1
|
Tanriover I, Li Y, Gage TE, Arslan I, Liu H, Mirkin CA, Aydin K. Unveiling Spatial and Temporal Dynamics of Plasmon-Enhanced Localized Fields in Metallic Nanoframes through Ultrafast Electron Microscopy. ACS NANO 2024; 18:28258-28267. [PMID: 39351793 DOI: 10.1021/acsnano.4c08875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Plasmonic nanomaterials, particularly noble metal nanoframes (NFs), are important for applications such as catalysis, biosensing, and energy harvesting due to their ability to enhance localized electric fields and atomic efficiency via localized surface plasmon resonance (LSPR). Yet the fundamental structure-function relationships and plasmonic dynamics of the NFS are difficult to study experimentally and thus far rely predominately on computational methodologies, limiting their utilization. This study leverages the capabilities of ultrafast electron microscopy (UEM), specifically photon-induced near-field electron microscopy (PINEM), to probe the light-matter interactions within plasmonic NF structures. The effects of shape, size, and plasmonic coupling of Pt@Au core-shell NFs on spatial and temporal characteristics of plasmon-enhanced localized electric fields are explored. Importantly, time-resolved PINEM analysis reveals that the plasmonic fields around hexagonal NF prisms exhibit a spatially dependent excitation and decay rate, indicating a nuanced interplay between the spatial geometry of the NF and the temporal evolution of the localized electric field. These results and observations uncover nanophotonic energy transfer dynamics in NFs and highlight their potential for applications in biosensing and photocatalysis.
Collapse
Affiliation(s)
| | | | - Thomas E Gage
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ilke Arslan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haihua Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | | |
Collapse
|
2
|
Zhou W, Li Y, Partridge BE, Mirkin CA. Engineering Anisotropy into Organized Nanoscale Matter. Chem Rev 2024; 124:11063-11107. [PMID: 39315621 DOI: 10.1021/acs.chemrev.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
Collapse
Affiliation(s)
- Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin E Partridge
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Fajri ML, Kossowski N, Bouanane I, Bedu F, Poungsripong P, Juliano-Martins R, Majorel C, Margeat O, Le Rouzo J, Genevet P, Sciacca B. Designer Metasurfaces via Nanocube Assembly at the Air-Water Interface. ACS NANO 2024. [PMID: 39159194 PMCID: PMC11440645 DOI: 10.1021/acsnano.4c06022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The advent of metasurfaces has revolutionized the design of optical instruments, and recent advancements in fabrication techniques are further accelerating their practical applications. However, conventional top-down fabrication of intricate nanostructures proves to be expensive and time-consuming, posing challenges for large-scale production. Here, we propose a cost-effective bottom-up approach to create nanostructure arrays with arbitrarily complex meta-atoms displaying single nanoparticle lateral resolution over submillimeter areas, minimizing the need for advanced and high-cost nanofabrication equipment. By utilizing air/water interface assembly, we transfer nanoparticles onto templated polydimethylsiloxane (PDMS) irrespective of nanopattern density, shape, or size. We demonstrate the robust assembly of nanocubes into meta-atoms with diverse configurations generally unachievable by conventional methods, including U, L, cross, S, T, gammadion, split-ring resonators, and Pancharatnam-Berry metasurfaces with designer optical functionalities. We also show nanocube epitaxy at near ambient temperature to transform the meta-atoms into complex continuous nanostructures that can be swiftly transferred from PDMS to various substrates via contact printing. Our approach potentially offers a large-scale manufacturing alternative to top-down fabrication for metal nanostructuring, unlocking possibilities in the realm of nanophotonics.
Collapse
Affiliation(s)
| | | | - Ibtissem Bouanane
- Aix-Marseille Univ. CNRS, Université de Toulon, IM2NP, Marseille 13397, France
| | - Frederic Bedu
- Aix-Marseille Univ, CNRS, CINaM, Marseille 13288, France
| | | | | | | | | | - Judikael Le Rouzo
- Aix-Marseille Univ. CNRS, Université de Toulon, IM2NP, Marseille 13397, France
| | - Patrice Genevet
- Université Côte d'Azur, CNRS, CRHEA, 06560 Valbonne, France
- Colorado School of Mines, 1523 Illinois st. CoorsTek Center, Golden, Colorado 80401, United States
| | | |
Collapse
|
4
|
Hueckel T, Lewis DJ, Mertiri A, Carter DJD, Macfarlane RJ. Controlling Colloidal Crystal Nucleation and Growth with Photolithographically Defined Templates. ACS NANO 2023; 17:22121-22128. [PMID: 37921570 DOI: 10.1021/acsnano.3c09401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Colloidal crystallization provides a means to synthesize hierarchical nanostructures by design and to use these complex structures for nanodevice fabrication. In particular, DNA provides a means to program interactions between particles with high specificity, thereby enabling the formation of particle superlattice crystallites with tailored unit cell geometries and surface faceting. However, while DNA provides precise control of particle-particle bonding interactions, it does not inherently present a means of controlling higher-level structural features such as the size, shape, position, or orientation of a colloidal crystallite. While altering assembly parameters such as temperature or concentration can enable limited control of crystallite size and geometry, integrating colloidal assemblies into nanodevices requires better tools to manipulate higher-order structuring and improved understanding of how these tools control the fundamental kinetics and mechanisms of colloidal crystal growth. In this work, photolithography is used to produce patterned substrates that can manipulate the placement, size, dispersity, and orientation of colloidal crystals. By adjusting aspects of the pattern, such as feature size and separation, we reveal a diffusion-limited mechanism governing crystal nucleation and growth. Leveraging this insight, patterns are designed that can produce wafer-scale substrates with arrays of nanoparticle superlattices of uniform size and shape. These design principles therefore bridge a gap between a fundamental understanding of nanoparticle assembly and the fabrication of nanostructures compatible with functional devices.
Collapse
Affiliation(s)
- Theodore Hueckel
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Diana J Lewis
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Alket Mertiri
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - David J D Carter
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Liu X, Yan N, Jin J, Du Y, Jiang W. Polyhedral Colloidal Clusters Assembled from Amphiphilic Nanoparticles in Deformable Droplets. NANO LETTERS 2023; 23:8022-8028. [PMID: 37651713 DOI: 10.1021/acs.nanolett.3c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Polyhedral colloidal clusters assembled from functional inorganic nanoparticles have attracted great interest in both scientific research and applications. However, the spontaneous assembly of colloidal nanoparticles into polyhedral clusters with regular shape and tunable structures remains a grand challenges. Here, we successfully construct Mackay icosahedral and regular tetrahedral colloidal clusters assembled from gold nanoparticles grafted with a mixture of polystyrene (PS) and poly(2-vinylpyridine) (P2VP) homopolymers by precisely tuning the interfacial interaction between the nanoparticles and the oil/water interface. By increasing the proportion of hydrophilic P2VP ligands on the surface of gold nanoparticles, the Mackay icosahedral clusters can transform into regular tetrahedral clusters in order to maximize the surface area of the polyhedral assembly. Furthermore, we reveal the formation mechanism of these regular polyhedral colloidal clusters. The formation of polyhedral colloidal clusters is not only dependent on the entropy but also determined by the interfacial free energy. This finding demonstrates an effective approach to organize nanoparticles into polyhedral colloidal clusters with potential applications in various fields.
Collapse
Affiliation(s)
- Xuejie Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanqiu Du
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Mirkin CA, Petrosko SH. Inspired Beyond Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA. ACS NANO 2023; 17:16291-16307. [PMID: 37584399 DOI: 10.1021/acsnano.3c06564] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The conception, synthesis, and invention of a nanostructure, now known as the spherical nucleic acid, or SNA, in 1996 marked the advent of a new field of chemistry. Over the past three decades, the SNA and its analogous anisotropic equivalents have provided an avenue for us to think about some of the most fundamental concepts in chemistry in new ways and led to technologies that are significantly impacting fields from medicine to materials science. A prime example is colloidal crystal engineering with DNA, the framework for using SNAs and related structures to synthesize programmable matter. Herein, we document the evolution of this framework, which was initially inspired by nature, and describe how it now allows researchers to chart paths to move beyond it, as programmable matter with real-world significance is envisioned and created.
Collapse
Affiliation(s)
- Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Kim K, Sherman ZM, Cleri A, Chang WJ, Maria JP, Truskett TM, Milliron DJ. Hierarchically Doped Plasmonic Nanocrystal Metamaterials. NANO LETTERS 2023; 23:7633-7641. [PMID: 37558214 PMCID: PMC10450817 DOI: 10.1021/acs.nanolett.3c02231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Assembling plasmonic nanocrystals in regular superlattices can produce effective optical properties not found in homogeneous materials. However, the range of these metamaterial properties is limited when a single nanocrystal composition is selected for the constituent meta-atoms. Here, we show how continuously varying doping at two length scales, the atomic and nanocrystal scales, enables tuning of both the frequency and bandwidth of the collective plasmon resonance in nanocrystal-based metasurfaces, while these features are inextricably linked in single-component superlattices. Varying the mixing ratio of indium tin oxide nanocrystals with different dopant concentrations, we use large-scale simulations to predict the emergence of a broad infrared spectral region with near-zero permittivity. Experimentally, tunable reflectance and absorption bands are observed, owing to in- and out-of-plane collective resonances. These spectral features and the predicted strong near-field enhancement establish this multiscale doping strategy as a powerful new approach to designing metamaterials for optical applications.
Collapse
Affiliation(s)
- Kihoon Kim
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Zachary M. Sherman
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Angela Cleri
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Woo Je Chang
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Jon-Paul Maria
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas M. Truskett
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
- Department
of Physics, The University of Texas at Austin, 204 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Delia J. Milliron
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
- Department
of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Cai YY, Fallah A, Yang S, Choi YC, Xu J, Stein A, Kikkawa JM, Murray CB, Engheta N, Kagan CR. Open and Close-Packed, Shape-Engineered Polygonal Nanoparticle Metamolecules with Tailorable Fano Resonances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301323. [PMID: 37165983 DOI: 10.1002/adma.202301323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Indexed: 05/12/2023]
Abstract
A top-down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well-defined sizes, shapes, and compositions that are often not accessible by wet-chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template-assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size- and shape-engineered templates and organize into open or close-packed multi-NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal-shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close-packed architectures highlights that introduction of a center NP to form close-packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation-dependent scattering response.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Asma Fallah
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun Xu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron Stein
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - James M Kikkawa
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nader Engheta
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Smith PT, Ye Z, Pietryga J, Huang J, Wahl CB, Hedlund Orbeck JK, Mirkin CA. Molecular Thin Films Enable the Synthesis and Screening of Nanoparticle Megalibraries Containing Millions of Catalysts. J Am Chem Soc 2023. [PMID: 37311072 DOI: 10.1021/jacs.3c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Megalibraries are centimeter-scale chips containing millions of materials synthesized in parallel using scanning probe lithography. As such, they stand to accelerate how materials are discovered for applications spanning catalysis, optics, and more. However, a long-standing challenge is the availability of substrates compatible with megalibrary synthesis, which limits the structural and functional design space that can be explored. To address this challenge, thermally removable polystyrene films were developed as universal substrate coatings that decouple lithography-enabled nanoparticle synthesis from the underlying substrate chemistry, thus providing consistent lithography parameters on diverse substrates. Multi-spray inking of the scanning probe arrays with polymer solutions containing metal salts allows patterning of >56 million nanoreactors designed to vary in composition and size. These are subsequently converted to inorganic nanoparticles via reductive thermal annealing, which also removes the polystyrene to deposit the megalibrary. Megalibraries with mono-, bi-, and trimetallic materials were synthesized, and nanoparticle size was controlled between 5 and 35 nm by modulating the lithography speed. Importantly, the polystyrene coating can be used on conventional substrates like Si/SiOx, as well as substrates typically more difficult to pattern on, such as glassy carbon, diamond, TiO2, BN, W, or SiC. Finally, high-throughput materials discovery is performed in the context of photocatalytic degradation of organic pollutants using Au-Pd-Cu nanoparticle megalibraries on TiO2 substrates with 2,250,000 unique composition/size combinations. The megalibrary was screened within 1 h by developing fluorescent thin-film coatings on top of the megalibrary as proxies for catalytic turnover, revealing Au0.53Pd0.38Cu0.09-TiO2 as the most active photocatalyst composition.
Collapse
Affiliation(s)
- Peter T Smith
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Zihao Ye
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Jacob Pietryga
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Huang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Carolin B Wahl
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jenny K Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Wang Y, Li H, Chu J, Xia Y, Ye S, Yang F, Cao W, Ge JY, Xu Y, Zhu M, Pan H, Nie Z. Site-Selective Assembly of Centimeter-Scale Arrays of Precisely Oriented Magnetic Nanoellipsoids. ACS NANO 2022; 16:21208-21215. [PMID: 36453842 DOI: 10.1021/acsnano.2c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The precise organization and orientation of anisotropic nanoparticles (NPs) on substrates over a large area is key to the application of NP assemblies in functional optical, electronic, and magnetic devices, but achieving such high-precision NP assembly still remains challenging. Here, we demonstrate the site-selective assembly of magnetic nanoellipsoids into large-area precisely positioned, orientationally controlled arrays via a combination of chemical patterning and magnetic manipulation. Magnetic ellipsoidal NPs are selectively positioned on predetermined chemical patterns with high fidelity through electrostatic interactions and aligned uniformly in line with an applied magnetic field. The position, orientation, and interparticle spacing of the ellipsoids can be precisely tuned by controlling the chemical patterns and magnetic field. This approach is simple to implement and can generate centimeter-scale arrays in high yield (up to 99%). The arrays exhibit collective magnetic responses that are dependent on the orientation of the ellipsoids. This work offers a tool for the fabrication of precisely engineered arrays of anisotropic NPs for applications such as metasurface and artificial spin ice.
Collapse
Affiliation(s)
- Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Hongyan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Jiao Chu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai200438, P.R. China
| | - Yifan Xia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Fan Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Wei Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Jun-Yi Ge
- Materials Genome Institute, Shanghai University, Shanghai200444, P.R. China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P.R. China
| | - Hongyu Pan
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an710054, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
- Yiwu Research Institute of Fudan University, Yiwu City, 322000, P.R. China
| |
Collapse
|
12
|
Zhu W, Satterthwaite PF, Jastrzebska-Perfect P, Brenes R, Niroui F. Nanoparticle contact printing with interfacial engineering for deterministic integration into functional structures. SCIENCE ADVANCES 2022; 8:eabq4869. [PMID: 36288303 PMCID: PMC9604533 DOI: 10.1126/sciadv.abq4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Deterministic, pristine, and scalable integration of individual nanoparticles onto arbitrary surfaces is an ongoing challenge, yet essential for harnessing their unique properties for functional nanoscale devices. To address this challenge, we present a versatile technique where spatially arranged nanoparticles assembled in a topographical template are printed onto diverse surfaces, through a single contact-and-release step, with >95% transfer yield and <50-nanometer placement accuracy. Through engineering of interfacial interactions, our approach uniquely promotes high-yield transfer of individual particles without needing solvents, surface treatments, and polymer sacrificial layers, which are conventionally inevitable. By avoiding these mediation steps, surfaces can remain damage and contamination free and accessible to integrate into functional structures. We demonstrate this in a particle-on-mirror model system, where >2000 precisely defined nanocavities display a consistent plasmonic response with minimized interstructure variability. Through fabricating arrays of emitter-coupled nanocavities, we further highlight the integration opportunities offered by our contact printing.
Collapse
Affiliation(s)
- Weikun Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter F. Satterthwaite
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Jastrzebska-Perfect
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roberto Brenes
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Farnaz Niroui
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Lawson ZR, Preston AS, Korsa MT, Dominique NL, Tuff WJ, Sutter E, Camden JP, Adam J, Hughes RA, Neretina S. Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28186-28198. [PMID: 35695394 DOI: 10.1021/acsami.2c04800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques. Herein, we demonstrate an assembly route for the fabrication of aligned plasmonic gold trimers with air-filled vertical nanogaps having widths that are defined with spatial controls that exceed those of lithographic processes. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. By further implementing a benchtop nanoimprint lithography process and a glancing angle ion milling procedure as additional controls over the assembly, it is possible to deterministically position trimers in periodic arrays and extend the assembly process to dimer formation. The optical response of the structures, which is characterized using polarization-dependent spectroscopy, surface-enhanced Raman scattering, and refractive index sensitivity measurements, shows properties that are consistent with simulation. This work, hence, forwards the wafer-based processing techniques needed to form air-filled nanogaps and place plasmonic energy at site-specific locations.
Collapse
Affiliation(s)
- Zachary R Lawson
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arin S Preston
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matiyas T Korsa
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jost Adam
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Samanta D, Zhou W, Ebrahimi SB, Petrosko SH, Mirkin CA. Programmable Matter: The Nanoparticle Atom and DNA Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107875. [PMID: 34870875 DOI: 10.1002/adma.202107875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenjie Zhou
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
15
|
Jin Z, Yeung J, Zhou J, Cheng Y, Li Y, Mantri Y, He T, Yim W, Xu M, Wu Z, Fajtova P, Creyer MN, Moore C, Fu L, Penny WF, O'Donoghue AJ, Jokerst JV. Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:1259-1268. [PMID: 37406055 PMCID: PMC8791034 DOI: 10.1021/acs.chemmater.1c03871] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a need for surveillance of COVID-19 to identify individuals infected with SARS-CoV-2 coronavirus. Although specific, nucleic acid testing has limitations in terms of point-of-care testing. One potential alternative is the nonstructural protease (nsp5, also known as Mpro/3CLpro) implicated in SARS-CoV-2 viral replication but not incorporated into virions. Here, we report a divalent substrate with a novel design, (Cys)2-(AA)x-(Asp)3, to interface gold colloids in the specific presence of Mpro leading to a rapid and colorimetric readout. Citrate- and tris(2-carboxyethyl)phosphine (TCEP)-AuNPs were identified as the best reporter out of the 17 ligated nanoparticles. Furthermore, we empirically determined the effects of varying cysteine valence and biological media on the sensor specificity and sensitivity. The divalent peptide was specific to Mpro, that is, there was no response when tested with other proteins or enzymes. Furthermore, the Mpro detection limits in Tris buffer and exhaled breath matrices are 12.2 and 18.9 nM, respectively, which are comparable to other reported methods (i.e., at low nanomolar concentrations) yet with a rapid and visual readout. These results from our work would provide informative rationales to design a practical and noninvasive alternative for COVID-19 diagnostic testing-the presence of viral proteases in biofluids is validated.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Colman Moore
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Fu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - William F Penny
- Division of Cardiology, University of California San Diego, San Diego, California 92161, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, Materials Science and Engineering Program, and Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Golze SD, Hughes RA, Menumerov E, Rouvimov S, Neretina S. Synergistic roles of vapor- and liquid-phase epitaxy in the seed-mediated synthesis of substrate-based noble metal nanostructures. NANOSCALE 2021; 13:20225-20233. [PMID: 34851336 DOI: 10.1039/d1nr07019c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal growth modes reliant on the replication of the crystalline character of a preexisting seed through homoepitaxial or heteroepitaxial depositions have enriched both the architectural diversity and functionality of noble metal nanostructures. Equivalent syntheses, when practiced on seeds formed on a crystalline substrate, must reconcile with the fact that the substrate enters the syntheses as a chemically distinct bulk-scale component that has the potential to impose its own epitaxial influences. Herein, we provide an understanding of the formation of epitaxial interfaces within the context of a hybrid growth mode that sees substrate-based seeds fabricated at high temperatures in the vapor phase on single-crystal oxide substrates and then exposed to a low-temperature liquid-phase synthesis yielding highly faceted nanostructures with a single-crystal character. Using two representative syntheses in which gold nanoplates and silver-platinum core-shell structures are formed, it is shown that the hybrid system behaves unconventionally in terms of epitaxy in that the substrate imposes an epitaxial relationship on the seed but remains relatively inactive as the metal seed imposes an epitaxial relationship on the growing nanostructure. With epitaxy transduced from substrate to seed to nanostructure through what is, in essence, a relay system, all of the nanostructures formed in a given synthesis end up with the same crystallographic orientation relative to the underlying substrate. This work advances the use of substrate-induced epitaxy as a synthetic control in the fabrication of on-chip devices reliant on the collective response of identically aligned nanostructures.
Collapse
Affiliation(s)
- Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| | - Eredzhep Menumerov
- College of Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| | - Sergei Rouvimov
- Notre Dame Integrated Imaging Facility (NDIIF), University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| |
Collapse
|
17
|
Petrosko SH, Coleman BD, Drout RJ, Schultz JD, Mirkin CA. Spherical Nucleic Acids: Integrating Nanotechnology Concepts into General Chemistry Curricula. JOURNAL OF CHEMICAL EDUCATION 2021; 98:3090-3099. [PMID: 35250048 PMCID: PMC8890693 DOI: 10.1021/acs.jchemed.1c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscience and technology research offer exciting avenues to modernize undergraduate-level General Chemistry curricula. In particular, spherical nucleic acid (SNA) nanoconjugates, which behave as "programmable atom equivalents" (PAEs) in the context of colloidal crystals, are one system that one can use to reinforce foundational concepts in chemistry including matter and atoms, the Periodic Table, Lewis dot structures and the octet rule, valency and valence-shell electron-pair repulsion (VSEPR) theory, and Pauling's rules, ultimately leading to enriching discussions centered on materials chemistry and biochemistry with key implications in medicine, optics, catalysis, and other areas. These lessons connect historical and modern concepts in chemistry, relate course content to current professional and popular science topics, inspire critical and creative thinking, and spur some students to continue their science, technology, engineering, and mathematics (STEM) education and attain careers in STEM fields. Ultimately, and perhaps most importantly, these lessons may expand the pool of young students interested in chemistry by making connections to a broader group of contemporary concepts and technologies that impact their lives and enhance their view of the field. Herein, a way of teaching aspects of General Chemistry in the context of modern nanoscience concepts is introduced to instructors and curricula developers at research institutions, primarily undergraduate institutions, and community colleges worldwide.
Collapse
Affiliation(s)
- Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Benjamin D Coleman
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Riki J Drout
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Jonathan D Schultz
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Miao Z, Zheng CY, Schatz GC, Lee B, Mirkin CA. Low‐Density 2D Superlattices Assembled via Directional DNA Bonding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyi Miao
- Department of Materials Science and Engineering Northwestern University 2220 Campus Drive Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University USA
| | - Cindy Y. Zheng
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University USA
| | - George C. Schatz
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University USA
| | - Byeongdu Lee
- X-ray Science Division Argonne National Laboratory 9700 South Cass Avenue Argonne IL 60439 USA
| | - Chad A. Mirkin
- Department of Materials Science and Engineering Northwestern University 2220 Campus Drive Evanston IL 60208 USA
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University USA
| |
Collapse
|
19
|
Shao L, Hu X, Sikligar K, Baker GA, Atwood JL. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules. Acc Chem Res 2021; 54:3191-3203. [PMID: 34329553 DOI: 10.1021/acs.accounts.1c00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coordination polymers, commonly known as infinite crystalline lattices, are versatile networks and have diverse potential applications in the fields of gas storage, molecular separation, catalysis, optics, and drug delivery, among other areas. Secondary building blocks, mainly incorporating rigid polydentate organic linkers and metal ions or clusters, are commonly employed to construct coordination polymers. Recently, novel building blocks such as coordination polyhedra have been utilized as metal nodes to fabricate coordination polymers. Benefiting from the rigid porous structure of the coordination polyhedron, prefabricated designer "pores" can be incorporated in this type of coordinate polymer. In this Account, coordination polymers built by pyrogallol[4]arene-assembled metal-organic nanocapsules are summarized. This class of metal-organic nanocapsule possesses the following advantages that make them excellent candidates in the construction of coordination polymers: (i) Various geometrical shapes with different volumes of the inner cavities can be obtained from these capsules. Among them, the two main categories illustrated are dimeric and hexameric capsules, which comprise two and six pyrogallol[4]arenes units, respectively. (ii) A wide range of possible metal ions ranging from main group metals to transition metals and even lanthanides have been demonstrated to seam the capsules. Therefore, these coordination polymers can be endowed with fascinating functionalities such as magnetism, semiconductivity, luminescence, and radioactivity. (iii) Up to 24 metal ions have been successfully embedded on the surface of the nanocapsule, each a potential reaction site in the construction of coordination polymers, opening up pathways for the formation of multidimensional frameworks.In this Account, we focus primarily on the synthesis and the structural information on pyrogallol[4]arene-derived coordination polymers. Coordination polymers can be formed by introducing linkers with two coordination sites, using pyrogallol[4]arenes with coordination sites on the tail, or even via metal ions cross-linking with each other. Machine learning was recently developed to help us predict and screen the structures of the coordination polymers. With single crystal analysis in hand, detailed structural information provides a molecular-level perspective. Significantly, following the formation of coordination polymers, the overall shape and structure of the discrete metal-organic nanocapsules remains essentially unchanged, with full retention of the prefabricated pores. If a rigid linker is used to connect capsules, more than one lattice void with different volumes can be found within the framework. Thus, molecules with different sizes could potentially be encapsulated within these coordination polymers. In addition, flexible ligands can also be employed as linkers. For example, polymers have been employed as large linkers that transform the crystalline coordination polymers into polymer matrices, paving the way toward the synthesis of advanced functional materials. Overall, coordination polymers constructed with pyrogallol[4]arene-assembled metal-organic nanocapsules show wide diversity and tunability in structure and fascinating properties, as well as the promise of built-in functionality in the future.
Collapse
Affiliation(s)
- Li Shao
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiangquan Hu
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kanishka Sikligar
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jerry L. Atwood
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
20
|
Chen C, Zheng L, Guo F, Fang Z, Qi L. Programmable Self-Assembly of Gold Nanoarrows via Regioselective Adsorption. RESEARCH 2021; 2021:9762095. [PMID: 34396136 PMCID: PMC8343431 DOI: 10.34133/2021/9762095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 11/06/2022]
Abstract
Programing the self-assembly of colloidal nanoparticles into predetermined superstructures represents an attractive strategy to realize functional assemblies and novel nanodevices, but it remains a challenge. Herein, gold nanoarrows (GNAs) showing a distinct convex-concave structure were employed as unique building blocks for programmable self-assembly involving multiple assembly modes. Regioselective adsorption of 1,10-decanedithiol on the vertexes, edges, and facets of GNAs allowed for programmable self-assembly of GNAs with five distinct assembly modes, and regioselective blocking with 1-dodecanethiol followed by adsorption of 1,10-decanedithiol gave rise to programmable self-assembly with six assembly modes including three novel wing-engaged modes. The assembly mode was essentially determined by regioselective adsorption of the dithiol linker dictated by the local curvature together with the shape complementarity of GNAs. This approach reveals how the geometric morphology of nanoparticles affects their regioselective functionalization and drives their self-assembly.
Collapse
Affiliation(s)
- Cheng Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Liheng Zheng
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Fucheng Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Zheyu Fang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Miao Z, Zheng CY, Schatz GC, Lee B, Mirkin CA. Low-Density 2D Superlattices Assembled via Directional DNA Bonding. Angew Chem Int Ed Engl 2021; 60:19035-19040. [PMID: 34310029 DOI: 10.1002/anie.202105796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Indexed: 11/11/2022]
Abstract
It is critical to assemble nanoparticles (NPs) into superlattices with controlled symmetries and spacings on substrates for metamaterials applications, where such structural parameters dictate their properties. Here, we use DNA to assemble anisotropic NPs of three shapes-cubes, octahedra, and rhombic dodecahedra-on substrates and investigate their thermally induced reorganization into two-dimensional (2D) crystalline films. We report two new low-density 2D structures, including a honeycomb lattice based on octahedral NPs. The low-density lattices favored here are not usually seen when particles are crystallized via other bottom-up assembly techniques. Furthermore, we show that, consistent with the complementary contact model, a primary driving force for crystallization is the formation of directional, face-to-face DNA bonds between neighboring NPs and between NPs and the substrate. Our results can be used to deliberately prepare crystalline NP films with novel morphologies.
Collapse
Affiliation(s)
- Ziyi Miao
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA.,International Institute for Nanotechnology, Northwestern University, USA
| | - Cindy Y Zheng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,International Institute for Nanotechnology, Northwestern University, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,International Institute for Nanotechnology, Northwestern University, USA
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,International Institute for Nanotechnology, Northwestern University, USA
| |
Collapse
|
22
|
Lee JB, Walker H, Li Y, Nam TW, Rakovich A, Sapienza R, Jung YS, Nam YS, Maier SA, Cortés E. Template Dissolution Interfacial Patterning of Single Colloids for Nanoelectrochemistry and Nanosensing. ACS NANO 2020; 14:17693-17703. [PMID: 33270433 DOI: 10.1021/acsnano.0c09319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deterministic positioning and assembly of colloidal nanoparticles (NPs) onto substrates is a core requirement and a promising alternative to top-down lithography to create functional nanostructures and nanodevices with intriguing optical, electrical, and catalytic features. Capillary-assisted particle assembly (CAPA) has emerged as an attractive technique to this end, as it allows controlled and selective assembly of a wide variety of NPs onto predefined topographical templates using capillary forces. One critical issue with CAPA, however, lies in its final printing step, where high printing yields are possible only with the use of an adhesive polymer film. To address this problem, we have developed a template dissolution interfacial patterning (TDIP) technique to assemble and print single colloidal AuNP arrays onto various dielectric and conductive substrates in the absence of any adhesion layer, with printing yields higher than 98%. The TDIP approach grants direct access to the interface between the AuNP and the target surface, enabling the use of colloidal AuNPs as building blocks for practical applications. The versatile applicability of TDIP is demonstrated by the creation of direct electrical junctions for electro- and photoelectrochemistry and nanoparticle-on-mirror geometries for single-particle molecular sensing.
Collapse
Affiliation(s)
- Joong Bum Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Harriet Walker
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Emiliano Cortés
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| |
Collapse
|