1
|
Del Cid CC, Hauffe T, Carrillo JD, May MR, Warnock RCM, Silvestro D. Challenges in estimating species' age from phylogenetic trees. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2024; 33:e13890. [PMID: 39830735 PMCID: PMC11741515 DOI: 10.1111/geb.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/23/2024] [Indexed: 01/22/2025]
Abstract
Aim Species age, the elapsed time since origination, can give insight into how species longevity might influence eco-evolutionary dynamics, which has been hypothesized to influence extinction risk. Traditionally, species' ages have been estimated from fossil records. However, numerous studies have recently used the branch lengths of time-calibrated phylogenies as estimates of the ages of extant species. This approach poses problems because phylogenetic trees only contain direct information about species identity at the tips and not along the branches. Here, we show that incomplete taxon sampling, extinction, and different assumptions about speciation modes can significantly alter the relationship between true species age and phylogenetic branch lengths, leading to high error rates. We found that these biases can lead to erroneous interpretations of eco-evolutionary patterns derived from comparing phylogenetic age and other traits, such as extinction risk. Innovation For bifurcating speciation, the default assumption in most analyses of species age, we propose a probabilistic approach based on the properties of a birth-death process to improve the estimation of species ages. Our approach can reduce the error by one order of magnitude under cases of high extinction and a high percentage of unsampled extant species. Main conclusion Our results call for caution in interpreting the relationship between phylogenetic ages and eco-evolutionary traits, as this can lead to biased and erroneous conclusions. We show that, under the assumption of bifurcating speciation, we can obtain unbiased approximations of species age by combining information from branch lengths with the expectations of a birth-death process.
Collapse
Affiliation(s)
- Carlos Calderón Del Cid
- Laboratório de Ecologia Espacial, Instituto de Biologia, Universidade Federal da Bahia, CEP 40170-110, Salvador, Bahia, Brazil
- Department of Biology, University of Fribourg, Switzerland and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Torsten Hauffe
- Department of Biology, University of Fribourg, Switzerland and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Juan D Carrillo
- Department of Biology, University of Fribourg, Switzerland and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Michael R May
- Department of Evolution and Ecology, University of California Davis, Davis, CA USA, 94709
| | - Rachel C M Warnock
- GeoZentrum Nordbayern, Friedrich-Alexander Universität Erlangen-Nürnberg, Loewenichstrasse 28, 91054, Erlangen, Germany
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Switzerland and Swiss Institute of Bioinformatics, Fribourg, Switzerland
- Department of Biological and Environmental Sciences and Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden
| |
Collapse
|
2
|
Cooper RB, Flannery-Sutherland JT, Silvestro D. DeepDive: estimating global biodiversity patterns through time using deep learning. Nat Commun 2024; 15:4199. [PMID: 38760390 PMCID: PMC11101433 DOI: 10.1038/s41467-024-48434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Understanding how biodiversity has changed through time is a central goal of evolutionary biology. However, estimates of past biodiversity are challenged by the inherent incompleteness of the fossil record, even when state-of-the-art statistical methods are applied to adjust estimates while correcting for sampling biases. Here we develop an approach based on stochastic simulations of biodiversity and a deep learning model to infer richness at global or regional scales through time while incorporating spatial, temporal and taxonomic sampling variation. Our method outperforms alternative approaches across simulated datasets, especially at large spatial scales, providing robust palaeodiversity estimates under a wide range of preservation scenarios. We apply our method on two empirical datasets of different taxonomic and temporal scope: the Permian-Triassic record of marine animals and the Cenozoic evolution of proboscideans. Our estimates provide a revised quantitative assessment of two mass extinctions in the marine record and reveal rapid diversification of proboscideans following their expansion out of Africa and a >70% diversity drop in the Pleistocene.
Collapse
Affiliation(s)
- Rebecca B Cooper
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
- Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland.
| | | | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
- Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland.
- Department of Biological and Environmental Sciences, Global Gothenburg Biodiversity Centre, University of Gothenburg, Gothenburg, 413 19, Sweden.
| |
Collapse
|
3
|
Ulloa GM, Greenwood AD, Cornejo OE, Monteiro FOB, Scofield A, Santolalla Robles ML, Lescano AG, Mayor P. Phylogenetic congruence of Plasmodium spp. and wild ungulate hosts in the Peruvian Amazon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105554. [PMID: 38246398 PMCID: PMC11331447 DOI: 10.1016/j.meegid.2024.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Malaria parasites are known to infect a variety of vertebrate hosts, including ungulates. However, ungulates of Amazonia have not been investigated. We report for the first time, the presence of parasite lineages closely related to Plasmodium odocoilei clade 1 and clade 2 in free-ranging South American red-brocket deer (Mazama americana; 44.4%, 4/9) and gray-brocket deer (Mazama nemorivaga; 50.0%, 1/2). We performed PCR-based analysis of blood samples from 47 ungulates of five different species collected during subsistence hunting by an indigenous community in the Peruvian Amazon. We detected Plasmodium malariae/brasilianum lineage in a sample from red-brocket deer. However, no parasite DNA was detected in collared peccary (Pecari tajacu; 0.0%, 0/10), white-lipped peccary (Tayassu pecari; 0.0%, 0/15), and tapir (Tapirus terrestris; 0.0%, 0/11). Concordant phylogenetic analyses suggested a possible co-evolutionary relationship between the Plasmodium lineages found in American deer and their hosts.
Collapse
Affiliation(s)
- Gabriela M Ulloa
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Bellaterra-Barcelona E-08193, Spain; Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil; Grupo de Enfermedades Infecciosas Re-Emergentes, Universidad Científica del Sur (UCSUR), Lima, Peru.
| | - Alex D Greenwood
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany; School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Germany
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Frederico Ozanan Barros Monteiro
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Alessandra Scofield
- Laboratory of Animal Parasitology, Postgraduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Brazil
| | - Meddly L Santolalla Robles
- Emerge, Research Unit on Emerging Diseases and Climate Change, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andres G Lescano
- Emerge, Research Unit on Emerging Diseases and Climate Change, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pedro Mayor
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Bellaterra-Barcelona E-08193, Spain; Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil; Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (COMFAUNA), 332 Malecon Tarapaca, Iquitos, Peru; Museo de Culturas Indígenas Amazónicas, Loreto, Iquitos, Peru.
| |
Collapse
|
4
|
Caetano DS, Quental TB. How Important Is Budding Speciation for Comparative Studies? Syst Biol 2023; 72:1443-1453. [PMID: 37586404 DOI: 10.1093/sysbio/syad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
The acknowledgment of evolutionary dependence among species has fundamentally changed how we ask biological questions. Phylogenetic models became the standard approach for studies with 3 or more lineages, in particular those using extant species. Most phylogenetic comparative methods (PCMs) translate relatedness into covariance, meaning that evolutionary changes before lineages split should be interpreted together whereas after the split lineages are expected to change independently. This clever realization has shaped decades of research. Here, we discuss one element of the comparative method often ignored or assumed as unimportant: if nodes of a phylogeny represent the dissolution of the ancestral lineage into two new ones or if the ancestral lineage can survive speciation events (i.e., budding). Budding speciation is often reported in paleontological studies, due to the nature of the evidence for budding in the fossil record, but it is surprisingly absent in comparative methods. Here, we show that many PCMs assume that divergence happens as a symmetric split, even if these methods do not explicitly mention this assumption. We discuss the properties of trait evolution models for continuous and discrete traits and their adequacy under a scenario of budding speciation. We discuss the effects of budding speciation under a series of plausible evolutionary scenarios and show when and how these can influence our estimates. We also propose that long-lived lineages that have survived through a series of budding speciation events and given birth to multiple new lineages can produce evolutionary patterns that challenge our intuition about the most parsimonious history of trait changes in a clade. We hope our discussion can help bridge comparative approaches in paleontology and neontology as well as foster awareness about the assumptions we make when we use phylogenetic trees.
Collapse
Affiliation(s)
- Daniel S Caetano
- Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA
- Department of Ecology, University of São Paulo, Rua do Matão, 321 - Trav. 14, São Paulo, SP, 05508-090, Brazil
| | - Tiago B Quental
- Department of Ecology, University of São Paulo, Rua do Matão, 321 - Trav. 14, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
5
|
Scheinsohn V, Muñoz AS, Mondini M. Climate change and long-term human behaviour in the Neotropics: an archaeological view from the Global South. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220403. [PMID: 37718601 PMCID: PMC10505852 DOI: 10.1098/rstb.2022.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 09/19/2023] Open
Abstract
In this paper, we argue for the inclusion of archaeology in discussions about how humans have contributed to and dealt with climate change, especially in the long term. We suggest Niche Construction Theory as a suitable framework to that end. In order to take into account both human and environmental variability, we also advocate for a situated perspective that includes the Global South as a source of knowledge production, and the Neotropics as a relevant case study to consider. To illustrate this, we review the mid-Holocene Hypsithermal period in the southern Puna and continental Patagonia, both in southern South America, by assessing the challenges posed by this climate period and the archaeological signatures of the time from a Niche Construction Theory perspective. Finally, we emphasize the importance of these considerations for policymaking. This article is part of the theme issue 'Climate change adaptation needs a science of culture'.
Collapse
Affiliation(s)
- Vivian Scheinsohn
- Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1246BJN Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencias Antropológicas, Facultad de Filosofía y Letras, Universidad de Buenos Aires, C1406CQJ Ciudad Autónoma de Buenos Aires, Argentina
| | - A. Sebastián Muñoz
- Laboratorio de Zooarqueología y Tafonomía de Zonas Áridas (LaZTA), Instituto de Antropología de Córdoba (IDACOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, X5000JHO Córdoba, Argentina
- Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Mariana Mondini
- Departamento de Ciencias Antropológicas, Facultad de Filosofía y Letras, Universidad de Buenos Aires, C1406CQJ Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Zooarqueología y Tafonomía de Zonas Áridas (LaZTA), Instituto de Antropología de Córdoba (IDACOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, X5000JHO Córdoba, Argentina
| |
Collapse
|
6
|
Skeels A, Boschman LM, McFadden IR, Joyce EM, Hagen O, Jiménez Robles O, Bach W, Boussange V, Keggin T, Jetz W, Pellissier L. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace's Line. Science 2023; 381:86-92. [PMID: 37410831 DOI: 10.1126/science.adf7122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Faunal turnover in Indo-Australia across Wallace's Line is one of the most recognizable patterns in biogeography and has catalyzed debate about the role of evolutionary and geoclimatic history in biotic interchanges. Here, analysis of more than 20,000 vertebrate species with a model of geoclimate and biological diversification shows that broad precipitation tolerance and dispersal ability were key for exchange across the deep-time precipitation gradient spanning the region. Sundanian (Southeast Asian) lineages evolved in a climate similar to the humid "stepping stones" of Wallacea, facilitating colonization of the Sahulian (Australian) continental shelf. By contrast, Sahulian lineages predominantly evolved in drier conditions, hampering establishment in Sunda and shaping faunal distinctiveness. We demonstrate how the history of adaptation to past environmental conditions shapes asymmetrical colonization and global biogeographic structure.
Collapse
Affiliation(s)
- A Skeels
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Research School of Biology, Australian National University, Canberra 0200, Australia
| | - L M Boschman
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Netherlands
| | - I R McFadden
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, Netherlands
| | - E M Joyce
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, 80331 Munich, Germany
| | - O Hagen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - O Jiménez Robles
- Research School of Biology, Australian National University, Canberra 0200, Australia
- Institute of Biology, École Normale Supérieure, 75005 Paris, France
| | - W Bach
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - V Boussange
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - T Keggin
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - W Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT 06520, USA
| | - L Pellissier
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
7
|
Zhou P, Li JH, Liu YZ, Zhu ZW, Luo Y, Xiang XG. Species richness disparity in tropical terrestrial herbaceous floras: evolutionary insight from Collabieae (Orchidaceae). Mol Phylogenet Evol 2023:107860. [PMID: 37329932 DOI: 10.1016/j.ympev.2023.107860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Species richness is spatially heterogeneous even in the hyperdiverse tropical floras. The main cause of uneven species richness among the four tropical regions are hot debated. To date, higher net diversification rates and/or longer colonization time have been usually proposed to contribute to this pattern. However, there are few studies to clarify the species richness patterns in tropical terrestrial floras. The terrestrial tribe Collabieae (Orchidaceae) unevenly distributes in the tropical regions with a diverse and endemic center in Asia. Twenty-one genera 127 species of Collabieae and 26 DNA regions were used to reconstruct the phylogeny and infer the biogeographical processes. We compared the topologies, diversification rates and niche rates of Collabieae and regional lineages on empirical samplings and different simulated samplings fractions respectively. Our results suggested that the Collabieae originated in Asia at the earliest Oligocene, and then independently spread to Africa, Central America, and Oceania since the Miocene via long-distance dispersal. These results based on empirical data and simulated data were similar. BAMM, GeoSSE and niche analyses inferred that the Asian lineages had higher net diversification and niche rates than those of Oceanian and African lineages on the empirical and simulated analyses. Precipitation is the most important factor for Collabieae, and the Asian lineage has experienced more stable and humid climate, which may promote the higher net diversification rate. Besides, the longer colonization time may also be associated with the Asian lineages' diversity. These findings provided a better understanding of the regional diversity heterogeneity in tropical terrestrial herbaceous floras.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Hong Li
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong, China
| | - Yi-Zhen Liu
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zi-Wei Zhu
- Jiangxi Academy of Forest, Nanchang, Jiangxi, China
| | - Yan Luo
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Kawahara AY, Storer C, Carvalho APS, Plotkin DM, Condamine FL, Braga MP, Ellis EA, St Laurent RA, Li X, Barve V, Cai L, Earl C, Frandsen PB, Owens HL, Valencia-Montoya WA, Aduse-Poku K, Toussaint EFA, Dexter KM, Doleck T, Markee A, Messcher R, Nguyen YL, Badon JAT, Benítez HA, Braby MF, Buenavente PAC, Chan WP, Collins SC, Rabideau Childers RA, Dankowicz E, Eastwood R, Fric ZF, Gott RJ, Hall JPW, Hallwachs W, Hardy NB, Sipe RLH, Heath A, Hinolan JD, Homziak NT, Hsu YF, Inayoshi Y, Itliong MGA, Janzen DH, Kitching IJ, Kunte K, Lamas G, Landis MJ, Larsen EA, Larsen TB, Leong JV, Lukhtanov V, Maier CA, Martinez JI, Martins DJ, Maruyama K, Maunsell SC, Mega NO, Monastyrskii A, Morais ABB, Müller CJ, Naive MAK, Nielsen G, Padrón PS, Peggie D, Romanowski HP, Sáfián S, Saito M, Schröder S, Shirey V, Soltis D, Soltis P, Sourakov A, Talavera G, Vila R, Vlasanek P, Wang H, Warren AD, Willmott KR, Yago M, Jetz W, Jarzyna MA, Breinholt JW, Espeland M, Ries L, Guralnick RP, Pierce NE, Lohman DJ. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat Ecol Evol 2023; 7:903-913. [PMID: 37188966 PMCID: PMC10250192 DOI: 10.1038/s41559-023-02041-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
Collapse
Affiliation(s)
- Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Caroline Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ana Paula S Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David M Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), Montpellier, France
| | - Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Xuankun Li
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Biodiversity Research, Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Vijay Barve
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Liming Cai
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Chandra Earl
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Hannah L Owens
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Kwaku Aduse-Poku
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, Decatur, GA, USA
| | - Emmanuel F A Toussaint
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, Natural History Museum of Geneva, Geneva, Switzerland
| | - Kelly M Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Tenzing Doleck
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Amanda Markee
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Rebeccah Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Y-Lan Nguyen
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Jade Aster T Badon
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Hugo A Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
- Australian National Insect Collection, Canberra, Australian Capital Territory, Australia
| | | | - Wei-Ping Chan
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | | | - Richard A Rabideau Childers
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Even Dankowicz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rod Eastwood
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Zdenek F Fric
- Biology Centre CAS, České Budějovice, Czech Republic
| | - Riley J Gott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jason P W Hall
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nate B Hardy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Rachel L Hawkins Sipe
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alan Heath
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Iziko South African Museum, Cape Town, South Africa
| | - Jomar D Hinolan
- Botany and National Herbarium Division, National Museum of the Philippines, Manila, Philippines
| | - Nicholas T Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Yu-Feng Hsu
- College of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Micael G A Itliong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Elise A Larsen
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Jing V Leong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Biology Centre CAS, České Budějovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic
| | - Vladimir Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | - Crystal A Maier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jose I Martinez
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Dino J Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Sarah C Maunsell
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Nicolás Oliveira Mega
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexander Monastyrskii
- Vietnam Programme, Fauna & Flora International, Hanoi, Vietnam
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ana B B Morais
- Centro de Ciências Naturais e Exatas, Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Mark Arcebal K Naive
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Arts and Sciences, Jose Rizal Memorial State University, Tampilisan, Philippines
| | | | - Pablo Sebastián Padrón
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology Laboratory, Museo de Zoología, Universidad del Azuay, Cuenca, Ecuador
| | - Djunijanti Peggie
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong-Bogor, Indonesia
| | | | - Szabolcs Sáfián
- Institute of Silviculture and Forest Protection, University of West Hungary, Sopron, Hungary
| | - Motoki Saito
- The Research Institute of Evolutionary Biology (Insect Study Division), Setagaya, Japan
| | | | - Vaughn Shirey
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Doug Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Andrei Sourakov
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gerard Talavera
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Petr Vlasanek
- T.G. Masaryk Water Research Institute, Prague, Czech Republic
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Andrew D Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Masaya Yago
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Marta A Jarzyna
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Leslie Ries
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, USA.
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA.
- Entomology Section, National Museum of Natural History, Manila, Philippines.
| |
Collapse
|
9
|
Zhang LG, Li XQ, Jin WT, Liu YJ, Zhao Y, Rong J, Xiang XG. Asymmetric migration dynamics of the tropical Asian and Australasian floras. PLANT DIVERSITY 2023; 45:20-26. [PMID: 36876310 PMCID: PMC9975475 DOI: 10.1016/j.pld.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 05/29/2023]
Abstract
The tropical Asian and Australasian floras have a close relationship, and is a vital distribution pattern of seed plants worldwide. As estimated, more than 81 families and 225 genera of seed plants distributed between tropical Asia and Australasia. However, the evolutionary dynamics of two floras were still vague. Here, a total of 29 plant lineages, represented the main clades of seed plants and different habits, were selected to investigate the biotic interchange between tropical Asia and Australasia by integrated dated phylogenies, biogeography, and ancestral state reconstructions. Our statistics indicated that 68 migrations have occurred between tropical Asia and Australasia since the middle Eocene except terminal migrations, and the migration events from tropical Asia to Australasia is more than 2 times of the reverse. Only 12 migrations occurred before 15 Ma, whereas the remaining 56 migrations occurred after 15 Ma. Maximal number of potential dispersal events (MDE) analysis also shows obvious asymmetry, with southward migration as the main feature, and indicates the climax of bi-directional migrations occurred after 15 Ma. We speculate that the formation of island chains after the Australian-Sundaland collision and climate changes have driven seed plant migrations since the middle Miocene. Furthermore, biotic dispersal and stable habitat may be crucial for floristic interchange between tropical Asia and Australasia.
Collapse
Affiliation(s)
- Li-Guo Zhang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiao-Qian Li
- State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei-Tao Jin
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yu-Juan Liu
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
10
|
Pimiento C, Antonelli A. Integrating deep-time palaeontology in conservation prioritisation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.959364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Halting biodiversity loss under growing anthropogenic pressure is arguably the greatest environmental challenge we face. Given that not all species are equally threatened and that resources are always limited, establishing robust prioritisation schemes is critical for implementing effective conservation actions. To this end, the International Union for Conservation of Nature (IUCN) Red List of Threatened Species has become a widely used source of information on species’ extinction risk. Various metrics have been proposed that combine IUCN status with different aspects of biodiversity to identify conservation priorities. However, current strategies do not take full advantage of palaeontological data, with conservation palaeobiology often focussing on the near-time fossil record (the last 2 million years). Here, we make a case for the value of the deep-time (over 2 million years ago), as it can offer tangible parallels with today’s biodiversity crisis and inform on the intrinsic traits that make species prone to extinction. As such, palaeontological data holds great predictive power, which could be harnessed to flag species likely to be threatened but that are currently too poorly known to be identified as such. Finally, we identify key IUCN-based prioritisation metrics and outline opportunities for integrating palaeontological data to validate their implementation. Although the human signal of the current extinction crisis makes direct comparisons with the geological past challenging, the deep-time fossil record has more to offer to conservation than is currently recognised.
Collapse
|
11
|
Hauffe T, Pires MM, Quental TB, Wilke T, Silvestro D. A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Hauffe
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Tiago B. Quental
- Departamento de Ecologia, Universidade de São Paulo São Paulo Brazil
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Germany
| | - Daniele Silvestro
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
- Department of Biological and Environmental Sciences University of Gothenburg and Gothenburg Global Biodiversity Centre Gothenburg Sweden
| |
Collapse
|
12
|
Hoorn C, Lim JY. The African trees that conquered Asia. Science 2022; 375:380-381. [PMID: 35084963 DOI: 10.1126/science.abn6191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carina Hoorn
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Jun Ying Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
13
|
Bush AM, Payne JL. Biotic and Abiotic Controls on the Phanerozoic History of Marine Animal Biodiversity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-035131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past 541 million years, marine animals underwent three intervals of diversification (early Cambrian, Ordovician, Cretaceous–Cenozoic) separated by nondirectional fluctuation, suggesting diversity-dependent dynamics with the equilibrium diversity shifting through time. Changes in factors such as shallow-marine habitat area and climate appear to have modulated the nondirectional fluctuations. Directional increases in diversity are best explained by evolutionary innovations in marine animals and primary producers coupled with stepwise increases in the availability of food and oxygen. Increasing intensity of biotic interactions such as predation and disturbance may have led to positive feedbacks on diversification as ecosystems became more complex. Important areas for further research include improving the geographic coverage and temporal resolution of paleontological data sets, as well as deepening our understanding of Earth system evolution and the physiological and ecological traits that modulated organismal responses to environmental change.
Collapse
Affiliation(s)
- Andrew M. Bush
- Department of Geosciences and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
14
|
Costa HCM, Benchimol M, Peres CA. Wild ungulate responses to anthropogenic land use: a comparative Pantropical analysis. Mamm Rev 2021. [DOI: 10.1111/mam.12252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugo C. M. Costa
- Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Rodovia Jorge Amado km 16 Ilhéus BA45662‐900Brazil
| | - Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservação ‐ LEAC Universidade Estadual de Santa Cruz Rodovia Jorge Amado km 16, Base Ambiental Ilhéus BA45662‐900Brazil
| | - Carlos A. Peres
- School of Environmental Sciences University of East Anglia NorwichNR47TJUK
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba Cidade Universitária João Pessoa Paraíba58051‐900Brazil
| |
Collapse
|
15
|
Vozdova M, Kubickova S, Martínková N, Galindo DJ, Bernegossi AM, Cernohorska H, Kadlcikova D, Musilová P, Duarte JM, Rubes J. Satellite DNA in Neotropical Deer Species. Genes (Basel) 2021; 12:genes12010123. [PMID: 33478071 PMCID: PMC7835801 DOI: 10.3390/genes12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/04/2023] Open
Abstract
The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +4205-3333-1422
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Petra Musilová
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Jose Mauricio Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| |
Collapse
|
16
|
QnAs with Juan Carrillo. Proc Natl Acad Sci U S A 2020; 117:31561-31562. [DOI: 10.1073/pnas.2022915117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange. Proc Natl Acad Sci U S A 2020; 117:26281-26287. [PMID: 33020313 PMCID: PMC7585031 DOI: 10.1073/pnas.2009397117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The biological interchange between North and South America associated with the formation of the Isthmus of Panama is key to defining current gradients of species diversity. A major gap in our understanding of the interchange is its asymmetry, where mammals of North American origin attained higher diversity in South America than vice versa. The prevailing view is that this asymmetry resulted from higher origination of immigrant mammals in South America. In contrast, we find that asymmetry results from high extinction of native mammals in South America, which reduced the diversity of native mammals available to disperse northwards. These results shed light on the legacy of the biotic interchange to understand the current patterns of species diversity across the Americas. The interchange between the previously disconnected faunas of North and South America was a massive experiment in biological invasion. A major gap in our understanding of this invasion is why there was a drastic increase in the proportion of mammals of North American origin found in South America. Four nonmutually exclusive mechanisms may explain this asymmetry: 1) Higher dispersal rate of North American mammals toward the south, 2) higher origination of North American immigrants in South America, 3) higher extinction of mammals with South American origin, and 4) similar dispersal rate but a larger pool of native taxa in North versus South America. We test among these mechanisms by analyzing ∼20,000 fossil occurrences with Bayesian methods to infer dispersal and diversification rates and taxonomic selectivity of immigrants. We find no differences in the dispersal and origination rates of immigrants. In contrast, native South American mammals show higher extinction. We also find that two clades with North American origin (Carnivora and Artiodactyla) had significantly more immigrants in South America than other clades. Altogether, the asymmetry of the interchange was not due to higher origination of immigrants in South America as previously suggested, but resulted from higher extinction of native taxa in southern South America. These results from one of the greatest biological invasions highlight how biogeographic processes and biotic interactions can shape continental diversity.
Collapse
|