1
|
Li F, Wang J, Wang P, Li L. Dephosphorylation of bZIP59 by PP2A ensures appropriate shade avoidance response in Arabidopsis. Dev Cell 2024:S1534-5807(24)00633-6. [PMID: 39536759 DOI: 10.1016/j.devcel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Changes in light quality and quantity experienced by many shade-intolerant plants grown in close proximity lead to transcriptional reprogramming and shade avoidance syndrome (SAS). Despite the importance of phosphorylation-dependent signaling in cellular physiology, phosphorylation events during SAS are largely unknown. Here, we examined shade-regulated phosphorylation events in Arabidopsis using quantitative phosphoproteomics. We confirmed shade-induced dephosphorylation of bZIP59, a basic region/leucine zipper motif (bZIP) transcription factor. Shade treatment promotes the nuclear localization of bZIP59, which can be mimicked by mutation of the phosphorylation sites on bZIP59. Phenotypic analysis identified that bZIP59 negatively regulated shade-induced hypocotyl elongation. bZIP59 repressed the shade-induced activation of certain growth-related genes, while shade increased the DNA binding of bZIP59. Furthermore, the protein phosphatase 2A (PP2A) mediated dephosphorylation of bZIP59. Our study characterized a previously unidentified mechanism by which the phytochrome B (phyB)-PP2A-bZIP59 regulatory module integrates shade signals and transcriptomes, broadening our knowledge of phosphorylation strategies for rapid adaptation to shade.
Collapse
Affiliation(s)
- Fengquan Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Jiayu Wang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
2
|
Guo J, He XJ. Composition and function of plant chromatin remodeling complexes. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102613. [PMID: 39116678 DOI: 10.1016/j.pbi.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
ATP-dependent chromatin remodelers play a crucial role in modifying chromatin configuration by utilizing the energy of ATP hydrolysis. They are involved in various processes, including transcription, DNA replication, and maintaining genome stability. These remodeling remodelers usually form multi-subunit chromatin remodeling complexes in eukaryotes. In plants, chromatin remodeling complexes have diverse functions in regulating plant development and stress response. Recent studies have conducted extensive research on plant chromatin remodeling complexes. This review focuses on recent advances in the classification and composition of plant chromatin remodeling complexes, the protein-protein interactions within the complexes, their impact on chromatin configuration, and their interactions with chromatin modifications and transcription factors.
Collapse
Affiliation(s)
- Jing Guo
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
3
|
Baile F, Calonje M. Dynamics of polycomb group marks in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102553. [PMID: 38776572 DOI: 10.1016/j.pbi.2024.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Polycomb Group (PcG) histone-modifying system is key in maintaining gene repression, providing a mitotically heritable cellular memory. Nevertheless, to allow plants to transition through distinct transcriptional programs during development or to respond to external cues, PcG-mediated repression requires reversibility. Several data suggest that the dynamics of PcG marks may vary considerably in different cell contexts; however, how PcG marks are established, maintained, or removed in each case is far from clear. In this review, we survey the knowns and unknowns of the molecular mechanisms underlying the maintenance or turnover of PcG marks in different cell stages.
Collapse
Affiliation(s)
- Fernando Baile
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain.
| |
Collapse
|
4
|
Zhang Z, Liang C, Ren Y, Lv Z, Huang J. Interaction of ubiquitin-like protein SILENCING DEFECTIVE 2 with LIKE HETEROCHROMATIN PROTEIN 1 is required for regulation of anthocyanin biosynthesis in Arabidopsis thaliana in response to sucrose. THE NEW PHYTOLOGIST 2024; 243:1374-1386. [PMID: 38558017 DOI: 10.1111/nph.19725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
The regulatory mechanisms of anthocyanin biosynthesis have been well documented at the transcriptional and translational levels. By contrast, how anthocyanin biosynthesis is epigenetically regulated remains largely unknown. In this study, we employed genetic, molecular biology, and chromatin immunoprecipitation-quantitative polymerase chain reaction assays to identify a regulatory module essential for repressing the expression of genes involved in anthocyanin biosynthesis through chromatin remodeling. We found that SILENCING DEFECTIVE 2 (SDE2), which was previously identified as a negative regulator for sucrose-induced anthocyanin accumulation in Arabidopsis, is cleaved into N-terminal SDE2-UBL and C-terminal SDE2-C fragments at the first diglycine motif, and the cleaved SDE2-C, which can fully complement the sde2 mutant, is localized in the nucleus and physically interacts with LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in vitro and in vivo. Genetic analyses showed that both SDE2 and LHP1 act as negative factors for anthocyanin biosynthesis. Consistently, immunoblot analysis revealed that the level of LHP1-bound histone H3 lysine 27 trimethylation (H3K27me3) significantly decreases in sde2 and lhp1 mutants, compared to wild-type (WT). In addition, we found that sugar can induce expression of SDE2 and LHP1, and enhance the level of the nucleus-localized SDE2-C. Taken together, our data suggest that the SDE2-C-LHP1 module is required for repression of gene expression through H3K27me3 modification during sugar-induced anthocyanin biosynthesis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chengcheng Liang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yulong Ren
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhaojun Lv
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
5
|
Wang W, Sung S. Chromatin sensing: integration of environmental signals to reprogram plant development through chromatin regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4332-4345. [PMID: 38436409 PMCID: PMC11263488 DOI: 10.1093/jxb/erae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Chromatin regulation in eukaryotes plays pivotal roles in controlling the developmental regulatory gene network. This review explores the intricate interplay between chromatin regulators and environmental signals, elucidating their roles in shaping plant development. As sessile organisms, plants have evolved sophisticated mechanisms to perceive and respond to environmental cues, orchestrating developmental programs that ensure adaptability and survival. A central aspect of this dynamic response lies in the modulation of versatile gene regulatory networks, mediated in part by various chromatin regulators. Here, we summarized current understanding of the molecular mechanisms through which chromatin regulators integrate environmental signals, influencing key aspects of plant development.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| |
Collapse
|
6
|
Willige BC, Yoo CY, Saldierna Guzmán JP. What is going on inside of phytochrome B photobodies? THE PLANT CELL 2024; 36:2065-2085. [PMID: 38511271 PMCID: PMC11132900 DOI: 10.1093/plcell/koae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024]
Abstract
Plants exhibit an enormous phenotypic plasticity to adjust to changing environmental conditions. For this purpose, they have evolved mechanisms to detect and measure biotic and abiotic factors in their surroundings. Phytochrome B exhibits a dual function, since it serves as a photoreceptor for red and far-red light as well as a thermosensor. In 1999, it was first reported that phytochromes not only translocate into the nucleus but also form subnuclear foci upon irradiation by red light. It took more than 10 years until these phytochrome speckles received their name; these foci were coined photobodies to describe unique phytochrome-containing subnuclear domains that are regulated by light. Since their initial discovery, there has been much speculation about the significance and function of photobodies. Their presumed roles range from pure experimental artifacts to waste deposits or signaling hubs. In this review, we summarize the newest findings about the meaning of phyB photobodies for light and temperature signaling. Recent studies have established that phyB photobodies are formed by liquid-liquid phase separation via multivalent interactions and that they provide diverse functions as biochemical hotspots to regulate gene expression on multiple levels.
Collapse
Affiliation(s)
- Björn Christopher Willige
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Chan Yul Yoo
- School of Biological Sciences, University of Utah, UT 84112, USA
| | - Jessica Paola Saldierna Guzmán
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
7
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
8
|
Candela-Ferre J, Diego-Martin B, Pérez-Alemany J, Gallego-Bartolomé J. Mind the gap: Epigenetic regulation of chromatin accessibility in plants. PLANT PHYSIOLOGY 2024; 194:1998-2016. [PMID: 38236303 PMCID: PMC10980423 DOI: 10.1093/plphys/kiae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Chromatin plays a crucial role in genome compaction and is fundamental for regulating multiple nuclear processes. Nucleosomes, the basic building blocks of chromatin, are central in regulating these processes, determining chromatin accessibility by limiting access to DNA for various proteins and acting as important signaling hubs. The association of histones with DNA in nucleosomes and the folding of chromatin into higher-order structures are strongly influenced by a variety of epigenetic marks, including DNA methylation, histone variants, and histone post-translational modifications. Additionally, a wide array of chaperones and ATP-dependent remodelers regulate various aspects of nucleosome biology, including assembly, deposition, and positioning. This review provides an overview of recent advances in our mechanistic understanding of how nucleosomes and chromatin organization are regulated by epigenetic marks and remodelers in plants. Furthermore, we present current technologies for profiling chromatin accessibility and organization.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| |
Collapse
|
9
|
Huang S, Ma Y, Xu Y, Lu P, Yang J, Xie Y, Gan J, Li L. Shade-induced RTFL/DVL peptides negatively regulate the shade response by directly interacting with BSKs in Arabidopsis. Nat Commun 2023; 14:6898. [PMID: 37898648 PMCID: PMC10613268 DOI: 10.1038/s41467-023-42618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
For shade-intolerant species, shade light indicates the close proximity of neighboring plants and triggers the shade avoidance syndrome (SAS), which causes exaggerated growth and reduced crop yield. Here, we report that non-secreted ROT FOUR LIKE (RTFL)/DEVIL (DVL) peptides negatively regulate SAS by interacting with BRASSINOSTEROID SIGNALING KINASEs (BSKs) and reducing the protein level of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in Arabidopsis. The transcription of at least five RTFLs (RTFL13/16/17/18/21) is induced by low R:FR light. The RTFL18 (DVL1) protein is stabilized under low R:FR conditions and localized to the plasma membrane. A phenotype analysis reveals that RTFL18 negatively regulates low R:FR-promoted petiole elongation. BSK3 and BSK6 are identified as partners of RTFL18 through binding assays and structural modeling. The overexpression of RTFL18 or knockdown of BSK3/6 reduces BRASSINOSTEROID signaling and reduces low R:FR-stabilized PIF4 levels. Genetically, the overexpression of BSK3/6 and PIF4 restores the petiole phenotype acquired by RTFL18-overexpressing lines. Collectively, our work characterizes a signaling cascade (the RTFLs-BSK3/6-PIF4 pathway) that prevents the excessive activation of the shade avoidance response in Arabidopsis.
Collapse
Affiliation(s)
- Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Ma
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yitian Xu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Pengfei Lu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
10
|
Wu X, Zhang X, Huang B, Han J, Fang H. Advances in biological functions and mechanisms of histone variants in plants. Front Genet 2023; 14:1229782. [PMID: 37588047 PMCID: PMC10426802 DOI: 10.3389/fgene.2023.1229782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Nucleosome is the basic subunit of chromatin, consisting of approximately 147bp DNA wrapped around a histone octamer, containing two copies of H2A, H2B, H3 and H4. A linker histone H1 can bind nucleosomes through its conserved GH1 domain, which may promote chromatin folding into higher-order structures. Therefore, the complexity of histones act importantly for specifying chromatin and gene activities. Histone variants, encoded by separate genes and characterized by only a few amino acids differences, can affect nucleosome packaging and stability, and then modify the chromatin properties. Serving as carriers of pivotal genetic and epigenetic information, histone variants have profound significance in regulating plant growth and development, response to both biotic and abiotic stresses. At present, the biological functions of histone variants in plant have become a research hotspot. Here, we summarize recent researches on the biological functions, molecular chaperons and regulatory mechanisms of histone variants in plant, and propose some novel research directions for further study of plant histone variants research field. Our study will provide some enlightens for studying and understanding the epigenetic regulation and chromatin specialization mediated by histone variant in plant.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Borong Huang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huihui Fang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
11
|
Yin C, Sun A, Zhou Y, Liu K, Wang P, Ye W, Fang Y. The dynamics of Arabidopsis H2A.Z on SMALL AUXIN UP RNAs regulates abscisic acid-auxin signaling crosstalk. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad131. [PMID: 37022978 DOI: 10.1093/jxb/erad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stresses, plant hormone ABA activates stress responses and restricts plant growth. However, the epigenetic regulation of the ABA signaling and ABA-auxin crosstalk are not well known. Here we report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has altered ABA signaling and stress performances. RNA-sequencing data showed that a majority of stress related genes are activated in h2a.z-kd. In addition, we revealed that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), which is involved in ABA-repressed SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhou
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Yang C, Zhu T, Zhou N, Huang S, Zeng Y, Jiang W, Xie Y, Shen WH, Li L. PIF7-mediated epigenetic reprogramming promotes the transcriptional response to shade in Arabidopsis. EMBO J 2023; 42:e111472. [PMID: 36912149 PMCID: PMC10106985 DOI: 10.15252/embj.2022111472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
For shade-intolerant plants, changes in light quality through competition from neighbors trigger shade avoidance syndrome (SAS): a series of morphological and physiological adaptations that are ultimately detrimental to plant health and crop yield. Phytochrome-interacting factor 7 (PIF7) is a major transcriptional regulator of SAS in Arabidopsis; however, how it regulates gene expression is not fully understood. Here, we show that PIF7 directly interacts with the histone chaperone anti-silencing factor 1 (ASF1). The ASF1-deprived asf1ab mutant showed defective shade-induced hypocotyl elongation. Histone regulator homolog A (HIRA), which mediates deposition of the H3.3 variant into chromatin, is also involved in SAS. RNA/ChIP-sequencing analyses identified the role of ASF1 in the direct regulation of a subset of PIF7 target genes. Furthermore, shade-elicited gene activation is accompanied by H3.3 enrichment, which is mediated by the PIF7-ASF1-HIRA regulatory module. Collectively, our data reveal that PIF7 recruits ASF1-HIRA to increase H3.3 incorporation into chromatin to promote gene transcription, thus enabling plants to effectively respond to environmental shade.
Collapse
Affiliation(s)
- Chuanwei Yang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Tongdan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Nana Zhou
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Zeng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen Jiang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Long J, Carter B, Johnson ET, Ogas J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin Cell Dev Biol 2023; 135:85-92. [PMID: 35474148 PMCID: PMC9588091 DOI: 10.1016/j.semcdb.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022]
Abstract
The histone variant H2A.Z plays a critical role in chromatin-based processes such as transcription, replication, and repair in eukaryotes. Although many H2A.Z-associated processes and features are conserved in plants and animals, a distinguishing feature of plant chromatin is the enrichment of H2A.Z in the bodies of genes that exhibit dynamic expression, particularly in response to differentiation and the environment. Recent work sheds new light on the plant machinery that enables dynamic changes in H2A.Z enrichment and identifies additional chromatin-based pathways that contribute to transcriptional properties of H2A.Z-enriched chromatin. In particular, analysis of a variety of responsive loci reveals a repressive role for H2A.Z in expression of responsive genes and identifies roles for SWR1 and INO80 chromatin remodelers in enabling dynamic regulation of H2A.Z levels and transcription. These studies lay the groundwork for understanding how this ancient histone variant is harnessed by plants to enable responsive and dynamic gene expression (Graphical Abstract).
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Emily T Johnson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
14
|
Zeng Y, Wang J, Huang S, Xie Y, Zhu T, Liu L, Li L. HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1-ELF3-PIF4 pathway in Arabidopsis. THE NEW PHYTOLOGIST 2023. [PMID: 36707919 DOI: 10.1111/nph.18776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Light and temperature are two key environmental signals that share several molecular components that, in turn, regulate plant growth. Darkness and high ambient temperatures promote skoto- and thermomorphogenesis, including stem elongation. Heat shock proteins 90 (HSP90s) facilitate the adaptation of organisms to various adverse environmental stimuli. Here, we showed that HSP90s are required for hypocotyl elongation during both skoto- and thermomorphogenesis. When HSP90s activities are impaired by the knockdown of HSP90s expression or the application of HSP90 inhibitors, the expression levels and protein abundance of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) markedly decreased. EARLY FLOWERING 3 (ELF3) deficiency was resistant to the inhibition of HSP90s activities. Furthermore, HSP90s interacted with and destabilized ELF3. In the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) mutant, the changes in endogenous PIF4 and ELF3 protein levels caused by the inhibition of HSP90s activities were abolished. HSP90s enhanced the interaction between COP1 and ELF3, reduced ELF3 functional effects on PIF4 and modulated hypocotyl elongation during skoto- and thermomorphogenesis. Our results indicated that HSP90s participate in light and temperature signalling via the COP1-ELF3-PIF4 module to regulate hypocotyl growth in changing environments.
Collapse
Affiliation(s)
- Yue Zeng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiayu Wang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Tongdan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Leyi Liu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
15
|
Sun A, Yin C, Ma M, Zhou Y, Zheng X, Tu X, Fang Y. Feedback regulation of auxin signaling through the transcription of H2A.Z and deposition of H2A.Z to SMALL AUXIN UP RNAs in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:1721-1733. [PMID: 36017638 DOI: 10.1111/nph.18440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Auxin is a critical phytohormone that is involved in the regulation of most plant growth and developmental responses. In particular, epigenetic mechanisms, like histone modifications and DNA methylation, were reported to affect auxin biosynthesis and transport. However, the involvement of other epigenetic factors, such as histone variant H2A.Z, in the auxin-related developmental regulation remains unclear. We report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has more lateral roots and weak gravitational responses related to auxin-regulated growth performances. Further study revealed that auxin promotes the eviction of H2A.Z from the auxin-responsive genes SMALL AUXIN-UP RNAs (SAURs) to activate their transcriptions. We found that IAA promotes the transcription of H2A.Z genes through HOMEOBOX PROTEIN 22/25 (AtHB22/25) transcription factors which work as downstream targets of ARF7/19 in auxin signaling. Double mutant of hb22 hb25 showed similar lateral root and gravitropism phenotypes to h2a.z-kd. Our results shed light on a reciprocal regulation hub through INOSITOL AUXOTROPHY 80-mediated H2A.Z eviction and ARF7/19-HB22/25-mediated H2A.Z transcription to modulate the activation of SAURs and plant growth in Arabidopsis.
Collapse
Affiliation(s)
- Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoyun Zheng
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Patitaki E, Schivre G, Zioutopoulou A, Perrella G, Bourbousse C, Barneche F, Kaiserli E. Light, chromatin, action: nuclear events regulating light signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:333-349. [PMID: 35949052 PMCID: PMC9826491 DOI: 10.1111/nph.18424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
The plant nucleus provides a major hub for environmental signal integration at the chromatin level. Multiple light signaling pathways operate and exchange information by regulating a large repertoire of gene targets that shape plant responses to a changing environment. In addition to the established role of transcription factors in triggering photoregulated changes in gene expression, there are eminent reports on the significance of chromatin regulators and nuclear scaffold dynamics in promoting light-induced plant responses. Here, we report and discuss recent advances in chromatin-regulatory mechanisms modulating plant architecture and development in response to light, including the molecular and physiological roles of key modifications such as DNA, RNA and histone methylation, and/or acetylation. The significance of the formation of biomolecular condensates of key light signaling components is discussed and potential applications to agricultural practices overviewed.
Collapse
Affiliation(s)
- Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Geoffrey Schivre
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Université Paris‐SaclayOrsay91400France
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Giorgio Perrella
- Department of BiosciencesUniversity of MilanVia Giovanni Celoria, 2620133MilanItaly
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
17
|
Barrero-Gil J, Bouza-Morcillo L, Espinosa-Cores L, Piñeiro M, Jarillo JA. H4 acetylation by the NuA4 complex is required for plastid transcription and chloroplast biogenesis. NATURE PLANTS 2022; 8:1052-1063. [PMID: 36038656 DOI: 10.1038/s41477-022-01229-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis is crucial in plant development, as it is essential for the transition to autotrophic growth. This process is light-induced and relies on the orchestrated transcription of nuclear and plastid genes, enabling the effective assembly and regulation of the photosynthetic machinery. Here we reveal a new regulation level for this process by showing the involvement of chromatin remodelling in the nuclear control of plastid gene expression for proper chloroplast biogenesis and function. The two Arabidopsis homologues of yeast EPL1 protein, components of the NuA4 histone acetyltransferase complex, are essential for plastid transcription and correct chloroplast development and performance. We show that EPL1 proteins are light-regulated and necessary for concerted expression of nuclear genes encoding most components of chloroplast transcriptional machinery, directly mediating H4K5ac deposition at these loci and promoting the expression of plastid genes required for chloroplast biogenesis. These data unveil a NuA4-mediated mechanism regulating chloroplast biogenesis that links the transcription of nuclear and plastid genomes during chloroplast development.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Laura Bouza-Morcillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Loreto Espinosa-Cores
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| |
Collapse
|
18
|
Hou Y, Yan Y, Cao X. Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana. ABIOTECH 2022; 3:12-24. [PMID: 36304197 PMCID: PMC9590556 DOI: 10.1007/s42994-022-00070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Temperature is a key factor in determining plant growth and development, geographical distribution, and seasonal behavior. Plants accurately sense subtle changes in ambient temperature and alter their growth and development accordingly to improve their chances of survival and successful propagation. Thermomorphogenesis encompasses a variety of morphological changes that help plants acclimate to warm environmental temperatures. Revealing the molecular mechanism of thermomorphogenesis is important for breeding thermo-tolerant crops and ensuring food security under global climate change. Plant adaptation to elevated ambient temperature is regulated by multiple signaling pathways and epigenetic mechanisms such as histone modifications, histone variants, and non-coding RNAs. In this review, we summarize recent advances in the mechanism of epigenetic regulation during thermomorphogenesis with a focus on the model plant Arabidopsis thaliana and briefly discuss future prospects for this field.
Collapse
Affiliation(s)
- Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yan Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
19
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:800989. [PMID: 35111179 PMCID: PMC8801436 DOI: 10.3389/fpls.2021.800989] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis. Nat Commun 2022; 13:277. [PMID: 35022409 PMCID: PMC8755797 DOI: 10.1038/s41467-021-27882-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleosomal acetyltransferase of H4 (NuA4) is an essential transcriptional coactivator in eukaryotes, but remains poorly characterized in plants. Here, we describe Arabidopsis homologs of the NuA4 scaffold proteins Enhancer of Polycomb-Like 1 (AtEPL1) and Esa1-Associated Factor 1 (AtEAF1). Loss of AtEAF1 results in inhibition of growth and chloroplast development. These effects are stronger in the Atepl1 mutant and are further enhanced by loss of Golden2-Like (GLK) transcription factors, suggesting that NuA4 activates nuclear plastid genes alongside GLK. We demonstrate that AtEPL1 is necessary for nucleosomal acetylation of histones H4 and H2A.Z by NuA4 in vitro. These chromatin marks are diminished genome-wide in Atepl1, while another active chromatin mark, H3K9 acetylation (H3K9ac), is locally enhanced. Expression of many chloroplast-related genes depends on NuA4, as they are downregulated with loss of H4ac and H2A.Zac. Finally, we demonstrate that NuA4 promotes H2A.Z deposition and by doing so prevents spurious activation of stress response genes. Function of nucleosomal acetyltransferase of H4 (NuA4), one major complex of HAT, remains unclear in plants. Here, the authors generate mutants targeting two components of the putative NuA4 complex in Arabidopsis (EAF1 and EPL1) and show their roles in photosynthesis genes regulation through H4K5ac and H2A.Z acetylation.
Collapse
|
21
|
Chakraborty P, Magnuson T. INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes. Development 2022; 149:273926. [PMID: 35006254 PMCID: PMC8881737 DOI: 10.1242/dev.200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
INO80 is the catalytic subunit of the INO80-chromatin remodeling complex that is involved in DNA replication, repair and transcription regulation. Ino80 deficiency in murine spermatocytes (Ino80cKO) results in pachytene arrest of spermatocytes due to incomplete synapsis and aberrant DNA double-strand break repair, which leads to apoptosis. RNA-seq on Ino80cKO spermatocytes revealed major changes in transcription, indicating that an aberrant transcription program arises upon INO80 depletion. In Ino80WT spermatocytes, genome-wide analysis showed that INO80-binding sites were mostly promoter proximal and necessary for the regulation of spermatogenic gene expression, primarily of premeiotic and meiotic genes. Furthermore, most of the genes poised for activity, as well as those genes that are active, shared INO80 binding. In Ino80cKO spermatocytes, most poised genes demonstrated de-repression due to reduced H3K27me3 enrichment and, in turn, showed increased expression levels. INO80 interacts with the core PRC2 complex member SUZ12 and promotes its recruitment. Furthermore, INO80 mediates H2A.Z incorporation at the poised promoters, which was reduced in Ino80cKO spermatocytes. Taken together, INO80 is emerging as a major regulator of the meiotic transcription program by mediating poised chromatin establishment through SUZ12 binding.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Author for correspondence ()
| |
Collapse
|
22
|
Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. MOLECULAR PLANT 2021; 14:1799-1813. [PMID: 34242850 DOI: 10.1016/j.molp.2021.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Global warming poses a major threat to plant growth and crop production. In some plants, including Arabidopsis thaliana, elevated temperatures induce a series of morphological and developmental adjustments termed thermomorphogenesis, which facilitates plant cooling under high-temperature conditions. Plant thermal response is suppressed by histone variant H2A.Z. At warm temperatures, H2A.Z is evicted from nucleosomes at thermoresponsive genes, resulting in changes in their expression. However, the mechanisms that regulate H2A.Z eviction and subsequent transcriptional changes are largely unknown. Here, we show that the INO80 chromatin remodeling complex (INO80-C) promotes thermomorphogenesis and activates the expression of thermoresponsive and auxin-related genes. INO80-C associates with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a potent regulator of thermomorphogenesis, and mediates temperature-induced H2A.Z eviction at PIF4 targets. Moreover, INO80-C directly interacts with COMPASS-like and transcription elongation factors to promote active histone modification, histone H3 lysine 4 trimethylation, and RNA polymerase II elongation, leading to the thermal induction of transcription. Notably, the transcription elongation factors SPT4 and SPT5 are required for H2A.Z eviction at PIF4 targets, suggesting the cooperation of INO80-C and transcription elongation in H2A.Z removal. Taken together, these results suggest that the (PIF4)-(INO80-C)-(COMPASS-like)-(transcription elongator) module controls plant thermal response, thereby establishing a link between H2A.Z eviction and active transcription.
Collapse
Affiliation(s)
- Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Sureshkumar S, Balasubramanian S. Complexes and complexities: INO80 takes center stage. MOLECULAR PLANT 2021; 14:1776-1778. [PMID: 34418552 DOI: 10.1016/j.molp.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
|
24
|
Shang JY, Lu YJ, Cai XW, Su YN, Feng C, Li L, Chen S, He XJ. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. THE PLANT CELL 2021; 33:3250-3271. [PMID: 34270751 PMCID: PMC8505878 DOI: 10.1093/plcell/koab187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/11/2021] [Indexed: 05/26/2023]
Abstract
In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.
Collapse
Affiliation(s)
| | | | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
25
|
Calderon RH, Strand Å. How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102093. [PMID: 34390927 DOI: 10.1016/j.pbi.2021.102093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts and mitochondria evolved from free-living prokaryotic organisms that entered the eukaryotic cell through endosymbiosis. The gradual conversion from endosymbiont to organelle during the course of evolution was accompanied by the development of a communication system between the host and the endosymbiont, referred to as retrograde signaling or organelle-to-nucleus signaling. In higher plants, plastid-to-nucleus signaling involves multiple signaling pathways necessary to coordinate plastid function and cellular responses to developmental and environmental stimuli. Phylogenetic reconstructions using sequence information from evolutionarily diverse photosynthetic eukaryotes have begun to provide information about how retrograde signaling pathways were adopted and modified in different lineages over time. A tight communication system was likely a major facilitator of plants conquest of the land because it would have enabled the algal ancestors of land plants to better allocate their cellular resources in response to high light and desiccation, the major stressor for streptophyte algae in a terrestrial habitat. In this review, we aim to give an evolutionary perspective on plastid-to-nucleus signaling.
Collapse
Affiliation(s)
- Robert H Calderon
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
26
|
Yang C, Huang S, Zeng Y, Liu C, Ma Q, Pruneda-Paz J, Kay SA, Li L. Two bHLH transcription factors, bHLH48 and bHLH60, associate with phytochrome interacting factor 7 to regulate hypocotyl elongation in Arabidopsis. Cell Rep 2021; 35:109054. [PMID: 33951433 DOI: 10.1016/j.celrep.2021.109054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/01/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) is a central regulator that promotes stem growth by activating growth-related gene expression during shade-avoidance responses. Studying the co-factors of PIF7 can facilitate understanding of the mechanism of PIFs and light signal transduction. Here, we describe the identification of two bHLH transcription factors, bHLH48 and bHLH60 (bHLH48/bHLH60), as essential partners for PIF7-dependent modulation of hypocotyl elongation and function downstream of phytochrome B. These two bHLH factors display DNA binding activity and interact with PIF7. Genetic analysis indicated that bHLH48/bHLH60 and PIF7 are interdependent in promoting hypocotyl elongation. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis identified the substantially overlapping downstream targets of bHLH60 and PIF7. Biochemical analysis revealed that bHLH48/bHLH60 enhance the DNA binding ability of PIF7. These results provide evidence that bHLH48/bHLH60 act as positive partners of PIF7 for mutual benefit in the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Chuanwei Yang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Yue Zeng
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Qinyi Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Jose Pruneda-Paz
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90098, USA
| | - Lin Li
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|