1
|
Zhang Q, Huang J, Ji Y, Zhang J, Zhang S, Gao J. How sediment dredging alters phosphorus dynamics in a lowland rural river? J Environ Sci (China) 2025; 147:189-199. [PMID: 39003039 DOI: 10.1016/j.jes.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 07/15/2024]
Abstract
China's lowland rural rivers are facing severe eutrophication problems due to excessive phosphorus (P) from anthropogenic activities. However, quantifying P dynamics in a lowland rural river is challenging due to its complex interaction with surrounding areas. A P dynamic model (River-P) was specifically designed for lowland rural rivers to address this challenge. This model was coupled with the Environmental Fluid Dynamics Code (EFDC) and the Phosphorus Dynamic Model for lowland Polder systems (PDP) to characterize P dynamics under the impact of dredging in a lowland rural river. Based on a two-year (2020-2021) dataset from a representative lowland rural river in the Lake Taihu Basin, China, the coupled model was calibrated and achieved a model performance (R2>0.59, RMSE<0.04 mg/L) for total P (TP) concentrations. Our research in the study river revealed that (1) the time scale for the effectiveness of sediment dredging for P control was ∼300 days, with an increase in P retention capacity by 74.8 kg/year and a decrease in TP concentrations of 23% after dredging. (2) Dredging significantly reduced P release from sediment by 98%, while increased P resuspension and settling capacities by 16% and 46%, respectively. (3) The sediment-water interface (SWI) plays a critical role in P transfer within the river, as resuspension accounts for 16% of TP imports, and settling accounts for 47% of TP exports. Given the large P retention capacity of lowland rural rivers, drainage ditches and ponds with macrophytes are promising approaches to enhance P retention capacity. Our study provides valuable insights for local environmental departments, allowing a comprehensive understanding of P dynamics in lowland rural rivers. This enable the evaluation of the efficacy of sediment dredging in P control and the implementation of corresponding P control measures.
Collapse
Affiliation(s)
- Qimou Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10094, China
| | - Jiacong Huang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yulai Ji
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10094, China
| | - Jing Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10094, China
| | - Shuai Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10094, China
| | - Junfeng Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Chan PLR, Arhonditsis GB, Thompson KA, Eimers MC. A regional examination of the footprint of agriculture and urban cover on stream water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174157. [PMID: 38909812 DOI: 10.1016/j.scitotenv.2024.174157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Freshwater systems in cold regions, including the Laurentian Great Lakes, are threatened by both eutrophication and salinization, due to excess nitrogen (N), phosphorus (P) and chloride (Cl-) delivered in agricultural and urban runoff. However, identifying the relative contribution of urban vs. agricultural development to water quality impairment is challenging in watersheds with mixed land cover, which typify most developed regions. In this study, a self-organizing map (SOM) analysis was used to evaluate the contributions of various forms of land cover to water quality impairment in southern Ontario, a population-dense, yet highly agricultural region in the Laurentian Great Lakes basin where urban expansion and agricultural intensification have been associated with continued water quality impairment. Watersheds were classified into eight spatial clusters, representing four categories of agriculture, one urban, one natural, and two mixed land use clusters. All four agricultural clusters had high nitrate-N concentrations, but levels were especially high in watersheds with extensive corn and soybean cultivation, where exceedances of the 3 mg L-1 water quality objective dramatically increased above a threshold of ∼30 % watershed row crop cover. Maximum P concentrations also occurred in the most heavily tile-drained cash crop watersheds, but associations between P and land use were not as clear as for N. The most urbanized watersheds had the highest Cl- concentrations and expansions in urban area were mostly at the expense of surrounding agricultural land cover, which may drive intensification of remaining agricultural lands. Expansions in tile-drained corn and soybean area, often at the expense of mixed, lower intensity agriculture are not unique to this area and suggest that river nitrate-N levels will continue to increase in the future. The SOM approach provides a powerful means of simplifying heterogeneous land cover characteristics that can be associated with water quality patterns and identify problem areas to target management.
Collapse
Affiliation(s)
- P L Roshelle Chan
- Environmental & Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| | - George B Arhonditsis
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Karen A Thompson
- Trent School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| | - M Catherine Eimers
- Trent School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada.
| |
Collapse
|
3
|
Yin Y, Xia R, Liu X, Chen Y, Song J, Dou J. Spatial response of water level and quality shows more significant heterogeneity during dry seasons in large river-connected lakes. Sci Rep 2024; 14:8373. [PMID: 38600262 PMCID: PMC11006923 DOI: 10.1038/s41598-024-59129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The spatial response mechanism of hydrology and water quality of large river-connected lakes is very complicated. In this study, we developed a spatial response analysis method that couples wavelet correlation analysis (WTC) with self-organizing maps (SOM), revealing the spatial response and variation of water level and water quality in Poyang Lake, China's largest river-connected lake, over the past decade. The results show that: (1) there was significant spatial heterogeneity in water level and quality during the dry seasons (2010-2018) compared to other hydrological stages. (2) We identified a more pronounced difference in response of water level and quality between northern and southern parts of Poyang Lake. As the distance increases from the northern lake outlet, the impact of rising water levels on water quality deterioration intensified during the dry seasons. (3) The complex spatial heterogeneity of water level and quality response in the dry seasons is primarily influenced by water level fluctuations from the northern region and the cumulative pollutant entering the lake from the south, which particularly leads to the reversal of the response in the central area of Poyang Lake. The results of this study can contribute to scientific decision-making regarding water environment zoning management in large river-connected lakes amidst complex environment conditions.
Collapse
Affiliation(s)
- Yingze Yin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rui Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- National Joint Research Center for Ecological Conservation and High-Quality Development of the Yellow River Basin, Beijing, 100012, China.
| | - Xiaoyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Joint Research Center for Ecological Conservation and High-Quality Development of the Yellow River Basin, Beijing, 100012, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jinghui Dou
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Xian L, Yang J, Muthui SW, Ochieng WA, Linda EL, Yu J. Which Has a Greater Impact on Plant Functional Traits: Plant Source or Environment? PLANTS (BASEL, SWITZERLAND) 2024; 13:903. [PMID: 38592931 PMCID: PMC10975183 DOI: 10.3390/plants13060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The deterioration of water quality caused by human activities has triggered significant impacts on aquatic ecosystems. Submerged macrophytes play an important role in freshwater ecosystem restoration. Understanding the relative contributions of the sources and environment to the adaptive strategies of submerged macrophytes is crucial for freshwater restoration and protection. In this study, the perennial submerged macrophyte Myriophyllum spicatum was chosen as the experimental material due to its high adaptability to a variable environment. Through conducting reciprocal transplant experiments in two different artificial environments (oligotrophic and eutrophic), combined with trait network and redundancy analysis, the characteristics of the plant functional traits were examined. Furthermore, the adaptive strategies of M. spicatum to the environment were analyzed. The results revealed that the plant source mainly influenced the operational pattern among the traits, and the phenotypic traits were significantly affected by environmental factors. The plants cultured in high-nutrient water exhibited a higher plant height, longer leaves, and more branches and leaves. However, their physiological functions were not significantly affected by the environment. Therefore, the adaptation strategy of M. spicatum to the environment mainly relies on its phenotypic plasticity to ensure the moderate acquisition of resources in the environment, thereby ensuring the stable and efficient operation of plant physiological traits. The results not only offered compelling evidence on the adaptation strategies of M. spicatum in variable environments but also provided theoretical support for the conservation of biodiversity and sustainable development.
Collapse
Affiliation(s)
- Ling Xian
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
| | - Jiao Yang
- School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Samuel Wamburu Muthui
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Wyckliffe Ayoma Ochieng
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Elive Limunga Linda
- School of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
| | - Junshuang Yu
- Changjiang Water Resources and Hydropower Development Group Co., Ltd., Wuhan 430010, China
| |
Collapse
|
5
|
Zhao D, Huang J, Li Z, Yu G, Shen H. Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169152. [PMID: 38061660 DOI: 10.1016/j.scitotenv.2023.169152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Remote estimation of Chlorophyll-a (Chl-a) has long been used to investigate the responses of aquatic ecosystems to global climate change. High-spatiotemporal-resolution Sentinel-2 satellite images make it possible to routinely monitor and trace the spatial distributions of lake Chl-a if reliable retrieval algorithms are available. In this study, Sentinel-2 images and in-situ measured data were used to develop a Chl-a retrieval algorithm based on 13 optical water types (OWTs) with a satisfying performance (R2 = 0.74, RMSE = 0.42 mg/m3, MAE = 0.33 mg/m3, and MAPE = 55.56 %). After removing the disturbance of algal blooms and other factors, the distribution of Chl-a in 3067 of the largest global lakes (≥50 km2) was mapped using the Google Earth Engine (GEE). From 2019 to 2021, the average Chl-a concentration was 16.95 ± 5.95 mg/m3 for the largest global lakes. During the COVID-19 pandemic, global lake-averaged Chl-a concentration reached its lowest value in 2020. From the perspective of spatial distribution, lakes with low Chl-a concentrations were mainly distributed in high-latitude, high-elevation, or economically underdeveloped areas. Among all the potential influencing factors, lake surface temperature had the largest contribution to Chl-a and showed a positive correlation with Chl-a in approximately 92.39 % of the lakes. Conversely, factors such as precipitation and tree cover area around the lake were negatively correlated with Chl-a concentration in nearly 61.44 % of the lakes.
Collapse
Affiliation(s)
- Desong Zhao
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jue Huang
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Zhengmao Li
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Guangyue Yu
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huagang Shen
- Qingdao Topscomm Communication Co., Ltd, TOPSCOMM Industry Park, Qingdao 266109, China
| |
Collapse
|
6
|
Ding Y, Song Z, Zhang W, Hu Y, Xiao S. Long-term control of non-point source pollution by adjusting human environmental behavior in watershed-a new perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116239-116251. [PMID: 37910351 DOI: 10.1007/s11356-023-30496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
The control of non-point source pollution is a major scientific and technological problem faced by mankind. We proposed a new approach to eliminate non-point source pollution, focusing on adjusting human environmental behavior. The implementation procedures are as follows: (1) Investigate the intention of pollution discharge behavior through interviews and questionnaires. (2) Carry out targeted intervention within the framework of social psychology to transform it into an environmentally friendly mode. (3) Calculate the amounts of pollutants produced and discharged before and after the intervention, and then evaluate the effect of the intervention on reducing pollution. (4) Based on successful interventions, a scheme can be developed to curb non-point source pollution. Aiming to reduce fertilizer use, a case study was conducted in Hetao Irrigation District, one of the three major Irrigation districts in China. The results showed that the interventions indirectly affected intention through attitude, subjective norm, and perceived behavioral control. The structural equation model explained 76.0% of the total variance of farmers' intention to reduce fertilizer application (SMC = 0.760), indicating effective intervention. Subsequently, a program to curb non-point source pollution was developed. This study can provide a key scientific and applied reference for the long-term control of non-point source pollution in watershed.
Collapse
Affiliation(s)
- Yuekui Ding
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
- Inner Mongolia Key Laboratory of River and Lake Ecology, Hohhot, 010021, China.
| | - Zhaoxin Song
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wenqiang Zhang
- State Key Laboratory On Environmental Aquatic Chemistry Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, China
| | - Yan Hu
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Suirong Xiao
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
7
|
Gerig BS, Chaloner DT, Rediske RR, Paterson G, Lamberti GA. Pacific salmon as vectors of environmental contaminants: An experimental test confirms synoptic surveys in natural streams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122355. [PMID: 37567402 DOI: 10.1016/j.envpol.2023.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Pacific salmon transfer large quantities of material to tributaries during their spawning migrations, including carcass tissue and labile nutrients but also persistent organic pollutants (POPs) and heavy metals. We conducted a Before-After-Control-Intervention experiment by adding salmon carcasses and eggs to a Michigan (USA) stream that had never received inputs from non-native salmon to understand the bioaccumulation and persistence of biotransported contaminants. Our experimental outcomes were compared to previous studies using meta-analysis. Coincident with the introduction of salmon, the PCB and DDE burden of resident trout significantly increased. However, we did not observe changes in total mercury (Hg). Two years after the salmon addition experiment concluded, resident trout POP concentrations had returned to pre-addition levels, with no difference between the treatment and control reaches. Analysis of effect sizes suggested that the contaminant response observed in our experiment is consistent with field survey observations. Our study suggested that the consumption of salmon eggs drove the increase in POP burden of resident trout while Hg bioaccumulation was influenced by watershed sources. Critically, our study suggests that ecosystems are capable of quickly recovering from POP inputs from species migrations if contaminant sources are removed.
Collapse
Affiliation(s)
- Brandon S Gerig
- Great Rivers Cooperative Ecosystem Studies Unit, National Park Service, Columbia, MO, 65201, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Dominic T Chaloner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Richard R Rediske
- Annis Water Resource Institute, Grand Valley State University, Muskegon, MI, 49441, USA
| | - Gordon Paterson
- Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
8
|
Yuan H, Wang H, Cai Y, Yin H, Zeng Q, Liu E, Li Q, Wang Y. Iron bound phosphorus predominates the contribution of phosphorus to lake system from terrigenous source: The evidence from the small watershed scale. WATER RESEARCH 2023; 245:120661. [PMID: 37769418 DOI: 10.1016/j.watres.2023.120661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
The reduction of exogenous emissions of phosphorus (P) is a crucial measure for resolving eutrophication in lakes. However, the input of terrigenous materials still potentially contributes to an increase of P load in lake systems. In this study, we examined the phosphate oxygen isotope (δ18OP) of various P fractions in soils and sediments in a small lake watershed, namely, Shijiuhu watershed. The high-resolution in-situ diffusive gradients in thin films (DGT) technology was also used to survey the dynamic processes of P diffusion from sediment particles to the water. The results demonstrated that lighter δ18OP values (16.2-19.5‰) for individual P fractions in lake sediments were detected compared to other land-use patterns, indicating the cumulative biological P recycling on anaerobic condition. Fe bound P (Fe-P) overall had heavier δ18OP values (17.3-24.8‰) than some of Ca bound P (Ca-P) and equilibrium values, suggesting that Fe-P conserved the parental isotope signatures from terrigenous source and could act as the ideal tracer for the lake sediments. The mixing effect of terrigenous detrital input and biological mineralization made the source identification uncertain by using Ca-P, which had a wider range of δ18OP values (13.0-26.6‰). Additionally, significantly positive correlation (r = 0.551-0.913, p<0.05) between soluble reactive P (SRP) and Fe2+ in interstitial water obtained using DGT measurement revealed the conspicuous release and desorption of solid Fe-P toward the water. High diffusion fluxes from the sediments toward the overlying water further demonstrated that the desorption of Fe-P in the soil-originated sediments toward the solution conspicuously facilitated the accumulation of SRP in lake water. The first-time application of δ18OP isotope combined with in-situ DGT techniques certified that it's feasible for the contribution confirmation from terrigenous to lacustrine environments, and presented the direct evidence for management strategy making about P control and eutrophication restoration at the catchment scale of lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Natural Sciences, University of Houston-Downtown, Houston 77002, United States
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
9
|
He X, Tian J, Zhang Y, Zhao Z, Cai Z, Wang Y. Attribution and driving force of nitrogen losses from the Taihu Lake Basin by the InVEST and GeoDetector models. Sci Rep 2023; 13:7440. [PMID: 37156811 PMCID: PMC10167248 DOI: 10.1038/s41598-023-34184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Quantifying temporal and spatial changes in reactive nitrogen (Nr) losses from a watershed and exploring its main drivers are the key to watershed water quality improvements. Huge Nr losses continue to threaten the safety of the water environment in the Taihu Lake Basin (TLB). Here, the InVEST and GeoDetector models were combined to estimate Nr losses in the TLB from 1990 to 2020 and explore driving forces. Different scenarios for Nr losses were compared, showing that Nr loss peaked at 181.66 × 103 t in 2000. The key factors affecting Nr loss are land use, followed by elevation, soil, and slope factors, and their mean q-values were 0.82, 0.52, 0.51, and 0.48, respectively. The scenario analysis revealed that Nr losses increased under the business-as-usual and economic development scenarios, while ecological conservation, increased nutrient use efficiency, and reduced nutrient application all contribute to a reduction in Nr losses. The findings provide a scientific reference for Nr loss control and future planning in the TLB.
Collapse
Affiliation(s)
- Xinghua He
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Qixia, Nanjing, 210023, China
| | - Jiaming Tian
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Qixia, Nanjing, 210023, China
| | - Yanqin Zhang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Qixia, Nanjing, 210023, China
| | - Zihan Zhao
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Qixia, Nanjing, 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Qixia, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Qixia, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Shin S, Her Y, Muñoz-Carpena R, Yu X. Quantifying the contribution of external loadings and internal hydrodynamic processes to the water quality of Lake Okeechobee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163713. [PMID: 37105475 DOI: 10.1016/j.scitotenv.2023.163713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The water quality of a waterbody is determined by internal hydrodynamic processes as well as external loadings. Understanding the interaction between the external loading and internal process of a waterbody is essential for efficient water management and water quality improvement. Studies and efforts have focused on water and nutrient loading from drainage watersheds, but the contribution of the waterbody's internal process to water quality is often ignored and not well documented. This study investigated how the water quality of Lake Okeechobee is controlled by external and internal factors using statistical and numerical modeling approaches. Water quantity and quality observed at the outlets of the Lake Okeechobee drainage basins and 19 monitoring sites located within the lake were statistically analyzed using multilinear regression. A three-dimensional numerical model, namely Environmental Fluid Dynamics Code (EFDC), was calibrated to the observations to mathematically represent the lake's internal hydrodynamic process. The multilinear regression found that the water quality was the most sensitive to air temperature, the total phosphorus (TP) concentration of inflow entering the lake from the Kissimmee River basins, and the amount of outflow discharged from the lake among external factors. However, the regression models and their explanatory power were substantially varied by the monitoring stations. The model parameter sensitivity analysis of the calibrated EFDC model showed that model parameters related to the lake's internal algal processes including algal growth, predation, and basal metabolism rates had greater impacts on algal biomass than other model parameters controlling nutrient-related processes such as nutrient half-saturation and hydrolysis rates. The EFDC input data sensitivity analysis found that wind (speed) is the major driving force for the internal hydrodynamic processes; its impact on algal biomass was greater than those of the external loadings. In addition, the algal biomass was found to have an inverse relationship with wind-induced horizontal currents. The results demonstrate the dynamic contribution of the internal and external drivers to the water quality of Lake Okeechobee, suggesting the need to consider both internal hydrodynamic and external loading processes for efficient water quality improvement of the lake.
Collapse
Affiliation(s)
- Satbyeol Shin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA; School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Younggu Her
- Department of Agricultural and Biological Engineering & Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Rafael Muñoz-Carpena
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xiao Yu
- Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Cereghetti E, Altermatt F. Spatiotemporal dynamics in freshwater amphipod assemblages are associated with surrounding terrestrial land use type. Ecosphere 2023. [DOI: 10.1002/ecs2.4469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- Eva Cereghetti
- Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
12
|
Wang W, Chen L, Lin C, Liu Y, Dong X, Xiong J, Liu G, Zhang Y, Li J, Shen Z. Source appointment at large-scale and ungauged catchment using physically-based model and dynamic export coefficient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116842. [PMID: 36436245 DOI: 10.1016/j.jenvman.2022.116842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Data scarcity has caused enormous problems in non-point pollution predictions and the related source apportionment. In this study, a new framework was developed to undertake the source apportionment at a large-scale and ungauged catchment, by integrating the physically-based model and a surrogate model. The improvements were made, in terms of the application of a physically-based model in an ungauged area for the transfer process and the parametric transplantation process. The new framework was then tested in the Chaohu Lake basin, China. The result suggested that there has been a good match between simulated and observed data. Although the planting industry was the largest emission source with 48.16% of nitrogen (N), itonly contributed 12.61% of N flux to the Chaohu Lake. The ungauged catchments surrounding the Chaohu Lake were identified as non-negligible sources with 8.46% of phosphorus (P) contribution. The rainfall conditions could have great impacts on source apportionment results; e.g., the planting industry contributed from 68.17t of P in dry year to 436.02t in wet year. The new framework could be extended to other large-scale watersheds for source apportionment with data limitations.
Collapse
Affiliation(s)
- Wenzhuo Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Chen Lin
- Najing Institute of Geography & Limnology Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yong Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, Peking University, Beijing, 100871, PR China
| | - Xin Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Junfeng Xiong
- Najing Institute of Geography & Limnology Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Guowangcheng Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yuhan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jiaqi Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
13
|
Chen Y, Yao Y, Han X, Li D, Han R. In Situ Simultaneous Analysis of Nitrogen and Phosphorus Migration in Urban Black Odorous Runoff. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13240. [PMID: 36293820 PMCID: PMC9603257 DOI: 10.3390/ijerph192013240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The extremely serious urban runoff eutrophication and black odorous phenomenon pose a significant threat to the lake aquatic ecosystem, resulting in a significantly increased frequency, magnitude, and duration of algal blooms in lakes. However, few investigations focus on small tributaries of the lakes, despite the ubiquity and potential local importance of these runoffs. Thus, the labile sediments NH4+-N, NO3--N, PO43-, Fe2+, and S2- in black odorous runoff at Wuxi were overall analyzed at high resolution using diffusive gradients in thin films (DGT). The variations in labile N, P, Fe, and S distribution profiles at different sampling sites indicated high heterogeneity in sediments. The concentrations of labile P, Fe, and S showed synchronous variation from the sediment-water interface (SWI) up to -20 mm along sediment profiles. Moreover, there existed a significant positive correlation among labile P, Fe, and S concentrations (p < 0.05), which might represent typical odor compounds' FeS and H2S synchronous release process in urban runoff. Furthermore, the apparent diffusion fluxes of labile P, Fe, and S across the SWI were all released upward, while fluxes of NH4+-N and NO3--N release downward, indicating the sediments act as source and sink of P and N, respectively. Sediments' potential for endogenous P and N fractions release results in the black-odorous water, and sediment finally abouchement the Taihu, which intensifies further lake eutrophication phenomenon.
Collapse
Affiliation(s)
- Ying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Jiangsu Engineering Laboratory of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Jiangsu Engineering Laboratory of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoxiang Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Jiangsu Engineering Laboratory of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Dujun Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Jiangsu Engineering Laboratory of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Jiangsu Engineering Laboratory of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Yuan H, Wang H, Dong A, Zhou Y, Huang R, Yin H, Zhang L, Liu E, Li Q, Jia B, Cai Y. Tracing the sources of phosphorus in lake at watershed scale using phosphate oxygen isotope (δ 18O P). CHEMOSPHERE 2022; 305:135382. [PMID: 35718038 DOI: 10.1016/j.chemosphere.2022.135382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is normally considered as the limited nutrient for shallow freshwater lakes and can potentially trigger eutrophication on account of high concentrations. Due to the various transportation and transformation processes, P source apportionment and management in lake ecosystems have become more and more difficult. Combining with sequential extraction of P fractions and mineralogical analysis, the isotopic compositions of oxygen in phosphate (δ18OP) of resin-extractable P from the different samples including soil, estuary sediments, pond sediments, and lake sediments in the Shijiuhu Lake catchment, China, were investigated. The results showed that δ18OP values ranged from +15.23 to +21.92‰ in agricultural soil, +16.53 to +24.10‰ in estuary sediments, +18.90 to +20.90‰ in pond sediments, and +17.42 to +19.70‰ in lake sediments. Isotopic signatures indicated that chemical fertilizers with heavier δ18OP values (+20.70 to +26.50‰) were the predominant contributors of P in the soil. The river transportation together with Fe/Al-P desorption on anaerobic condition simultaneously stimulated the enrichment of P in the lake sediments, even though the biotic activity regulated the isotope values moving toward the equilibrium. Eroded soil was the important source of P in lake and pond sediments via drainage and runoff, and conserved the source isotope signal in the samples. Stronger biotic activity in the aquatic environments dragged δ18OP values toward the equilibrium. However, conspicuous off-equilibrium isotope signature suggested the terrestrial sources in the aquatic ecosystems. The calculation of two end-member linear mixing models suggested that soils also predominantly controlled the P occurrence in the lake sediments with contribution higher than 80%, indicating that decreasing inputs from the agricultural activities is important in P reduction on catchment scale. Generally, δ18OP from different sources can provide indirect and important evidences for the identification and management of P sources in the lake catchment.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Azhong Dong
- Jiangsu Institute of Water Resources and Hydropower Research, Nanjing, 210017, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, 210013, China
| | - Rui Huang
- Jiangsu Institute of Water Resources and Hydropower Research, Nanjing, 210017, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Binchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
15
|
Jiang X, Gao G, Deng J, Zhu G, Tang X, Shao K, Hu Y. Nitrogen concentration response to the decline in atmospheric nitrogen deposition in a hypereutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118952. [PMID: 35124122 DOI: 10.1016/j.envpol.2022.118952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric nitrogen (N) deposition is becoming an increasingly important factor affecting the nutrient level of lakes, especially considering the long-term control measures for external N inputs in developed regions. However, few studies have investigated the effects of atmospheric N deposition and the respective ecological significance in eutrophic waters. In this study, bulk and wet deposition rates of all N species and water N concentrations in Lake Taihu were determined based on the long-term (2010-2018) high-resolution (weekly or monthly) systematic observations. The results indicated that the decline in wind speed and change in land-use type likely decreased the N deposition rate. The bulk N deposition rates decreased from 45.77 kg N ha-1 yr-1 in 2012 to 22.06 kg N ha-1 yr-1 in 2018, which could account for decrease of 1.01 mg N L-1 in the lake N concentrations via a rough estimation, and this value was close to the actual variation in N concentration in Lake Taihu. The correlation between N concentrations and atmospheric deposition fluxes was stronger than that between N concentrations and riverine N inputs or lake storage, which further indicated that change in atmospheric N deposition was the key reason for the variation in N concentrations. The direct bulk N deposition into Lake Taihu accounted for 17.5% and 51.4% of the riverine N inputs and lake N inventory, respectively. Moreover, atmospheric N deposition was concentrated in summer, which was dominated by reduced N, and it may be important for the duration of algal blooms. Therefore, external N inputs, including atmospheric N deposition, should be further controlled for an effective mitigation of eutrophication and algal blooms in Lake Taihu.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jianming Deng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
16
|
Semcesen PO, Wells MG. Biofilm growth on buoyant microplastics leads to changes in settling rates: Implications for microplastic retention in the Great Lakes. MARINE POLLUTION BULLETIN 2021; 170:112573. [PMID: 34144395 DOI: 10.1016/j.marpolbul.2021.112573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 05/28/2023]
Abstract
Buoyant microplastic pollution disperses widely from sources via strong wind-driven water currents in lakes and oceans. This ability for dispersal depends critically upon the particle's density, which can change over time due to microbial growth (biofilm). This study quantifies biofilm-induced sinking rates of irregularly-shaped polypropylene granules (~125-2000 μm) via ex-situ experiments emulating a Great Lakes freshwater environment. Biofilm development increases particle density and lowers microplastic rise velocities, eventually causing sinking. We observed sinking for 100% of small and intermediate microplastics, and 95% of large microplastics. Under constant environmental conditions, sinking onset was observed sooner for smaller particles (~125-212 μm, 18 days) than for larger particles (~1000-2000 μm, 50 days). Differences in settling onset would lead to size-fractionation of particle sedimentation, whereby smaller particles are deposited closer to their sources relative to larger particles. Our study demonstrates a novel mechanism by which buoyant microplastics can selectively sink from the lake surface.
Collapse
Affiliation(s)
- Patricia O Semcesen
- University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada.
| | - Mathew G Wells
- University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
17
|
Yuan H, Wang H, Zhou Y, Jia B, Yu J, Cai Y, Yang Z, Liu E, Li Q, Yin H. Water-level fluctuations regulate the availability and diffusion kinetics process of phosphorus at lake water-sediment interface. WATER RESEARCH 2021; 200:117258. [PMID: 34058482 DOI: 10.1016/j.watres.2021.117258] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Sequential extraction and in-situ diffusive gradients in thin films (DGT) techniques were used to determine phosphorus (P) fractions and high-resolution 2D fluxes of labile PDGT, Fe2+DGT, and S2-DGT in sediment systems. The diffusion fluxes were subsequently calculated for different scenarios. Dynamic diffusion parameters between solid sediment and solution were also fitted using the DIFS (DGT-induced fluxes in sediments) model. The results suggested that Fe-bound P (Fe-P) was the dominant pool which contributed to the resupply potential of P in the water-sediment continuum. Significant upward decreases of labile PDGT, Fe2+DGT, and S2-DGT fluxes were detected in pristine and incubated microcosms. This dominance indicated the more obvious immobilization of labile P via oxidation of both Fe2+ and S2- in oxidic conditions. Additionally, these labile analytes in the microcosms obviously decreased after a 30-day incubation period, indicating that water-level fluctuations can significantly regulate adsorption-desorption processes of the P bound to Fe-containing minerals within a short time. Higher concentrations of labile PDGT, Fe2+DGT, and S2-DGT were measured at the shallow lake region where more drastic water-level variation occurred. This demonstrates that frequent adsorption-desorption of phosphate from the sediment particles to the aqueous solution can result in looser binding on the solid sediment surface and easier desorption in aerobic conditions via the regulation of water levels. Higher R values fitted with DIFS model suggested that more significant desorption and replenishment effect of labile P to the aqueous solution would occur in lake regions with more dramatic water-level variations. Finally, a significant positive correlation between S2-DGT and Fe2+DGT in the sediment indicated that the S2- oxidization under the conditions of low water-level can trigger the reduction of Fe(III) and subsequent release of active P. In general, speaking, frequent water-level fluctuations in the lake over time facilitated the formation and retention of the Fe(II) phase in the sediment, and desorption of Fe coupled P into the aqueous solution when the water level was high.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing 210013, China
| | - Bingchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706 Madison, Wisconsin, USA
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|