1
|
Lan C, Kou J, Liu Q, Qing P, Zhang X, Song X, Xu D, Zhang Y, Chen Y, Zhou X, Kendrick KM, Zhao W. Oral Oxytocin Blurs Sex Differences in Amygdala Responses to Emotional Scenes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1028-1038. [PMID: 38852918 DOI: 10.1016/j.bpsc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Sex differences are shaped both by innate biological differences and the social environment and are frequently observed in human emotional neural responses. Oral administration of oxytocin (OXT), as an alternative and noninvasive intake method, has been shown to produce sex-dependent effects on emotional face processing. However, it is unclear whether oral OXT produces similar sex-dependent effects on processing continuous emotional scenes. METHODS The current randomized, double-blind, placebo-controlled neuropsychopharmacological functional magnetic resonance imaging experiment was conducted in 147 healthy participants (OXT = 74, men/women = 37/37; placebo = 73, men/women = 36/37) to examine the oral OXT effect on plasma OXT concentrations and neural response to emotional scenes in both sexes. RESULTS At the neuroendocrine level, women showed lower endogenous OXT concentrations than men, but oral OXT increased OXT concentrations equally in both sexes. Regarding neural activity, emotional scenes evoked opposite valence-independent effects on right amygdala activation (women > men) and its functional connectivity with the insula (men > women) in men and women in the placebo group. This sex difference was either attenuated (amygdala response) or even completely eliminated (amygdala-insula functional connectivity) in the OXT group. Multivariate pattern analysis confirmed these findings by developing an accurate sex-predictive neural pattern that included the amygdala and the insula under the placebo but not the OXT condition. CONCLUSIONS The results of the current study suggest a pronounced sex difference in neural responses to emotional scenes that was eliminated by oral OXT, with OXT having opposite modulatory effects in men and women. This may reflect oral OXT enhancing emotional regulation to continuous emotional stimuli in both sexes by facilitating appropriate changes in sex-specific amygdala-insula circuitry.
Collapse
Affiliation(s)
- Chunmei Lan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qi Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Qing
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaodong Zhang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinwei Song
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Yuanshu Chen
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Weihua Zhao
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Institute of Electronic and Information Engineering of University of Electronic Science and Technology of China in Guangdong, Dongguan, China.
| |
Collapse
|
2
|
Moosavi J, Resch A, Lecchi A, Sokolov AN, Fallgatter AJ, Pavlova MA. Reading language of the eyes in female depression. Cereb Cortex 2024; 34:bhae253. [PMID: 38990517 DOI: 10.1093/cercor/bhae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Aberrations in non-verbal social cognition have been reported to coincide with major depressive disorder. Yet little is known about the role of the eyes. To fill this gap, the present study explores whether and, if so, how reading language of the eyes is altered in depression. For this purpose, patients and person-by-person matched typically developing individuals were administered the Emotions in Masked Faces task and Reading the Mind in the Eyes Test, modified, both of which contained a comparable amount of visual information available. For achieving group homogeneity, we set a focus on females as major depressive disorder displays a gender-specific profile. The findings show that facial masks selectively affect inferring emotions: recognition of sadness and anger are more heavily compromised in major depressive disorder as compared with typically developing controls, whereas the recognition of fear, happiness, and neutral expressions remains unhindered. Disgust, the forgotten emotion of psychiatry, is the least recognizable emotion in both groups. On the Reading the Mind in the Eyes Test patients exhibit lower accuracy on positive expressions than their typically developing peers, but do not differ on negative items. In both depressive and typically developing individuals, the ability to recognize emotions behind a mask and performance on the Reading the Mind in the Eyes Test are linked to each other in processing speed, but not recognition accuracy. The outcome provides a blueprint for understanding the complexities of reading language of the eyes within and beyond the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jonas Moosavi
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Annika Resch
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Alessandro Lecchi
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Alexander N Sokolov
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Andreas J Fallgatter
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Marina A Pavlova
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Lorenzi E, Nadalin G, Morandi-Raikova A, Mayer U, Vallortigara G. Noncortical coding of biological motion in newborn chicks' brain. Cereb Cortex 2024; 34:bhae262. [PMID: 38918076 DOI: 10.1093/cercor/bhae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Biological motion, the typical movement of vertebrates, is perceptually salient for many animal species. Newly hatched domestic chicks and human newborns show a spontaneous preference for simple biological motion stimuli (point-light displays) at birth prior to any visual learning. Despite evidence of such preference at birth, neural studies performed so far have focused on a specialized neural network involving primarily cortical areas. Here, we presented newly hatched visually naïve domestic chicks to either biological or rigid motion stimuli and measured for the first time their brain activation. Immediate Early Gene (c-Fos) expression revealed selective activation in the preoptic area of the hypothalamus and the nucleus taeniae of the amygdala. These results suggest that subpallial/subcortical regions play a crucial role in biological motion perception at hatching, paving the way for future studies on adult animals, including humans.
Collapse
Affiliation(s)
- Elena Lorenzi
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giulia Nadalin
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | | | - Uwe Mayer
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giorgio Vallortigara
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| |
Collapse
|
4
|
Romagnano V, Kubon J, Sokolov AN, Fallgatter AJ, Braun C, Pavlova MA. Dynamic brain communication underwriting face pareidolia. Proc Natl Acad Sci U S A 2024; 121:e2401196121. [PMID: 38588422 PMCID: PMC11032489 DOI: 10.1073/pnas.2401196121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Face pareidolia is a tendency to seeing faces in nonface images that reflects high tuning to a face scheme. Yet, studies of the brain networks underwriting face pareidolia are scarce. Here, we examined the time course and dynamic topography of gamma oscillatory neuromagnetic activity while administering a task with nonface images resembling a face. Images were presented either with canonical orientation or with display inversion that heavily impedes face pareidolia. At early processing stages, the peaks in gamma activity (40 to 45 Hz) to images either triggering or not face pareidolia originate mainly from the right medioventral and lateral occipital cortices, rostral and caudal cuneus gyri, and medial superior occipital gyrus. Yet, the difference occurred at later processing stages in the high-frequency range of 80 to 85 Hz over a set of the areas constituting the social brain. The findings speak rather for a relatively late neural network playing a key role in face pareidolia. Strikingly, a cutting-edge analysis of brain connectivity unfolding over time reveals mutual feedforward and feedback intra- and interhemispheric communication not only within the social brain but also within the extended large-scale network of down- and upstream regions. In particular, the superior temporal sulcus and insula strongly engage in communication with other brain regions either as signal transmitters or recipients throughout the whole processing of face-pareidolia images.
Collapse
Affiliation(s)
- Valentina Romagnano
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Julian Kubon
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Alexander N. Sokolov
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Andreas J. Fallgatter
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Christoph Braun
- Magnetoencephalography Center, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Marina A. Pavlova
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
5
|
Roberti E, Turati C, Actis-Grosso R. Single point motion kinematics convey emotional signals in children and adults. PLoS One 2024; 19:e0301896. [PMID: 38598520 PMCID: PMC11006184 DOI: 10.1371/journal.pone.0301896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
This study investigates whether humans recognize different emotions conveyed only by the kinematics of a single moving geometrical shape and how this competence unfolds during development, from childhood to adulthood. To this aim, animations in which a shape moved according to happy, fearful, or neutral cartoons were shown, in a forced-choice paradigm, to 7- and 10-year-old children and adults. Accuracy and response times were recorded, and the movement of the mouse while the participants selected a response was tracked. Results showed that 10-year-old children and adults recognize happiness and fear when conveyed solely by different kinematics, with an advantage for fearful stimuli. Fearful stimuli were also accurately identified at 7-year-olds, together with neutral stimuli, while, at this age, the accuracy for happiness was not significantly different than chance. Overall, results demonstrates that emotions can be identified by a single point motion alone during both childhood and adulthood. Moreover, motion contributes in various measures to the comprehension of emotions, with fear recognized earlier in development and more readily even later on, when all emotions are accurately labeled.
Collapse
Affiliation(s)
- Elisa Roberti
- Psychology Department, University of Milano–Bicocca, Milan, Italy
- Neuromi, Milan Center for Neuroscience, Milan, Italy
| | - Chiara Turati
- Psychology Department, University of Milano–Bicocca, Milan, Italy
- Neuromi, Milan Center for Neuroscience, Milan, Italy
| | - Rossana Actis-Grosso
- Psychology Department, University of Milano–Bicocca, Milan, Italy
- Neuromi, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
6
|
Terburg D, van Honk J, Schutter DJLG. Doubling down on dual systems: A cerebellum-amygdala route towards action- and outcome-based social and affective behavior. Cortex 2024; 173:175-186. [PMID: 38417390 DOI: 10.1016/j.cortex.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
The amygdala and cerebellum are both evolutionary preserved brain structures containing cortical as well as subcortical properties. For decades, the amygdala has been considered the fear-center of the brain, but recent advances have shown that the amygdala acts as a critical hub between cortical and subcortical systems and shapes social and affective behaviors beyond fear. Likewise, the cerebellum is a dedicated control unit that fine-tunes motor behavior to fit contextual requirements. There is however increasing evidence that the cerebellum strongly influences subcortical as well as cortical processes beyond the motor domain. These insights broadened the view on the cerebellum's functions to also include social and affective behavior. Here we explore how the amygdala and cerebellum might interact in shaping social and affective behaviors based on their roles in threat reactivity and reinforcement learning. A novel mechanistic neural framework of cerebellum-amygdala interactions will be presented which provides testable hypotheses for future social and affective neuroscientific research in humans.
Collapse
Affiliation(s)
- David Terburg
- Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, South Africa.
| | - Jack van Honk
- Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands; Department of Psychiatry and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, South Africa
| | | |
Collapse
|
7
|
Romero CS, Speck U, Stern N, Luedi MM. Three Messages to Enhance Human Connection With Our Patients. Anesth Analg 2024:00000539-990000000-00790. [PMID: 38470822 DOI: 10.1213/ane.0000000000006887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Affiliation(s)
- Carolina S Romero
- From the Department of Anaesthesiology and Critical Care, Hospital General Universitario De Valencia, Valencia, Spain
| | - Ursula Speck
- Department of Anaesthesiology Rescue- and Pain Medicine, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | | | - Markus M Luedi
- Department of Anaesthesiology Rescue- and Pain Medicine, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Strege MV, Richey JA, Siegle GJ. Trying to name what doesn't change: Neural nonresponse to Cognitive Therapy for depression. Psychol Med 2024; 54:136-147. [PMID: 37191029 PMCID: PMC10651800 DOI: 10.1017/s0033291723000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Theoretical models of neural mechanisms underlying Cognitive Behavior Therapy (CBT) for major depressive disorder (MDD) propose that psychotherapy changes neural functioning of prefrontal cortical structures associated with cognitive-control processes (DeRubeis, Siegle, & Hollon, ); however, MDD is persistent and characterized by long-lasting vulnerabilities to recurrence after intervention, suggesting that underlying neural mechanisms of MDD remain despite treatment. It follows that identification of treatment-resistant aberrant neural processes in MDD may inform clinical and research efforts targeting sustained remission. Thus, we sought to identify brain regions showing aberrant neural functioning in MDD that either (1) fail to exhibit substantive change (nonresponse) or (2) exhibit functional changes (response) following CBT. METHODS To identify treatment-resistant neural processes (as well as neural processes exhibiting change after treatment), we collected functional magnetic resonance imaging (fMRI) data of MDD patients (n = 58) before and after CBT as well as never-depressed controls (n = 35) before and after a similar amount of time. We evaluated fMRI data using conjunction analyses, which utilized several contrast-based criteria to characterize brain regions showing both differences between patients and controls at baseline and nonresponse or response to CBT. RESULTS Findings revealed nonresponse in a cerebellar region and response in prefrontal and parietal regions. CONCLUSIONS Results are consistent with prior theoretical models of CBT's direct effect on cortical regulatory processes but expand on them with identification of additional regions (and associated neural systems) of response and nonresponse to CBT.
Collapse
Affiliation(s)
| | - John A. Richey
- Virginia Polytechnic Institute and State University, Department of Psychology
| | | |
Collapse
|
9
|
Wang L, Hu X, Ren Y, Lv J, Zhao S, Guo L, Liu T, Han J. Arousal modulates the amygdala-insula reciprocal connectivity during naturalistic emotional movie watching. Neuroimage 2023; 279:120316. [PMID: 37562718 DOI: 10.1016/j.neuroimage.2023.120316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Emotional arousal is a complex state recruiting distributed cortical and subcortical structures, in which the amygdala and insula play an important role. Although previous neuroimaging studies have showed that the amygdala and insula manifest reciprocal connectivity, the effective connectivities and modulatory patterns on the amygdala-insula interactions underpinning arousal are still largely unknown. One of the reasons may be attributed to static and discrete laboratory brain imaging paradigms used in most existing studies. In this study, by integrating naturalistic-paradigm (i.e., movie watching) functional magnetic resonance imaging (fMRI) with a computational affective model that predicts dynamic arousal for the movie stimuli, we investigated the effective amygdala-insula interactions and the modulatory effect of the input arousal on the effective connections. Specifically, the predicted dynamic arousal of the movie served as regressors in general linear model (GLM) analysis and brain activations were identified accordingly. The regions of interest (i.e., the bilateral amygdala and insula) were localized according to the GLM activation map. The effective connectivity and modulatory effect were then inferred by using dynamic causal modeling (DCM). Our experimental results demonstrated that amygdala was the site of driving arousal input and arousal had a modulatory effect on the reciprocal connections between amygdala and insula. Our study provides novel evidence to the underlying neural mechanisms of arousal in a dynamical naturalistic setting.
Collapse
Affiliation(s)
- Liting Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| | - Yudan Ren
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Jinglei Lv
- School of Biomedical Engineering and Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, USA
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
De Beukelaer S, Sokolov AA, Müri RM. Case report: "Proust phenomenon" after right posterior cerebral artery occlusion. Front Neurol 2023; 14:1183265. [PMID: 37521297 PMCID: PMC10374343 DOI: 10.3389/fneur.2023.1183265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Odors evoking vivid and intensely felt autobiographical memories are known as the "Proust phenomenon," delineating the particularity of olfaction in being more effective with eliciting emotional memories than other sensory modalities. The phenomenon has been described extensively in healthy participants as well as in patients during pre-epilepsy surgery evaluation after focal stimulation of the amygdalae and post-traumatic stress disorder (PTSD). In this study, we provide the inaugural description of aversive odor-evoked autobiographical memories after stroke in the right hippocampal, parahippocampal, and thalamic nuclei. As potential underlying neural signatures of the phenomenon, we discuss the disinhibition of limbic circuits and impaired communication between the major networks, such as saliency, central executive, and default mode network.
Collapse
Affiliation(s)
- Sophie De Beukelaer
- Department of Neurology, University Hospital, Inselspital Bern, Bern, Switzerland
| | - A. A. Sokolov
- Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - R. M. Müri
- Department of Neurology, University Hospital, Inselspital Bern, Bern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
12
|
Romagnano V, Sokolov AN, Fallgatter AJ, Pavlova MA. Do subtle cultural differences sculpt face pareidolia? SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:28. [PMID: 37142598 PMCID: PMC10160123 DOI: 10.1038/s41537-023-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Face tuning to non-face images such as shadows or grilled toasts is termed face pareidolia. Face-pareidolia images represent a valuable tool for investigation of social cognition in mental disorders. Here we examined (i) whether, and, if so, how face pareidolia is affected by subtle cultural differences; and (ii) whether this impact is modulated by gender. With this purpose in mind, females and males from Northern Italy were administered a set of Face-n-Thing images, photographs of objects such as houses or waves to a varying degree resembling a face. Participants were presented with pareidolia images with canonical upright orientation and display inversion that heavily affects face pareidolia. In a two-alternative forced-choice paradigm, beholders had to indicate whether each image resembled a face. The outcome was compared with the findings obtained in the Southwest of Germany. With upright orientation, neither cultural background nor gender affected face pareidolia. As expected, display inversion generally mired face pareidolia. Yet, while display inversion led to a drastic reduction of face impression in German males as compared to females, in Italians, no gender differences were found. In a nutshell, subtle cultural differences do not sculpt face pareidolia, but instead affect face impression in a gender-specific way under unusual viewing conditions. Clarification of the origins of these effects requires tailored brain imaging work. Implications for transcultural psychiatry, in particular, for schizophrenia research, are highlighted and discussed.
Collapse
Affiliation(s)
- Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Ince S, Steward T, Harrison BJ, Jamieson AJ, Davey CG, Agathos JA, Moffat BA, Glarin RK, Felmingham KL. Subcortical contributions to salience network functioning during negative emotional processing. Neuroimage 2023; 270:119964. [PMID: 36822252 DOI: 10.1016/j.neuroimage.2023.119964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Core regions of the salience network (SN), including the anterior insula (aINS) and dorsal anterior cingulate cortex (dACC), coordinate rapid adaptive changes in attentional and autonomic processes in response to negative emotional events. In doing so, the SN incorporates bottom-up signals from subcortical brain regions, such as the amygdala and periaqueductal gray (PAG). However, the precise influence of these subcortical regions is not well understood. Using ultra-high field 7-Tesla functional magnetic resonance imaging, this study investigated the bottom-up interactions of the amygdala and PAG with the SN during negative emotional salience processing. Thirty-seven healthy participants completed an emotional oddball paradigm designed to elicit a salient negative emotional response via the presentation of random, task-irrelevant negative emotional images. Negative emotional processing was associated with prominent activation in the SN, spanning the amygdala, PAG, aINS, and dACC. Consistent with previous research, analysis using dynamic causal modelling revealed an excitatory influence from the amygdala to the aINS, dACC, and PAG. In contrast, the PAG showed an inhibitory influence on amygdala, aINS and dACC activity. Our findings suggest that the amygdala may amplify the processing of negative emotional stimuli in the SN to enable upstream access to attentional resources. In comparison, the inhibitory influence of the PAG possibly reflects its involvement in modulating sympathetic-parasympathetic autonomic arousal mediated by the SN. This PAG-mediated effect may be driven by amygdala input and facilitate bottom-up processing of negative emotional stimuli. Overall, our results show that the amygdala and PAG modulate divergent functions of the SN during negative emotional processing.
Collapse
Affiliation(s)
- Sevil Ince
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Trevor Steward
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James A Agathos
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bradford A Moffat
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rebecca K Glarin
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
14
|
Xiao NG, Angeli V, Fang W, Manera V, Liu S, Castiello U, Ge L, Lee K, Simion F. The discrimination of expressions in facial movements by infants: A study with point-light displays. J Exp Child Psychol 2023; 232:105671. [PMID: 37003155 DOI: 10.1016/j.jecp.2023.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023]
Abstract
Perceiving facial expressions is an essential ability for infants. Although previous studies indicated that infants could perceive emotion from expressive facial movements, the developmental change of this ability remains largely unknown. To exclusively examine infants' processing of facial movements, we used point-light displays (PLDs) to present emotionally expressive facial movements. Specifically, we used a habituation and visual paired comparison (VPC) paradigm to investigate whether 3-, 6-, and 9-month-olds could discriminate between happy and fear PLDs after being habituated with a happy PLD (happy-habituation condition) or a fear PLD (fear-habituation condition). The 3-month-olds discriminated between the happy and fear PLDs in both the happy- and fear-habituation conditions. The 6- and 9-month-olds showed discrimination only in the happy-habituation condition but not in the fear-habituation condition. These results indicated a developmental change in processing expressive facial movements. Younger infants tended to process low-level motion signals regardless of the depicted emotions, and older infants tended to process expressions, which emerged in familiar facial expressions (e.g., happy). Additional analyses of individual difference and eye movement patterns supported this conclusion. In Experiment 2, we concluded that the findings of Experiment 1 were not due to a spontaneous preference for fear PLDs. Using inverted PLDs, Experiment 3 further suggested that 3-month-olds have already perceived PLDs as face-like stimuli.
Collapse
Affiliation(s)
- Naiqi G Xiao
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| | - Valentina Angeli
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy
| | - Wei Fang
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Valeria Manera
- Cognition Behaviour Technology (CoBTeK), EA 7276, Edmond and Lily Safra Center, University of Nice Sophia Antipolis, 06000 Nice, France
| | - Shaoying Liu
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Umberto Castiello
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Cognitive Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Liezhong Ge
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310027, China
| | - Kang Lee
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario M5R 2X2, Canada
| | - Francesca Simion
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy; Cognitive Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
15
|
Vandenbulcke M, Van de Vliet L, Sun J, Huang YA, Van Den Bossche MJA, Sunaert S, Peeters R, Zhu Q, Vanduffel W, de Gelder B, De Winter FL, Van den Stock J. A paleo-neurologic investigation of the social brain hypothesis in frontotemporal dementia. Cereb Cortex 2023; 33:622-633. [PMID: 35253853 DOI: 10.1093/cercor/bhac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/03/2023] Open
Abstract
The social brain hypothesis posits that a disproportionate encephalization in primates enabled to adapt behavior to a social context. Also, it has been proposed that phylogenetically recent brain areas are disproportionally affected by neurodegeneration. Using structural and functional magnetic resonance imaging, the present study investigates brain-behavior associations and neural integrity of hyperspecialized and domain-general cortical social brain areas in behavioral variant frontotemporal dementia (bvFTD). The results revealed that both structure and function of hyperspecialized social areas in the middle portion of the superior temporal sulcus (STS) are compromised in bvFTD, while no deterioration was observed in domain general social areas in the posterior STS. While the structural findings adhered to an anterior-posterior gradient, the functional group differences only occurred in the hyperspecialized locations. Activity in specialized regions was associated with structural integrity of the amygdala and with social deficits in bvFTD. In conclusion, the results are in line with the paleo-neurology hypothesis positing that neurodegeneration primarily hits cortical areas showing increased specialization, but also with the compatible alternative explanation that anterior STS regions degenerate earlier, based on stronger connections to and trans-neuronal spreading from regions affected early in bvFTD.
Collapse
Affiliation(s)
- Mathieu Vandenbulcke
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Laura Van de Vliet
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Jiaze Sun
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Yun-An Huang
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Maarten J A Van Den Bossche
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Ron Peeters
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands.,Department of Computer Science, University College London, London WC1E 6BT, UK
| | - François-Laurent De Winter
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Jan Van den Stock
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
16
|
Gündem D, Potočnik J, De Winter FL, El Kaddouri A, Stam D, Peeters R, Emsell L, Sunaert S, Van Oudenhove L, Vandenbulcke M, Feldman Barrett L, Van den Stock J. The neurobiological basis of affect is consistent with psychological construction theory and shares a common neural basis across emotional categories. Commun Biol 2022; 5:1354. [PMID: 36494449 PMCID: PMC9734184 DOI: 10.1038/s42003-022-04324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Affective experience colours everyday perception and cognition, yet its fundamental and neurobiological basis is poorly understood. The current debate essentially centers around the communalities and specificities across individuals, events, and emotional categories like anger, sadness, and happiness. Using fMRI during the experience of these emotions, we critically compare the two dominant conflicting theories on human affect. Basic emotion theory posits emotions as discrete universal entities generated by dedicated emotion category-specific neural circuits, while psychological construction theory claims emotional events as unique, idiosyncratic, and constructed by psychological primitives like core affect and conceptualization, which underlie each emotional event and operate in a predictive framework. Based on the findings of 8 a priori-defined model-specific prediction tests on the neural response amplitudes and patterns, we conclude that the neurobiological basis of affect is primarily characterized by idiosyncratic mechanisms and a common neural basis shared across emotion categories, consistent with psychological construction theory. The findings provide further insight into the organizational principles of the neural basis of affect and brain function in general. Future studies in clinical populations with affective symptoms may reveal the corresponding underlying neural changes from a psychological construction perspective.
Collapse
Affiliation(s)
- Doğa Gündem
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jure Potočnik
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - François-Laurent De Winter
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Amal El Kaddouri
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Daphne Stam
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ronald Peeters
- grid.410569.f0000 0004 0626 3338Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Louise Emsell
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Radiology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- grid.410569.f0000 0004 0626 3338Department of Radiology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- grid.5596.f0000 0001 0668 7884Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.254880.30000 0001 2179 2404Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Mathieu Vandenbulcke
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Lisa Feldman Barrett
- grid.261112.70000 0001 2173 3359Department of Psychology, Northeastern University, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA
| | - Jan Van den Stock
- grid.5596.f0000 0001 0668 7884Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Pavlova MA, Romagnano V, Kubon J, Isernia S, Fallgatter AJ, Sokolov AN. Ties between reading faces, bodies, eyes, and autistic traits. Front Neurosci 2022; 16:997263. [PMID: 36248653 PMCID: PMC9554539 DOI: 10.3389/fnins.2022.997263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
While reading covered with masks faces during the COVID-19 pandemic, for efficient social interaction, we need to combine information from different sources such as the eyes (without faces hidden by masks) and bodies. This may be challenging for individuals with neuropsychiatric conditions, in particular, autism spectrum disorders. Here we examined whether reading of dynamic faces, bodies, and eyes are tied in a gender-specific way, and how these capabilities are related to autistic traits expression. Females and males accomplished a task with point-light faces along with a task with point-light body locomotion portraying different emotional expressions. They had to infer emotional content of displays. In addition, participants were administered the Reading the Mind in the Eyes Test, modified and Autism Spectrum Quotient questionnaire. The findings show that only in females, inferring emotions from dynamic bodies and faces are firmly linked, whereas in males, reading in the eyes is knotted with face reading. Strikingly, in neurotypical males only, accuracy of face, body, and eyes reading was negatively tied with autistic traits. The outcome points to gender-specific modes in social cognition: females rely upon merely dynamic cues while reading faces and bodies, whereas males most likely trust configural information. The findings are of value for examination of face and body language reading in neuropsychiatric conditions, in particular, autism, most of which are gender/sex-specific. This work suggests that if male individuals with autistic traits experience difficulties in reading covered with masks faces, these deficits may be unlikely compensated by reading (even dynamic) bodies and faces. By contrast, in females, reading covered faces as well as reading language of dynamic bodies and faces are not compulsorily connected to autistic traits preventing them from paying high costs for maladaptive social interaction.
Collapse
Affiliation(s)
- Marina A. Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- *Correspondence: Marina A. Pavlova,
| | - Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Julian Kubon
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Sara Isernia
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander N. Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Kubon J, Romagnano V, Sokolov AN, Fallgatter AJ, Braun C, Pavlova MA. Neural circuits underpinning face tuning in male depression. Cereb Cortex 2022; 33:3827-3839. [PMID: 35989312 DOI: 10.1093/cercor/bhac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Reading bodies and faces is essential for efficient social interactions, though it may be thought-provoking for individuals with depression. Yet aberrations in the face sensitivity and underwriting neural circuits are not well understood, in particular, in male depression. Here, we use cutting-edge analyses of time course and dynamic topography of gamma oscillatory neuromagnetic cortical activity during administration of a task with Arcimboldo-like images. No difference in face tuning was found between individuals with depression and their neurotypical peers. Furthermore, this behavioral outcome nicely dovetails with magnetoencephalographic data: at early processing stages, the gamma oscillatory response to images resembling a face was rather similar in patients and controls. These bursts originated primarily from the right medioventral occipital cortex and lateral occipital cortex. At later processing stages, however, its topography altered remarkably in depression with profound engagement of the frontal circuits. Yet the primary difference in depressive individuals as compared with their neurotypical peers occurred over the left middle temporal cortices, a part of the social brain, engaged in feature integration and meaning retrieval. The outcome suggests compensatory recruitment of neural resources in male depression.
Collapse
Affiliation(s)
- Julian Kubon
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Christoph Braun
- MEG Center, Medical School and University Hospital, Eberhard Karls University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Pavlova MA, Sokolov AA. Reading language of the eyes. Neurosci Biobehav Rev 2022; 140:104755. [PMID: 35760388 DOI: 10.1016/j.neubiorev.2022.104755] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
The need for assessment of social skills in clinical and neurotypical populations has led to the widespread, and still increasing use of the 'Reading the Mind in the Eyes Test' (RMET) developed more than two decades ago by Simon Baron-Cohen and colleagues for evaluation of social cognition in autism. By analyzing most recent clinical and brain imaging data, we illuminate a set of factors decisive for using the RMET. Converging evidence indicates: (i) In neurotypical individuals, RMET scores are tightly correlated with other social skills (empathy, emotional intelligence, and body language reading); (ii) The RMET assesses recognition of facial affect, but also heavily relies on receptive language skills, semantic knowledge, and memory; (iii) RMET performance is underwritten by the large-scale ensembles of neural networks well-outside the social brain; (iv) The RMET is limited in its capacity to differentiate between neuropsychiatric conditions as well as between stages and severity of a single disorder, though it reliably distinguishes individuals with altered social cognition or elevated pathological traits from neurotypical persons; (v) Merely gender (as a social construct) rather than neurobiological sex influences performance on the RMET; (vi) RMET scores do not substantially decline in healthy aging, and they are higher with higher education level, cognitive abilities, literacy, and mental well-being; (vii) Accuracy on the RMET, and engagement of the social brain, are greater when emotions are expressed and recognized by individuals with similar cultural/ethnic background. Further research is required to better inform usage of the RMET as a tool for swift and reliable examination of social cognition. In light of comparable visual input from the RMET images and faces covered by masks due to COVID-19 regulations, the analysis is of value for keeping efficient social interaction during the current pandemic, in particular, in professional settings related to social communication.
Collapse
Affiliation(s)
- Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Menthal Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Arseny A Sokolov
- Service de neuropsychologie et de neuroréhabilitation, Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
20
|
Rijpma MG, Yang WF, Toller G, Battistella G, Sokolov AA, Sturm VE, Seeley WW, Kramer JH, Miller BL, Rankin KP. Influence of periaqueductal gray on other salience network nodes predicts social sensitivity. Hum Brain Mapp 2022; 43:1694-1709. [PMID: 34981605 PMCID: PMC8886662 DOI: 10.1002/hbm.25751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/09/2022] Open
Abstract
The intrinsic connectivity of the salience network (SN) plays an important role in social behavior, however the directional influence that individual nodes have on each other has not yet been fully determined. In this study, we used spectral dynamic causal modeling to characterize the effective connectivity patterns in the SN for 44 healthy older adults and for 44 patients with behavioral variant frontotemporal dementia (bvFTD) who have focal SN dysfunction. We examined the relationship of SN effective connections with individuals' socioemotional sensitivity, using the revised self-monitoring scale, an informant-facing questionnaire that assesses sensitivity to expressive behavior. Overall, average SN effective connectivity for bvFTD patients differs from healthy older adults in cortical, hypothalamic, and thalamic nodes. For the majority of healthy individuals, strong periaqueductal gray (PAG) output to right cortical (p < .01) and thalamic nodes (p < .05), but not PAG output to other central pattern generators contributed to sensitivity to socioemotional cues. This effect did not exist for the majority of bvFTD patients; PAG output toward other SN nodes was weak, and this lack of output negatively influenced socioemotional sensitivity. Instead, input to the left vAI from other SN nodes supported patients' sensitivity to others' socioemotional behavior (p < .05), though less effectively. The key role of PAG output to cortical and thalamic nodes for socioemotional sensitivity suggests that its core functions, that is, generating autonomic changes in the body, and moreover representing the internal state of the body, is necessary for optimal social responsiveness, and its breakdown is central to bvFTD patients' social behavior deficits.
Collapse
Affiliation(s)
- Myrthe G. Rijpma
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Winson F.Z. Yang
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Psychological Sciences, College of Arts & SciencesTexas Tech UniversityLubbockTexasUSA
| | - Gianina Toller
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Giovanni Battistella
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Arseny A. Sokolov
- Département des Neurosciences Cliniques, Neuroscape@NeuroTech Platform, Service de Neuropsychologie et de NeuroréhabilitationCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
- Wellcome Centre for Human Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurology, Neuroscape CenterUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Virginia E. Sturm
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Katherine P. Rankin
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
21
|
Pavlova MA, Sokolov AA. Reading Covered Faces. Cereb Cortex 2021; 32:249-265. [PMID: 34521105 DOI: 10.1093/cercor/bhab311] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Covering faces with masks, due to mandatory pandemic safety regulations, we can no longer rely on the habitual daily-life information. This may be thought-provoking for healthy people, but particularly challenging for individuals with neuropsychiatric and neurodevelopmental conditions. Au fait research on reading covered faces reveals that: 1) wearing masks hampers facial affect recognition, though it leaves reliable inferring basic emotional expressions; 2) by buffering facial affect, masks lead to narrowing of emotional spectrum and dampen veridical evaluation of counterparts; 3) masks may affect perceived face attractiveness; 4) covered (either by masks or other veils) faces have a certain signal function introducing perceptual biases and prejudices; 5) reading covered faces is gender- and age-specific, being more challenging for males and more variable even in healthy aging; 6) the hampering effects of masks on social cognition occur over the globe; and 7) reading covered faces is likely to be supported by the large-scale assemblies of the neural circuits far beyond the social brain. Challenges and limitations of ongoing research and parallels to the Reading the Mind in the Eyes Test are assessed. Clarification of how masks affect face reading in the real world, where we deal with dynamic faces and have entrée to additional valuable social signals such as body language, as well as the specificity of neural networks underlying reading covered faces calls for further tailored research.
Collapse
Affiliation(s)
- Marina A Pavlova
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, and Tübingen Center for Mental Health (TüCMH), Tübingen 72076, Germany
| | - Arseny A Sokolov
- Service de neuropsychologie et de neuroréhabilitation, Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1011, Switzerland
| |
Collapse
|
22
|
Kroczek LOH, Lingnau A, Schwind V, Wolff C, Mühlberger A. Angry facial expressions bias towards aversive actions. PLoS One 2021; 16:e0256912. [PMID: 34469494 PMCID: PMC8409676 DOI: 10.1371/journal.pone.0256912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
Social interaction requires fast and efficient processing of another person's intentions. In face-to-face interactions, aversive or appetitive actions typically co-occur with emotional expressions, allowing an observer to anticipate action intentions. In the present study, we investigated the influence of facial emotions on the processing of action intentions. Thirty-two participants were presented with video clips showing virtual agents displaying a facial emotion (angry vs. happy) while performing an action (punch vs. fist-bump) directed towards the observer. During each trial, video clips stopped at varying durations of the unfolding action, and participants had to recognize the presented action. Naturally, participants' recognition accuracy improved with increasing duration of the unfolding actions. Interestingly, while facial emotions did not influence accuracy, there was a significant influence on participants' action judgements. Participants were more likely to judge a presented action as a punch when agents showed an angry compared to a happy facial emotion. This effect was more pronounced in short video clips, showing only the beginning of an unfolding action, than in long video clips, showing near-complete actions. These results suggest that facial emotions influence anticipatory processing of action intentions allowing for fast and adaptive responses in social interactions.
Collapse
Affiliation(s)
- Leon O. H. Kroczek
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany
- * E-mail:
| | - Angelika Lingnau
- Department of Psychology, Cognitive Neuroscience, University of Regensburg, Regensburg, Germany
| | - Valentin Schwind
- Human Computer Interaction, University of Applied Sciences in Frankfurt a. M, Frankfurt a. M., Germany
- Department of Media Informatics, University of Regensburg, Regensburg, Germany
| | - Christian Wolff
- Department of Media Informatics, University of Regensburg, Regensburg, Germany
| | - Andreas Mühlberger
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
de Gelder B, Poyo Solanas M. A computational neuroethology perspective on body and expression perception. Trends Cogn Sci 2021; 25:744-756. [PMID: 34147363 DOI: 10.1016/j.tics.2021.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023]
Abstract
Survival prompts organisms to prepare adaptive behavior in response to environmental and social threat. However, what are the specific features of the appearance of a conspecific that trigger such adaptive behaviors? For social species, the prime candidates for triggering defense systems are the visual features of the face and the body. We propose a novel approach for studying the ability of the brain to gather survival-relevant information from seeing conspecific body features. Specifically, we propose that behaviorally relevant information from bodies and body expressions is coded at the levels of midlevel features in the brain. These levels are relatively independent from higher-order cognitive and conscious perception of bodies and emotions. Instead, our approach is embedded in an ethological framework and mobilizes computational models for feature discovery.
Collapse
Affiliation(s)
- Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Limburg 6200, MD, The Netherlands; Department of Computer Science, University College London, London WC1E 6BT, UK.
| | - Marta Poyo Solanas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Limburg 6200, MD, The Netherlands
| |
Collapse
|
24
|
Yagi S, Nakata Y, Nakamura Y, Ishiguro H. Can an android's posture and movement discriminate against the ambiguous emotion perceived from its facial expressions? PLoS One 2021; 16:e0254905. [PMID: 34375327 PMCID: PMC8354482 DOI: 10.1371/journal.pone.0254905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
Expressing emotions through various modalities is a crucial function not only for humans but also for robots. The mapping method from facial expressions to the basic emotions is widely used in research on robot emotional expressions. This method claims that there are specific facial muscle activation patterns for each emotional expression and people can perceive these emotions by reading these patterns. However, recent research on human behavior reveals that some emotional expressions, such as the emotion "intense", are difficult to judge as positive or negative by just looking at the facial expression alone. Nevertheless, it has not been investigated whether robots can also express ambiguous facial expressions with no clear valence and whether the addition of body expressions can make the facial valence clearer to humans. This paper shows that an ambiguous facial expression of an android can be perceived more clearly by viewers when body postures and movements are added. We conducted three experiments and online surveys among North American residents with 94, 114 and 114 participants, respectively. In Experiment 1, by calculating the entropy, we found that the facial expression "intense" was difficult to judge as positive or negative when they were only shown the facial expression. In Experiments 2 and 3, by analyzing ANOVA, we confirmed that participants were better at judging the facial valence when they were shown the whole body of the android, even though the facial expression was the same as in Experiment 1. These results suggest that facial and body expressions by robots should be designed jointly to achieve better communication with humans. In order to achieve smoother cooperative human-robot interaction, such as education by robots, emotion expressions conveyed through a combination of both the face and the body of the robot is necessary to convey the robot's intentions or desires to humans.
Collapse
Affiliation(s)
- Satoshi Yagi
- Department of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST ERATO, Chiyoda-ku, Tokyo, Japan
| | - Yoshihiro Nakata
- Department of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST ERATO, Chiyoda-ku, Tokyo, Japan
| | - Yutaka Nakamura
- Department of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST ERATO, Chiyoda-ku, Tokyo, Japan
| | - Hiroshi Ishiguro
- Department of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST ERATO, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
25
|
Abstract
Faces hold a substantial value for effective social interactions and sharing. Covering faces with masks, due to COVID-19 regulations, may lead to difficulties in using social signals, in particular, in individuals with neurodevelopmental conditions. Daily-life social participation of individuals who were born preterm is of immense importance for their quality of life. Here we examined face tuning in individuals (aged 12.79 ± 1.89 years) who were born preterm and exhibited signs of periventricular leukomalacia (PVL), a dominant form of brain injury in preterm birth survivors. For assessing the face sensitivity in this population, we implemented a recently developed experimental tool, a set of Face-n-Food images bordering on the style of Giuseppe Arcimboldo. The key benefit of these images is that single components do not trigger face processing. Although a coarse face schema is thought to be hardwired in the brain, former preterms exhibit substantial shortages in the face tuning not only compared with typically developing controls but also with individuals with autistic spectrum disorders. The lack of correlations between the face sensitivity and other cognitive abilities indicates that these deficits are domain-specific. This underscores impact of preterm birth sequelae for social functioning at large. Comparison of the findings with data in individuals with other neurodevelopmental and neuropsychiatric conditions provides novel insights into the origins of deficient face processing.
Collapse
|
26
|
Pavlova MA, Romagnano V, Fallgatter AJ, Sokolov AN. Face pareidolia in the brain: Impact of gender and orientation. PLoS One 2021; 15:e0244516. [PMID: 33382767 PMCID: PMC7774913 DOI: 10.1371/journal.pone.0244516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
Research on face sensitivity is of particular relevance during the rapidly evolving Covid-19 pandemic leading to social isolation, but also calling for intact interaction and sharing. Humans possess high sensitivity even to a coarse face scheme, seeing faces in non-face images where real faces do not exist. The advantage of non-face images is that single components do not trigger face processing. Here by implementing a novel set of Face-n-Thing images, we examined (i) how face tuning alters with changing display orientation, and (ii) whether it is affected by observers’ gender. Young females and males were presented with a set of Face-n-Thing images either with canonical upright orientation or inverted 180° in the image plane. Face impression was substantially impeded by display inversion. Furthermore, whereas with upright display orientation, no gender differences were found, with inversion, Face-n-Thing images elicited face impression in females significantly more often. The outcome sheds light on the origins of the face inversion effect in general. Moreover, the findings open a way for examination of face sensitivity and underwriting brain networks in neuropsychiatric conditions related to the current pandemic (such as depression and anxiety), most of which are gender/sex-specific.
Collapse
Affiliation(s)
- Marina A. Pavlova
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- LEAD Graduate School & Research Network, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Disorders (DZNE), Medical School and University Hospital, Tübingen, Germany
| | - Alexander N. Sokolov
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|