht12b, a widely used ancient allele of TaGA2oxA13, reduces plant height and enhances yield potential in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:253. [PMID: 37989964 DOI: 10.1007/s00122-023-04502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
KEY MESSAGE We identified a new wheat dwarfing allele Rht12b conferring reduced height and higher grain yield, pinpointed its causal variations, developed a breeding-applicable marker, and traced its origin and worldwide distribution. Plant height control is essential to optimize lodging resistance and yield gain in crops. RHT12 is a reduced height (Rht) locus that is identified in a mutationally induced dwarfing mutant and encodes a gibberellin 2-oxidase TaGA2oxA13. However, the artificial dwarfing allele is not used in wheat breeding due to excessive height reduction. Here, we confirmed a stable Rht locus, overlapping with RHT12, in a panel of wheat cultivars and its dwarfing allele reduced plant height by 5.4-8.2 cm, equivalent to Rht12b, a new allele of RHT12. We validated the effect of Rht12b on plant height in a bi-parent mapping population. Importantly, wheat cultivars carrying Rht12b had higher grain yield than those with the contrasting Rht12a allele. Rht12b conferred higher expression level of TaGA2oxA13. Transient activation assays defined SNP-390(C/A) in the promoter of TaGA2oxA13 as the causal variation. An efficient kompetitive allele-specific PCR marker was developed to diagnose Rht12b. Conjoint analysis showed that Rht12b plus the widely used Rht-D1b, Rht8 and Rht24b was the predominant Rht combination and conferred a moderate plant height in tested wheat cultivars. Evolutionary tracking uncovered that RHT12 locus arose from a tandem duplication event with Rht12b firstly appearing in wild emmer. The frequency of Rht12b was approximately 70% (700/1005) in a worldwide wheat panel and comparable to or higher than those of other widely used Rht genes, suggesting it had been subjected to positive selection. These findings not only identify a valuable Rht gene for wheat improvement but also develop a functionally diagnostic tool for marker-assisted breeding.
Collapse
Affiliation(s)
- Yingjie Bian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lingli Li
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiuling Tian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengjing Sun
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Faji Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Lina Xie
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Siyang Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bingyan Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center China Office, c/o Chinese Academy Agricultural Sciences, Beijing, 100081, China.
| | - Shuanghe Cao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
6
|
Mu W, Li K, Yang Y, Breiman A, Lou S, Yang J, Wu Y, Wu S, Liu J, Nevo E, Catalan P. Scattered differentiation of unlinked loci across the genome underlines ecological divergence of the selfing grass Brachypodium stacei. Proc Natl Acad Sci U S A 2023; 120:e2304848120. [PMID: 37903254 PMCID: PMC10636366 DOI: 10.1073/pnas.2304848120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
Ecological divergence without geographic isolation, as an early speciation process that may lead finally to reproductive isolation through natural selection, remains a captivating topic in evolutionary biology. However, the pattern of genetic divergence underlying this process across the genome may vary between species and mating systems. Here, we present evidence that Brachypodium stacei, an annual and highly selfing grass model species, has undergone sympatric ecological divergence without geographic isolation. Genomic, transcriptomic, and metabolomic analyses together with lab experiments mimicking the two opposite environmental conditions suggest that diploid B. stacei populations have diverged sympatrically in two slopes characterized by distinct biomes at Evolution Canyon I (ECI), Mount Carmel, Israel. Despite ongoing gene flow, primarily facilitated by seed dispersal, the level of gene flow has progressively decreased over time. This local adaptation involves the scattered divergence of many unlinked loci across the total genome that include both coding genes and noncoding regions. Additionally, we have identified significant differential expressions of genes related to the ABA signaling pathway and contrasting metabolome composition between the arid- vs. forest-adapted B. stacei populations in ECI. These results suggest that multiple small loci involved in environmental responses act additively to account for ecological adaptations by this selfing species in contrasting environments.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730000, China
- Departamento de Agricultura y Medio Ambiente, Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca22071, Spain
| | - Kexin Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Adina Breiman
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, University of Tel-Aviv, Tel-Aviv6997801, Israel
| | - Shangling Lou
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiao Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Ying Wu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Shuang Wu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Mount Carmel, Haifa3498838, Israel
| | - Pilar Catalan
- Departamento de Agricultura y Medio Ambiente, Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca22071, Spain
| |
Collapse
|
7
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Hao Y, Pan Y, Chen W, Rashid MAR, Li M, Che N, Duan X, Zhao Y. Contribution of Duplicated Nucleotide-Binding Leucine-Rich Repeat (NLR) Genes to Wheat Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2794. [PMID: 37570947 PMCID: PMC10420896 DOI: 10.3390/plants12152794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Wheat has a large and diverse repertoire of NLRs involved in disease resistance, with over 1500 NLRs detected in some studies. These NLR genes occur as singletons or clusters containing copies of NLRs from different phylogenetic clades. The number of NLRs and cluster size can differ drastically among ecotypes and cultivars. Primarily, duplication has led to the evolution and diversification of NLR genes. Among the various mechanisms, whole genome duplication (WGD) is the most intense and leading cause, contributing to the complex evolutionary history and abundant gene set of hexaploid wheat. Tandem duplication or recombination is another major mechanism of NLR gene expansion in wheat. The diversity and divergence of duplicate NLR genes are responsible for the broad-spectrum resistance of most plant species with limited R genes. Understanding the mechanisms underlying the rapid evolution and diversification of wheat NLR genes will help improve disease resistance in crops. The present review focuses on the diversity and divergence of duplicate NLR genes and their contribution to wheat disease resistance. Moreover, we provide an overview of disease resistance-associated gene duplication and the underlying strategies in wheat.
Collapse
Affiliation(s)
- Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Muhammad Abdul Rehman Rashid
- Department of Agricultural Sciences/Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Xu Duan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
10
|
Gao Z, Bian J, Lu F, Jiao Y, He H. Triticeae crop genome biology: an endless frontier. FRONTIERS IN PLANT SCIENCE 2023; 14:1222681. [PMID: 37546276 PMCID: PMC10399237 DOI: 10.3389/fpls.2023.1222681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Triticeae, the wheatgrass tribe, includes several major cereal crops and their wild relatives. Major crops within the Triticeae are wheat, barley, rye, and oat, which are important for human consumption, animal feed, and rangeland protection. Species within this tribe are known for their large genomes and complex genetic histories. Powered by recent advances in sequencing technology, researchers worldwide have made progress in elucidating the genomes of Triticeae crops. In addition to assemblies of high-quality reference genomes, pan-genome studies have just started to capture the genomic diversities of these species, shedding light on our understanding of the genetic basis of domestication and environmental adaptation of Triticeae crops. In this review, we focus on recent signs of progress in genome sequencing, pan-genome analyses, and resequencing analysis of Triticeae crops. We also propose future research avenues in Triticeae crop genomes, including identifying genome structure variations, the association of genomic regions with desired traits, mining functions of the non-coding area, introgression of high-quality genes from wild Triticeae resources, genome editing, and integration of genomic resources.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuling Jiao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
11
|
Wang X, Zhang J, Mao W, Guan P, Wang Y, Chen Y, Liu W, Guo W, Yao Y, Hu Z, Xin M, Ni Z, Sun Q, Peng H. Association mapping identifies loci and candidate genes for grain-related traits in spring wheat in response to heat stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111676. [PMID: 36933836 DOI: 10.1016/j.plantsci.2023.111676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Heat stress is a limiting factor in wheat production along with global warming. Development of heat-tolerant wheat varieties and generation of suitable pre-breeding materials are the major goals in current wheat breeding programs. Our understanding on the genetic basis of thermotolerance remains sparse. In this study, we genotyped a collection of 211 core spring wheat accessions and conducted field trials to evaluate the grain-related traits under heat stress and non-stress conditions in two different locations for three consecutive years. Based on SNP datasets and grain-related traits, we performed genome-wide association study (GWAS) to detect stable loci related to thermotolerance. Thirty-three quantitative trait loci (QTL) were identified, nine of them are the same loci as previous studies, and 24 are potentially novel loci. Functional candidate genes at these QTL are predicted and proved to be relevant to heat stress and grain-related traits such as TaELF3-A1 (1A) for earliness per se (Eps), TaHSFA1-B1 (5B) influencing heat tolerance and TaVIN2-A1 (6A) for grain size. Functional markers of TaELF3-A1 were detected and converted to KASP markers, with their function and genetic diversity being analyzed in the natural populations. In addition, our results unveiled favor alleles controlling agronomic traits and/or heat stress tolerance. In summary, we provide insights into heritable correlation between yield and heat stress tolerance, which will accelerate the development of new cultivars with high and stable yield of wheat in the future.
Collapse
Affiliation(s)
- Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinbo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Weiwei Mao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Panfeng Guan
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wangqing Liu
- Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Raskina O, Shklyar B, Nevo E. The Influence of Edaphic Factors on DNA Damage and Repair in Wild Wheat Triticum dicoccoides Körn. ( Poaceae, Triticeae). Int J Mol Sci 2023; 24:6847. [PMID: 37047823 PMCID: PMC10094829 DOI: 10.3390/ijms24076847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A complex DNA repair network maintains genome integrity and genetic stability. In this study, the influence of edaphic factors on DNA damage and repair in wild wheat Triticum dicoccoides was addressed. Plants inhabiting two abutting microsites with dry terra rossa and humid basalt soils were studied. The relative expression level of seven genes involved in DNA repair pathways-RAD51, BRCA1, LigIV, KU70, MLH1, MSH2, and MRE11-was assessed using quantitative real-time PCR (qPCR). Immunolocalization of RAD51, LigIV, γH2AX, RNA Polymerase II, and DNA-RNA hybrid [S9.6] (R-loops) in somatic interphase nuclei and metaphase chromosomes was carried out in parallel. The results showed a lower expression level of genes involved in DNA repair and a higher number of DNA double-strand breaks (DSBs) in interphase nuclei in plants growing in terra rossa soil compared with plants in basalt soil. Further, the number of DSBs and R-loops in metaphase chromosomes was also greater in plants growing on terra rossa soil. Finally, RAD51 and LigIV foci on chromosomes indicate ongoing DSB repair during the M-phase via the Homologous Recombination and Non-Homologous End Joining pathways. Together, these results show the impact of edaphic factors on DNA damage and repair in the wheat genome adapted to contrasting environments.
Collapse
Affiliation(s)
- Olga Raskina
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| |
Collapse
|
13
|
Zhao J, Li X, Qiao L, Zheng X, Wu B, Guo M, Feng M, Qi Z, Yang W, Zheng J. Identification of structural variations related to drought tolerance in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:37. [PMID: 36897407 DOI: 10.1007/s00122-023-04283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
Structural variations are common in plant genomes, affecting meiotic recombination and distorted segregation in wheat. And presence/absence variations can significantly affect drought tolerance in wheat. Drought is a major abiotic stress limiting wheat production. Common wheat has a complex genome with three sub-genomes, which host large numbers of structural variations (SVs). SVs play critical roles in understanding the genetic contributions of plant domestication and phenotypic plasticity, but little is known about their genomic characteristics and their effects on drought tolerance. In the present study, high-resolution karyotypes of 180 doubled haploids (DHs) were developed. Signal polymorphisms between the parents involved with 8 presence-absence variations (PAVs) of tandem repeats (TR) distributed on the 7 (2A, 4A, 5A, 7A, 3B, 7B, and 2D) of 21 chromosomes. Among them, PAV on chromosome 2D showed distorted segregation, others transmit normal conforming to a 1:1 segregation ration in the population; and a PAVs recombination occurred on chromosome 2A. Association analysis of PAV and phenotypic traits under different water regimes, we found PAVs on chromosomes 4A, 5A, and 7B showed negative effect on grain length (GL) and grain width (GW); PAV.7A had opposite effect on grain thickness (GT) and spike length (SL), with the effect on traits differing under different water regimes. PAVs on linkage group 2A, 4A, 7A, 2D, and 7B associated with the drought tolerance coefficients (DTCs), and significant negative effect on drought resistance values (D values) were detected in PAV.7B. Additionally, quantitative trait loci (QTL) associated with phenotypic traits using the 90 K SNP array showed QTL for DTCs and grain-related traits in chromosomes 4A, and 5A, 3B were co-localized in differential regions of PAVs. These PAVs can cause the differentiation of the target region of SNP and could be used for genetic improvement of agronomic traits under drought stress via marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Jiajia Zhao
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Meijun Guo
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
- Jinzhong University, Jinzhong, China
| | - Meichen Feng
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wude Yang
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China.
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China.
| |
Collapse
|
14
|
Tian G, Wang S, Wu J, Wang Y, Wang X, Liu S, Han D, Xia G, Wang M. Allelic variation of TaWD40-4B.1 contributes to drought tolerance by modulating catalase activity in wheat. Nat Commun 2023; 14:1200. [PMID: 36864053 PMCID: PMC9981739 DOI: 10.1038/s41467-023-36901-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Drought drastically restricts wheat production, so to dissect allelic variations of drought tolerant genes without imposing trade-offs between tolerance and yield is essential to cope with the circumstance. Here, we identify a drought tolerant WD40 protein encoding gene TaWD40-4B.1 of wheat via the genome-wide association study. The full-length allele TaWD40-4B.1C but not the truncated allele TaWD40-4B.1T possessing a nonsense nucleotide variation enhances drought tolerance and grain yield of wheat under drought. TaWD40-4B.1C interacts with canonical catalases, promotes their oligomerization and activities, and reduces H2O2 levels under drought. The knock-down of catalase genes erases the role of TaWD40-4B.1C in drought tolerance. TaWD40-4B.1C proportion in wheat accessions is negatively correlative with the annual rainfall, suggesting this allele may be selected during wheat breeding. The introgression of TaWD40-4B.1C enhances drought tolerance of the cultivar harboring TaWD40-4B.1T. Therefore, TaWD40-4B.1C could be useful for molecular breeding of drought tolerant wheat.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Shubin Wang
- Institute of Vegetable Research, Shandong Academy of Agricultural Sciences, 250100, Jinan, Shandong, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, 050050, Shijiazhuang, Hebei, P. R. China
| | - Xiutang Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, 050050, Shijiazhuang, Hebei, P. R. China
| | - Shuwei Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China.
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China.
| |
Collapse
|
15
|
Wang Y, Chen G, Zeng F, Han Z, Qiu CW, Zeng M, Yang Z, Xu F, Wu D, Deng F, Xu S, Chater C, Korol A, Shabala S, Wu F, Franks P, Nevo E, Chen ZH. Molecular evidence for adaptive evolution of drought tolerance in wild cereals. THE NEW PHYTOLOGIST 2023; 237:497-514. [PMID: 36266957 DOI: 10.1111/nph.18560] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The considerable drought tolerance of wild cereal crop progenitors has diminished during domestication in the pursuit of higher productivity. Regaining this trait in cereal crops is essential for global food security but requires novel genetic insight. Here, we assessed the molecular evidence for natural variation of drought tolerance in wild barley (Hordeum spontaneum), wild emmer wheat (Triticum dicoccoides), and Brachypodium species collected from dry and moist habitats at Evolution Canyon, Israel (ECI). We report that prevailing moist vs dry conditions have differentially shaped the stomatal and photosynthetic traits of these wild cereals in their respective habitats. We present the genomic and transcriptomic evidence accounting for differences, including co-expression gene modules, correlated with physiological traits, and selective sweeps, driven by the xeric site conditions on the African Slope (AS) at ECI. Co-expression gene module 'circadian rhythm' was linked to significant drought-induced delay in flowering time in Brachypodium stacei genotypes. African Slope-specific differentially expressed genes are important in barley drought tolerance, verified by silencing Disease-Related Nonspecific Lipid Transfer 1 (DRN1), Nonphotochemical Quenching 4 (NPQ4), and Brassinosteroid-Responsive Ring-H1 (BRH1). Our results provide new genetic information for the breeding of resilient wheat and barley in a changing global climate with increasingly frequent drought events.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fanrong Zeng
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Cheng-Wei Qiu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zeng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Fei Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Dezhi Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fenglin Deng
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shengchun Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Caspar Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7004, Australia
- School of Biological Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Peter Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
16
|
Zhang W, Tan C, Hu H, Pan R, Xiao Y, Ouyang K, Zhou G, Jia Y, Zhang X, Hill CB, Wang P, Chapman B, Han Y, Xu L, Xu Y, Angessa T, Luo H, Westcott S, Sharma D, Nevo E, Barrero RA, Bellgard MI, He T, Tian X, Li C. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:46-62. [PMID: 36054248 PMCID: PMC9829399 DOI: 10.1111/pbi.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Divergent selection of populations in contrasting environments leads to functional genomic divergence. However, the genomic architecture underlying heterogeneous genomic differentiation remains poorly understood. Here, we de novo assembled two high-quality wild barley (Hordeum spontaneum K. Koch) genomes and examined genomic differentiation and gene expression patterns under abiotic stress in two populations. These two populations had a shared ancestry and originated in close geographic proximity but experienced different selective pressures due to their contrasting micro-environments. We identified structural variants that may have played significant roles in affecting genes potentially associated with well-differentiated phenotypes such as flowering time and drought response between two wild barley genomes. Among them, a 29-bp insertion into the promoter region formed a cis-regulatory element in the HvWRKY45 gene, which may contribute to enhanced tolerance to drought. A single SNP mutation in the promoter region may influence HvCO5 expression and be putatively linked to local flowering time adaptation. We also revealed significant genomic differentiation between the two populations with ongoing gene flow. Our results indicate that SNPs and small SVs link to genetic differentiation at the gene level through local adaptation and are maintained through divergent selection. In contrast, large chromosome inversions may have shaped the heterogeneous pattern of genomic differentiation along the chromosomes by suppressing chromosome recombination and gene flow. Our research offers novel insights into the genomic basis underlying local adaptation and provides valuable resources for the genetic improvement of cultivated barley.
Collapse
Affiliation(s)
- Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Cong Tan
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Haifei Hu
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rui Pan
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Yuhui Xiao
- Grandomics Biotechnology Co., LtdWuhanChina
| | - Kai Ouyang
- Grandomics Biotechnology Co., LtdWuhanChina
| | - Gaofeng Zhou
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yong Jia
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Xiao‐Qi Zhang
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Camilla Beate Hill
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Penghao Wang
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Brett Chapman
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yong Han
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Le Xu
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Tefera Angessa
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Hao Luo
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sharon Westcott
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Darshan Sharma
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Roberto A. Barrero
- eResearch OfficeQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Matthew I. Bellgard
- eResearch OfficeQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Tianhua He
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| |
Collapse
|
17
|
Sun N, Yang L, Tian F, Zeng H, He Z, Zhao K, Wang C, Meng M, Feng C, Fang C, Lv W, Bo J, Tang Y, Gan X, Peng Z, Chen Y, He S. Sympatric or micro-allopatric speciation in a glacial lake? Genomic islands support neither. Natl Sci Rev 2022; 9:nwac291. [PMID: 36778108 PMCID: PMC9905650 DOI: 10.1093/nsr/nwac291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Apparent cases of sympatric speciation may actually be due to micro-allopatric or micro-parapatric speciation. One way to distinguish between these models is to examine the existence and nature of genomic islands of divergence, wherein divergent DNA segments are interspersed with low-divergence segments. Such islands should be rare or absent under micro-allopatric speciation but common in cases of speciation with gene flow. Sympatric divergence of endemic fishes is known from isolated saline, crater, postglacial, and ancient lakes. Two morphologically distinct cyprinid fishes, Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE), in a small glacial lake on the Qinghai-Tibet Plateau, Lake Sunmcuo, match the biogeographic criteria of sympatric speciation. In this study, we examined genome-wide variation in 46 individuals from these two groups. The divergence time between the GS and GE lineages was estimated to be 20-60 Kya. We identified 54 large genomic islands (≥100 kb) of speciation, which accounted for 89.4% of the total length of all genomic islands. These islands harboured divergent genes related to olfactory receptors and olfaction signals that may play important roles in food selection and assortative mating in fishes. Although the genomic islands clearly indicated speciation with gene flow and rejected micro-allopatric speciation, they were too large to support the hypothesis of sympatric speciation. Theoretical and recent empirical studies suggested that continual gene flow in sympatry should give rise to many small genomic islands (as small as a few kilobases in size). Thus, the observed pattern is consistent with the extensive evidence on parapatric speciation, in which adjacent habitats facilitate divergent selection but also permit gene flow during speciation. We suggest that many, if not most, of the reported cases of sympatric speciation are likely to be micro-parapatric speciation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenguang Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Bo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400700, China
| | | | | |
Collapse
|
18
|
Zhao J, Zheng X, Qiao L, Yang C, Wu B, He Z, Tang Y, Li G, Yang Z, Zheng J, Qi Z. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1447-1461. [PMID: 36345647 DOI: 10.1111/tpj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS•4AL-1DS/1DL•1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.
Collapse
Affiliation(s)
- Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Chenkang Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ziming He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
19
|
Nevo E, Li K. Sympatric Speciation in Mole Rats and Wild Barley and Their Genome Repeatome Evolution: A Commentary. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200009. [PMID: 36911292 PMCID: PMC9993473 DOI: 10.1002/ggn2.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/16/2022] [Indexed: 11/05/2022]
Abstract
The theories of sympatric speciation (SS) and coding and noncoding (cd and ncd =repeatome) genome function are still contentious. Studies on SS in our two new models, "Evolution Canyon" and "Evolution Plateau", in Israel, divergent microclimatically and geologically-edaphically, respectively, indicated that in ecologically divergent microsites SS is a common speciation model across life from bacteria to mammals. Genomically, the intergenic ncd repeatome was and is still regarded by many biologists as "selfish," "junk," and non-functional. In contrast, it is considered by the encyclopedia of DNA elements discovery as biochemically functional and regulatory, and the transposable elements were considered earlier by Barbara McClintock as "controlling elements" of genes. Remarkably, it is found that repeated elements can statistically identify significantly, the five species of subterranean mole rats of Spalax ehrenbergi superspecies adapted to increasingly arid climatic trend southward in Israel. Moreover, it is first discovered in the SS studies in two distant taxa, subterranean mole rats and wild barley, and later also in spiny mice in Israel and subterranean zokors in China, that the noncoding repeatome is genomically mirroring the image of the protein-coding genome in divergent ecologies. It is shown that this mirroring image is statistically significant both within and between the ecologically divergent taxa supporting the hypothesis that much of the repeatome might be regulatory and selected as the protein-coding genome by the same ecological stresses.
Collapse
Affiliation(s)
- Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifa3498838Israel
| | - Kexin Li
- State Key Laboratory of Grassland Agro‐ecosystemCollege of EcologyLanzhou UniversityLanzhou730000China
| |
Collapse
|
20
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
21
|
Wang Z, Cai X, Jiang X, Xia Q, Li L, Lu B. Sympatric genetic divergence between early- and late-season weedy rice populations. THE NEW PHYTOLOGIST 2022; 235:2066-2080. [PMID: 35637631 PMCID: PMC9544748 DOI: 10.1111/nph.18288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Sympatric genetic divergence is the most appealing and controversial pattern in the theory of ecological speciation. Examples that support sympatric genetic divergence in plant species are extremely rare. Solid evidence of sympatric genetic divergence will provide deep insights for revealing the underlying mechanisms of ecological speciation. We analysed the total genomic DNA sequences of 120 weedy rice (WR; Oryza sativa f. spontanea) plants, representing three WR population pairs separately from three early- and late-season rice fields, in comparison with those of the co-occurring rice cultivars and other rice materials. We detected substantial genetic divergence within the pairs of the sympatric early- and late-season WR populations, although genetic divergence was unevenly distributed across the genomes. Restricted gene flow was determined between the sympatric WR populations, resulting in their distinct genetic structures. We also detected relatively low genetic diversity that was likely to be associated with stronger selection in early-season WR populations. Our findings provide strong evidence for sympatric genetic divergence between the WR populations in the same fields but in different seasons. We conclude that temporal isolation plays an important role in creating genetic divergence between sympatric populations/species in plants.
Collapse
Affiliation(s)
- Zhi Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Xingxing Cai
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Xiao‐Qi Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Qi‐Yu Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and Biotechnology, CATASHaikou571101China
| | - Lin‐Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Bao‐Rong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| |
Collapse
|
22
|
Mukherjee S, Kuang Z, Ghosh S, Detroja R, Carmi G, Tripathy S, Barash D, Frenkel-Morgenstern M, Nevo E, Li K. Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis. BIOLOGY 2022; 11:biology11081110. [PMID: 35892966 PMCID: PMC9331176 DOI: 10.3390/biology11081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary The microevolutionary dynamics of soil bacteria under microclimatic differences are largely unexplored in contrast to our improving knowledge of their vast diversity. In this study, we performed a comparative metagenomic analysis of two sharply divergent rocks and soil types at the Evolution Plateau (EP) in eastern Upper Galilee, Israel. We have identified the significant differences in bacterial taxonomic diversity, functions, and patterns of RNA-based gene regulation between the bacteria from two different soil types. Furthermore, we have identified several species with a significant genetic divergence of the same species between the two soil types, highlighting the soil bacteria’s incipient sympatric speciation. Abstract Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.
Collapse
Affiliation(s)
- Sumit Mukherjee
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
- Correspondence: (S.M.); (K.L.)
| | - Zhuoran Kuang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
| | - Samrat Ghosh
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Gon Carmi
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
| | - Kexin Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Correspondence: (S.M.); (K.L.)
| |
Collapse
|
23
|
Wang Z, Wang W, Xie X, Wang Y, Yang Z, Peng H, Xin M, Yao Y, Hu Z, Liu J, Su Z, Xie C, Li B, Ni Z, Sun Q, Guo W. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat Commun 2022; 13:3891. [PMID: 35794156 PMCID: PMC9259585 DOI: 10.1038/s41467-022-31581-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Major crops are all survivors of domestication bottlenecks. Studies have focused on the genetic loci related to the domestication syndrome, while the contribution of ancient haplotypes remains largely unknown. Here, an ancestral genomic haploblock dissection method is developed and applied to a resequencing dataset of 386 tetraploid/hexaploid wheat accessions, generating a pan-ancestry haploblock map. Together with cytoplastic evidences, we reveal that domesticated polyploid wheat emerged from the admixture of six founder wild emmer lineages, which contributed the foundation of ancestral mosaics. The key domestication-related loci, originated over a wide geographical range, were gradually pyramided through a protracted process. Diverse stable-inheritance ancestral haplotype groups of the chromosome central zone are identified, revealing the expanding routes of wheat and the trends of modern wheat breeding. Finally, an evolution model of polyploid wheat is proposed, highlighting the key role of wild-to-crop and interploidy introgression, that increased genomic diversity following bottlenecks introduced by domestication and polyploidization.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxi Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongfa Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengzhao Yang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Baoyun Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Mei L, Gao X, Yi X, Zhao M, Wang J, Li Z, Li J, Ma J, Pu Z, Peng Y, Jiang Q, Chen G, Wang J, Wei Y, Zheng Y, Li W. Polyploidization affects the allelic variation of jasmonate-regulated protein Ta-JA1 belonging to the monocot chimeric jacalin (MCJ) family in wild emmer wheat. Gene 2022; 825:146399. [PMID: 35306115 DOI: 10.1016/j.gene.2022.146399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
Abstract
The jasmonate-regulated protein Ta-JA1 belongs to the monocot chimeric jacalin (MCJ) family and plays a vital role in stress resistance in wheat. However, the impact of wheat polyploidization on Ta-JA1 remains unclear. In this study, 149 members of the MCJ family were identified among members of Triticeae using a genome-wide approach. The genes were resolved into three clades; MCJ genes in each clade were derived from different donor genes during evolution. Segmental duplication may have been the primary driver, compared with tandem duplication, of expansion in the MCJ family of wheat. Gene loss and acquisition occurred during tetraploidization, and the core expansion of the family occurred after tetraploidization. Sequencing data for 2104 accessions of T. aestivum and 99 accessions of T. dicoccoides showed that Ta-JA1-2A and Ta-JA1 were highly conserved in common wheat, and four alleles (TdJA1-Ax2, TdJA1-Ay2, TdJA1-Ax3, and TdJA1-Ay3) were detected in T. dicoccoides. Using gene-specific markers, one AsJA1-B allele was detected in 11 Ae. speltoides accessions and one TuJA1-Ax1 allele was detected in 70 T. urartu accessions. Six alleles were detected on chromosome 2A: TdJA1-Ax1 (13 accessions), TdJA1-Ay1 (57 accessions), TdJA1-Ax2 (23 accessions), TdJA1-Ay2 (42 accessions), TdJA1-Ax3 (29 accessions), and TdJA1-Ay3 (251 accessions). Only one allele (TdJA1-B) on chromosome 2B was detected in 415 T. dicoccoides accessions. A geographical distribution analysis revealed that Israel hosted higher allelic variation than other regions. Quantitative reverse transcription PCR analysis indicated that divergence in expression has occurred among Ta-JA1 alleles and, notably, TdJA1-Ax1 and TdJA1-Ay1 showed significantly higher expression levels than the other four allelic types in T. dicoccoides. The present results contribute to an improved understanding of the effects of polyploidization on the MCJ gene family and the functions of Ta-JA1, and may be useful to enrich common wheat germplasm resources.
Collapse
Affiliation(s)
- Lanxin Mei
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoran Gao
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyu Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mengmeng Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jinhui Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhen Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiamin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
25
|
Hu J, Xiao G, Jiang P, Zhao Y, Zhang G, Ma X, Yao J, Xue L, Su P, Bao Y. QTL detection for bread wheat processing quality in a nested association mapping population of semi-wild and domesticated wheat varieties. BMC PLANT BIOLOGY 2022; 22:129. [PMID: 35313801 PMCID: PMC8935700 DOI: 10.1186/s12870-022-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wheat processing quality is an important factor in evaluating overall wheat quality, and dough characteristics are important when assessing the processing quality of wheat. As a notable germplasm resource, semi-wild wheat has a key role in the study of wheat processing quality. RESULTS In this study, four dough rheological characteristics were collected in four environments using a nested association mapping (NAM) population consisting of semi-wild and domesticated wheat varieties to identify quantitative trait loci (QTL) for wheat processing quality. A total of 49 QTL for wheat processing quality were detected, explaining 0.36-10.82% of the phenotypic variation. These QTL were located on all wheat chromosomes except for 2D, 3A, 3D, 6B, 6D and 7D. Compared to previous studies, 29 QTL were newly identified. Four novel QTL, QMlPH-1B.4, QMlPH-3B.4, QWdEm-1B.2 and QWdEm-3B.2, were stably identified in three or more environments, among which QMlPH-3B.4 was a major QTL. Moreover, eight important genetic regions for wheat processing quality were identified on chromosomes 1B, 3B and 4D, which showed pleiotropy for dough characteristics. In addition, out of 49 QTL, 15 favorable alleles came from three semi-wild parents, suggesting that the QTL alleles provided by the semi-wild parent were not utilized in domesticated varieties. CONCLUSIONS The results show that semi-wild wheat varieties can enrich the existing wheat gene pool and provide broader variation resources for wheat genetic research.
Collapse
Affiliation(s)
- Junmei Hu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 The People’s Republic of China
| | - Guilian Xiao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 The People’s Republic of China
| | - Peng Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 The People’s Republic of China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 The People’s Republic of China
| | - Guangxu Zhang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000 The People’s Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 The People’s Republic of China
| | - Jie Yao
- Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, 265500 The People’s Republic of China
| | - Lixia Xue
- Agricultural Technology Station, Sunwu Sub-district Office, Huimin County, Shandong Province 251700 Binzhou, The People’s Republic of China
| | - Peisen Su
- College of Agriculture, Liaocheng University, Liaocheng, 252059 The People’s Republic of China
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 The People’s Republic of China
| |
Collapse
|
26
|
Zhao X, Fu X, Yin C, Lu F. Wheat speciation and adaptation: perspectives from reticulate evolution. ABIOTECH 2021; 2:386-402. [PMID: 36311810 PMCID: PMC9590565 DOI: 10.1007/s42994-021-00047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Reticulate evolution through the interchanging of genetic components across organisms can impact significantly on the fitness and adaptation of species. Bread wheat (Triticum aestivum subsp. aestivum) is one of the most important crops in the world. Allopolyploid speciation, frequent hybridization, extensive introgression, and occasional horizontal gene transfer (HGT) have been shaping a typical paradigm of reticulate evolution in bread wheat and its wild relatives, which is likely to have a substantial influence on phenotypic traits and environmental adaptability of bread wheat. In this review, we outlined the evolutionary history of bread wheat and its wild relatives with a highlight on the interspecific hybridization events, demonstrating the reticulate relationship between species/subspecies in the genera Triticum and Aegilops. Furthermore, we discussed the genetic mechanisms and evolutionary significance underlying the introgression of bread wheat and its wild relatives. An in-depth understanding of the evolutionary process of Triticum species should be beneficial to future genetic study and breeding of bread wheat.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Cai S, Shen Q, Huang Y, Han Z, Wu D, Chen ZH, Nevo E, Zhang G. Multi-Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101374. [PMID: 34390227 PMCID: PMC8529432 DOI: 10.1002/advs.202101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
At the microsite "Evolution Slope", Tabigha, Israel, wild barley (Hordeum spontaneum) populations adapted to dry Terra Rossa soil, and its derivative abutting wild barley population adapted to moist and fungi-rich Basalt soil. However, the mechanisms underlying the edaphic adaptation remain elusive. Accordingly, whole genome bisulfite sequencing, RNA-sequencing, and metabolome analysis are performed on ten wild barley accessions inhabiting Terra Rossa and Basalt soil. A total of 121 433 differentially methylated regions (DMRs) and 10 478 DMR-genes are identified between the two wild barley populations. DMR-genes in CG context (CG-DMR-genes) are enriched in the pathways related with the fundamental processes, and DMR-genes in CHH context (CHH-DMR-genes) are mainly associated with defense response. Transcriptome and metabolome analysis reveal that the primary and secondary metabolisms are more active in Terra Rossa and Basalt wild barley populations, respectively. Multi-omics analysis indicate that sugar metabolism facilitates the adaptation of wild barley to dry Terra Rossa soil, whereas the enhancement of phenylpropanoid/phenolamide biosynthesis is beneficial for wild barley to inhabit moist and fungi pathogen-rich Basalt soil. The current results make a deep insight into edaphic adaptation of wild barley and provide elite genetic and epigenetic resources for developing barley with high abiotic stress tolerance.
Collapse
Affiliation(s)
- Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhigang Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 34988384, Israel
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
28
|
Sassone AB, Hojsgaard DH, Giussani LM, Brassac J, Blattner FR. Genomic, karyological and morphological changes of South American garlics (Ipheion) provide insights into mechanisms of speciation in the Pampean region. Mol Ecol 2021; 30:3716-3729. [PMID: 34087027 DOI: 10.1111/mec.16009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/15/2023]
Abstract
Speciation proceeds through mechanisms that promote reproductive isolation and shape the extent of genetic variation in natural populations, and thus its study is essential to understand the evolutionary processes leading to increased biodiversity. Chromosomal rearrangements are known to facilitate reproductive isolation by hybrid sterility and favour speciation events. The genus Ipheion (Amaryllidaceae, Allioideae) is unique as its species exhibit a remarkable karyological variability but lack population-level genetic data. To unveil the diversification processes acting upon the formation of new lineages within Ipheion in the Pampas of South America, we combined morphology and karyology approaches with genotyping-by-sequencing. Our phylogenomic and population genomics results supported the taxonomic division of Ipheion into three morphological and genetically well-differentiated groups. The origin of Ipheion uniflorum was traced back to its current southern distribution area in the southern Pampean region (in Argentina), from where it had expanded to the north reaching Uruguay. Our results further suggested that chromosome rearrangements and ploidy shifts had triggered speciation events, first during the origin of I. uniflorum and later during its subsequent diversification into I. recurvifolium and I. tweedieanum, in both cases reinforced by extrinsic factors and biogeographical settings. The current study illustrates the analytical power of multidisciplinary approaches integrating phylo- and population genomics with classic analyses to reveal evolutionary processes in plants.
Collapse
Affiliation(s)
- Agostina B Sassone
- Instituto de Botánica Darwinion, CONICET-ANCEFN, Buenos Aires, Argentina.,Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Diego H Hojsgaard
- Department of Systematics, Biodiversity, and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Liliana M Giussani
- Instituto de Botánica Darwinion, CONICET-ANCEFN, Buenos Aires, Argentina
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
29
|
Ayoola AO, Zhang BL, Meisel RP, Nneji LM, Shao Y, Morenikeji OB, Adeola AC, Ng’ang’a SI, Ogunjemite BG, Okeyoyin AO, Roos C, Wu DD. Population Genomics Reveals Incipient Speciation, Introgression, and Adaptation in the African Mona Monkey (Cercopithecus mona). Mol Biol Evol 2021; 38:876-890. [PMID: 32986826 PMCID: PMC7947840 DOI: 10.1093/molbev/msaa248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Guenons (tribe Cercopithecini) are the most widely distributed nonhuman primate in the tropical forest belt of Africa and show considerable phenotypic, taxonomic, and ecological diversity. However, genomic information for most species within this group is still lacking. Here, we present a high-quality de novo genome (total 2.90 Gb, contig N50 equal to 22.7 Mb) of the mona monkey (Cercopithecus mona), together with genome resequencing data of 13 individuals sampled across Nigeria. Our results showed differentiation between populations from East and West of the Niger River ∼84 ka and potential ancient introgression in the East population from other mona group species. The PTPRK, FRAS1, BNC2, and EDN3 genes related to pigmentation displayed signals of introgression in the East population. Genomic scans suggest that immunity genes such as AKT3 and IL13 (possibly involved in simian immunodeficiency virus defense), and G6PD, a gene involved in malaria resistance, are under positive natural selection. Our study gives insights into differentiation, natural selection, and introgression in guenons.
Collapse
Affiliation(s)
- Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Olanrewaju B Morenikeji
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY
- Department of Biology, Hamilton College, Clinton, NY
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Said I Ng’ang’a
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Babafemi G Ogunjemite
- Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Nigeria
| | - Agboola O Okeyoyin
- National Park Service Headquarters, Federal Capital Territory, Abuja, Nigeria
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
30
|
Yin H, Fang X, Li P, Yang Y, Hao Y, Liang X, Bo C, Ni F, Ma X, Du X, Li A, Wang H, Nevo E, Kong L. Genetic mapping of a novel powdery mildew resistance gene in wild emmer wheat from "Evolution Canyon" in Mt. Carmel Israel. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:909-921. [PMID: 33392708 DOI: 10.1007/s00122-020-03741-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
A single dominant powdery mildew resistance gene MlNFS10 was identified in wild emmer wheat and mapped within a 0.3cM genetic interval spanning a 2.1Mb physical interval on chromosome arm 4AL. Wheat powdery mildew caused by Blumeria graminis forma specialis tritici (Bgt) is a globally devastating disease. The use of powdery mildew resistance genes from wild relatives of wheat is an effective method of disease management. Our previous research has shown that disruptive ecological selection has driven the discrete adaptations of the wild emmer wheat population on the south facing slope (SFS) and north facing slope (NFS) at the microsite of "Evolution Canyon" at Mount Carmel, Israel and demonstrated that 16 accessions in the NFS population display high resistance to 11 powdery mildew isolates (collected from different wheat fields in China). Here, we constructed bi-parental population by crossing the accession NFS-10 (resistant to 22 Bgt races collected from China in seedling resistance screen) and the susceptible line SFS2-12. Genetic analysis indicated that NFS-10 carries a single dominant gene, temporarily designated MlNFS10. Ultimately, 13 markers were successfully located within the long arm of chromosome 4A, thereby delineating MlNFS10 to a 0.3 cM interval covering 2.1 Mb (729275816-731365462) in the Chinese Spring reference sequence. We identified disease resistance-associated genes based on the RNA-seq analysis of both parents. The tightly linked InDel marker XWsdau73447 and SSR marker XWsdau72928 were developed and used for marker-assisted selection when MlNFS10 was introgressed into a hexaploid wheat background. Therefore, MlNFS10 can be used for improvement of germplasm in breeding programs for powdery mildew resistant cultivars.
Collapse
Affiliation(s)
- Huayan Yin
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
- College of Agronomy, Qingdao Agricultural University, 266109, Qingdao, China
| | - Xiaojian Fang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Penghuan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Yanhong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Yongchao Hao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Xiaomei Liang
- College of Agronomy, Qingdao Agricultural University, 266109, Qingdao, China
| | - Cunyao Bo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China.
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China.
| |
Collapse
|
31
|
Tu M, Li Y. Toward the Genetic Basis and Multiple QTLs of Kernel Hardness in Wheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1631. [PMID: 33255282 PMCID: PMC7760206 DOI: 10.3390/plants9121631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
Kernel hardness is one of the most important single traits of wheat seed. It classifies wheat cultivars, determines milling quality and affects many end-use qualities. Starch granule surfaces, polar lipids, storage protein matrices and Puroindolines potentially form a four-way interaction that controls wheat kernel hardness. As a genetic factor, Puroindoline polymorphism explains over 60% of the variation in kernel hardness. However, genetic factors other than Puroindolines remain to be exploited. Over the past two decades, efforts using population genetics have been increasing, and numerous kernel hardness-associated quantitative trait loci (QTLs) have been identified on almost every chromosome in wheat. Here, we summarize the state of the art for mapping kernel hardness. We emphasize that these steps in progress have benefitted from (1) the standardized methods for measuring kernel hardness, (2) the use of the appropriate germplasm and mapping population, and (3) the improvements in genotyping methods. Recently, abundant genomic resources have become available in wheat and related Triticeae species, including the high-quality reference genomes and advanced genotyping technologies. Finally, we provide perspectives on future research directions that will enhance our understanding of kernel hardness through the identification of multiple QTLs and will address challenges involved in fine-tuning kernel hardness and, consequently, food properties.
Collapse
Affiliation(s)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
32
|
Ferraz ME, Fonsêca A, Pedrosa-Harand A. Multiple and independent rearrangements revealed by comparative cytogenetic mapping in the dysploid Leptostachyus group (Phaseolus L., Leguminosae). Chromosome Res 2020; 28:395-405. [PMID: 33191473 DOI: 10.1007/s10577-020-09644-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Polyploidy and dysploidy have been reported as the main events in karyotype evolution of plants. In the genus Phaseolus L. (2n = 22), a small monophyletic group of three species, the Leptostachyus group, presents a dysploid karyotype with 2n = 20. It was shown in Phaseolus leptostachyus that the dysploidy was caused by a nested chromosome fusion (NCF) accompanied by several translocations, suggesting a high rate of karyotype evolution in the group. To verify if this karyotype restructuring was a single event or occurred progressively during the evolution of this group, we analysed P. macvaughii, sister to Phaseolus micranthus + P. leptostachyus. Twenty-four genomic clones of P. vulgaris previously mapped on P. leptostachyus, in addition to the 5S and 35S rDNA probes, were used for fluorescence in situ hybridization. Only a single rearrangement was common to the two species: the nested chromosome fusion (NCF) involving chromosomes 10 and 11. The translocation of chromosome 2 is not the same found in P. leptostachyus, and pericentric inversions in chromosomed 3 and 4 were exclusive of P. macvaughii. The other rearrangements observed in P. leptostachyus were not shared with this species, suggesting that they occurred after the separation of these lineages. The presence of private rearrangements indicates a progressive accumulation of karyotype changes in the Leptostachyus group instead of an instant genome-wide repatterning.
Collapse
Affiliation(s)
- Maria Eduarda Ferraz
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil
| | - Artur Fonsêca
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
33
|
Hellwig T, Abbo S, Sherman A, Coyne CJ, Saranga Y, Lev-Yadun S, Main D, Zheng P, Ophir R. Limited divergent adaptation despite a substantial environmental cline in wild pea. Mol Ecol 2020; 29:4322-4336. [PMID: 32964548 DOI: 10.1111/mec.15633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
Isolation by environment (IBE) is a widespread phenomenon in nature. It is commonly expected that the degree of difference among environments is proportional to the level of divergence between populations in their respective environments. It is therefore assumed that a species' genetic diversity displays a pattern of IBE in the presence of a strong environmental cline if gene flow does not mitigate isolation. We tested this common assumption by analysing the genetic diversity and demographic history of Pisum fulvum, which inhabits contrasting habitats in the southern Levant and is expected to display only minor migration rates between populations, making it an ideal test case. Ecogeographical and subpopulation structure were analysed and compared. The correlation of genetic with environmental distances was calculated to test the effect of isolation by distance and IBE and detect the main drivers of these effects. Historical effective population size was estimated using stairway plot. Limited overlap of ecogeographical and genetic clustering was observed, and correlation between genetic and environmental distances was statistically significant but small. We detected a sharp decline of effective population size during the last glacial period. The low degree of IBE may be the result of genetic drift due to a past bottleneck. Our findings contradict the expectation that strong environmental clines cause IBE in the absence of extensive gene flow.
Collapse
Affiliation(s)
- Timo Hellwig
- Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| | - Shahal Abbo
- Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| | | | - Yehoshua Saranga
- Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Ron Ophir
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
34
|
Li K, Ren X, Song X, Li X, Zhou Y, Harlev E, Sun D, Nevo E. Incipient sympatric speciation in wild barley caused by geological-edaphic divergence. Life Sci Alliance 2020; 3:3/12/e202000827. [PMID: 33082129 PMCID: PMC7652381 DOI: 10.26508/lsa.202000827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Sympatric speciation is still contentious but here based on genome-wide analysis; we show incipient sympatric speciation of an emerging new wild barley species from Hordeum spontaneum, the progenitor of all cultivated barleys at “Evolution Plateau” (EP), Upper Galilee, Israel. Sympatric speciation (SS) has been contentious since the idea was suggested by Darwin. Here, we show in wild barley SS due to geologic and edaphic divergence in “Evolution Plateau,” Upper Galilee, Israel. Our whole genome resequencing data showed SS separating between the progenitor old Senonian chalk and abutting derivative young Pleistocene basalt wild barley populations. The basalt wild barley species unfolds larger effective population size, lower recombination rates, and larger genetic diversity. Both species populations show similar descending trend ∼200,000 yr ago associated with the last glacial maximum. Coalescent demography analysis indicates that SS was local, primary, in situ, and not due to a secondary contact from ex situ allopatric population. Adaptive divergent putatively selected genes were identified in both populations. Remarkably, disease resistant genes were selected in the wet basalt population, and genes related to flowering time, leading to temporal reproductive isolation, were selected in the chalk population. The evidence substantiates adaptive ecological SS in wild barley, highlighting the genome landscape during SS with gene flow, due to geologic-edaphic divergence.
Collapse
Affiliation(s)
- Kexin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China.,Institute of Evolution, University of Haifa, Haifa, Israel
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoying Song
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Eli Harlev
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
35
|
Wang W, Wang Z, Li X, Ni Z, Hu Z, Xin M, Peng H, Yao Y, Sun Q, Guo W. SnpHub: an easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. Gigascience 2020; 9:giaa060. [PMID: 32501478 PMCID: PMC7274028 DOI: 10.1093/gigascience/giaa060] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/04/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The cost of high-throughput sequencing is rapidly decreasing, allowing researchers to investigate genomic variations across hundreds or even thousands of samples in the post-genomic era. The management and exploration of these large-scale genomic variation data require programming skills. The public genotype querying databases of many species are usually centralized and implemented independently, making them difficult to update with new data over time. Currently, there is a lack of a widely used framework for setting up user-friendly web servers to explore new genomic variation data in diverse species. RESULTS Here, we present SnpHub, a Shiny/R-based server framework for retrieving, analysing, and visualizing large-scale genomic variation data that can be easily set up on any Linux server. After a pre-building process based on the provided VCF files and genome annotation files, the local server allows users to interactively access single-nucleotide polymorphisms and small insertions/deletions with annotation information by locus or gene and to define sample sets through a web page. Users can freely analyse and visualize genomic variations in heatmaps, phylogenetic trees, haplotype networks, or geographical maps. Sample-specific sequences can be accessed as replaced by detected sequence variations. CONCLUSIONS SnpHub can be applied to any species, and we build up a SnpHub portal website for wheat and its progenitors based on published data in recent studies. SnpHub and its tutorial are available at http://guoweilong.github.io/SnpHub/. The wheat-SnpHub-portal website can be accessed at http://wheat.cau.edu.cn/Wheat_SnpHub_Portal/.
Collapse
Affiliation(s)
- Wenxi Wang
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xintong Li
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|