1
|
An Z, Yang Z, Zhou Y, Huo S, Zhang S, Wu D, Shu X, Wang Y. OsJRL negatively regulates rice cold tolerance via interfering phenylalanine metabolism and flavonoid biosynthesis. PLANT, CELL & ENVIRONMENT 2024; 47:4071-4085. [PMID: 38884189 DOI: 10.1111/pce.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
The identification of new genes involved in regulating cold tolerance in rice is urgent because low temperatures repress plant growth and reduce yields. Cold tolerance is controlled by multiple loci and involves a complex regulatory network. Here, we show that rice jacalin-related lectin (OsJRL) modulates cold tolerance in rice. The loss of OsJRL gene functions increased phenylalanine metabolism and flavonoid biosynthesis under cold stress. The OsJRL knock-out (KO) lines had higher phenylalanine ammonia-lyase (PAL) activity and greater flavonoid accumulation than the wild-type rice, Nipponbare (NIP), under cold stress. The leaves had lower levels of reactive oxygen species (ROS) and showed significantly enhanced cold tolerance compared to NIP. In contrast, the OsJRL overexpression (OE) lines had higher levels of ROS accumulation and showed lower cold tolerance than NIP. Additionally, the OsJRL KO lines accumulated more abscisic acid (ABA) and jasmonic acid (JA) under cold stress than NIP. The OsJRL OE lines showed increased sensitivity to ABA compared to NIP. We conclude that OsJRL negatively regulates the cold tolerance of rice via modulation of phenylalanine metabolism and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Zengxu An
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zihan Yang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Yi Zhou
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Shaojie Huo
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Siyan Zhang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Ning Y, Wang M, Cheng A, Yang Q, Tian B, Ou X, Sun D, He Y, Wu Z, Zhao X, Zhang S, Wu Y, Huang J, Yu Y, Zhang L, Jia R, Liu M, Zhu D, Chen S. N-glycosylation of the envelope glycoprotein I is essential for the proliferation and virulence of the duck plague virus. Vet Res 2024; 55:139. [PMID: 39462432 PMCID: PMC11514881 DOI: 10.1186/s13567-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/29/2024] Open
Abstract
Duck plague virus (DPV) causes the highly pathogenic duck plague, and the envelope glycoprotein I (gI), as one of the key virulence genes, has not yet had its critical virulence sites identified through screening. This study used reverse genetics technology to target the gI, specifically within the DPV genome. Four DPV mutants with gI N-glycosylation site mutations were designed and constructed, and these mutant strains were successfully rescued. Our results confirmed that three asparagine residues of gI (N69, N78, and N265) are N-glycosylation sites, and western blot analysis substantiated that glycosylation at each predicted N-glycosylation site was compromised. The deglycosylation of gI leads to the protein misfolding and subsequent retention in the endoplasmic reticulum (ER). The subsequent deglycosylated gI is carried into the Golgi apparatus (GM130) in the interaction of gE. Compared to the parental virus, the mutated virus shows a 66.3% reduction in intercellular transmission capability. In ducks, the deglycosylation of gI significantly reduces DPV replication in vivo, thereby weakening the virulence of DPV. This study represents the first successful creation of a weak DPV virus strain by specific mutation at the N-glycosylation site. The findings provide a foundational understanding of DPV pathogenesis and form the basis for developing live attenuated vaccines against the disease.
Collapse
Affiliation(s)
- Yaru Ning
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China.
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Yanling Yu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ling Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
| |
Collapse
|
3
|
Chen S, Wang Y, Cui T, Zheng Y, Zhang F, Ma Q, Zhang C, Liu X. Characterization of three non-canonical N-glycosylation motifs indicates N glyco-A reduces DNA N6-methyladenine and N glyco-D alters G/F actin ratio in Phytophthora sojae. Int J Biol Macromol 2024; 277:133943. [PMID: 39025174 DOI: 10.1016/j.ijbiomac.2024.133943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Asparagine (Asn, N)-linked glycosylation is an abundant post-translational modification in which Asn, typically in Nglyco-X-S/T; X ≠ P motifs, are modified with N-glycans. It has essential regulatory roles in multicellular organisms. In this study, we systematically investigate the function of three N-glycosylation motifs (Nglyco-A, Nglyco-D and Nglyco-S) previously identified in Phytophthora sojae, through site-directed mutagenesis and functional assays. In P. sojae expressing glycosylation-dead variants pre-PsDMAP1N70A (Nglyco-A motif) or PsADFN64A (Nglyco-D motif), zoospore release or cyst germination is impaired. In particular, the pre-PsDMAP1N70A mutant reduces DNA methylation levels, and the PsADFN64A mutant disrupts the actin forms, which could explain the decrease in pathogenicity after N-glycosylation is destroyed. Similarly, P. sojae expressing PsNRXN132A (Nglyco-S motif) shows increased sensitivity to H2O2 and heat. Through autophagy or 26S proteasome pathway inhibition assays, we found that unglycosylated pre-PsDMAP1N70A and PsADFN64A are degraded via the 26S proteasome pathway, while the autophagy pathway is responsible for PsNRXN132A clearance. These findings demonstrate that glycosylation of these motifs regulates the stability and function of glycoproteins necessary for P. sojae growth, reproduction and pathogenicity, which expands the scope of known N-glycosylation regulatory functions in oomycetes.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yuke Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tongshan Cui
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yuxin Zheng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Quanhe Ma
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Liu Y, Jackson E, Liu X, Huang X, van der Hoorn RAL, Zhang Y, Li X. Proteolysis in plant immunity. THE PLANT CELL 2024; 36:3099-3115. [PMID: 38723588 PMCID: PMC11371161 DOI: 10.1093/plcell/koae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 09/05/2024]
Abstract
Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defence activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors, intracellular nucleotide-binding domain leucine-rich repeat receptors, and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xingchuan Huang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | | | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, Cano LM, Manosalva PM. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol 2024; 15:1341803. [PMID: 39211322 PMCID: PMC11357935 DOI: 10.3389/fmicb.2024.1341803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Phytophthora cinnamomi is a hemibiotrophic oomycete causing Phytophthora root rot in over 5,000 plant species, threatening natural ecosystems, forestry, and agriculture. Genomic studies of P. cinnamomi are limited compared to other Phytophthora spp. despite the importance of this destructive and highly invasive pathogen. The genome of two genetically and phenotypically distinct P. cinnamomi isolates collected from avocado orchards in California were sequenced using PacBio and Illumina sequencing. Genome sizes were estimated by flow cytometry and assembled de novo to 140-141 Mb genomes with 21,111-21,402 gene models. Genome analyses revealed that both isolates exhibited complex heterozygous genomes fitting the two-speed genome model. The more virulent isolate encodes a larger secretome and more RXLR effectors when compared to the less virulent isolate. Transcriptome analysis after P. cinnamomi infection in Arabidopsis thaliana, Nicotiana benthamiana, and Persea americana de Mill (avocado) showed that this pathogen deploys common gene repertoires in all hosts and host-specific subsets, especially among effectors. Overall, our results suggested that clonal P. cinnamomi isolates employ similar strategies as other Phytophthora spp. to increase phenotypic diversity (e.g., polyploidization, gene duplications, and a bipartite genome architecture) to cope with environmental changes. Our study also provides insights into common and host-specific P. cinnamomi infection strategies and may serve as a method for narrowing and selecting key candidate effectors for functional studies to determine their contributions to plant resistance or susceptibility.
Collapse
Affiliation(s)
- Aidan C. Shands
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Guangyuan Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Rodger J. Belisle
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shirin Seifbarghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Natasha Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valéncia, Valencia, Spain
| | - Liliana M. Cano
- Department of Plant Pathology, Indian River Research and Education Center (IRREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Patricia M. Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Shu X, Yin D, Liang J, Xiang T, Zhang C, Li H, Zheng A, Li P, Wang A. Tilletia horrida glycoside hydrolase family 128 protein, designated ThGhd_7, modulates plant immunity by blocking reactive oxygen species production. PLANT, CELL & ENVIRONMENT 2024; 47:2459-2474. [PMID: 38501941 DOI: 10.1111/pce.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Tilletia horrida is an important soilborne fungal pathogen that causes rice kernel smut worldwide. We found a glycoside hydrolase family 128 protein, designated ThGhd_7, caused cell death in Nicotiana benthamiana leaves. The predicted signal peptide (SP) of ThGhd_7 targets it for secretion. However, loss of the SP did not affect its ability to induce cell death. The 23-201 amino acid sequence of ThGhd_7 was sufficient to trigger cell death in N. benthamiana. ThGhd_7 expression was induced and upregulated during T. horrida infection. ThGhd_7 localised to both the cytoplasm and nucleus of plant cells, and nuclear localisation was required to induce cell death. The ability of ThGhd_7 to trigger cell death in N. benthamiana depends on RAR1 (required for Mla12 resistance), SGT1 (suppressor of G2 allele of Skp1), and BAK1/SERK3 (somatic embryogenesis receptor-like kinase 3). Heterologous overexpression of ThGhd_7 in rice reduced reactive oxygen species (ROS) production and enhanced susceptibility to T. horrida. Further research revealed that ThGhd_7 interacted with and destabilised OsSGT1, which is required for ROS production and is a positive regulator of rice resistance to T. horrida. Taken together, these findings suggest that T. horrida employs ThGhd_7 to disrupt ROS production and thereby promote infection.
Collapse
Affiliation(s)
- Xinyue Shu
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Juan Liang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ting Xiang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Aijun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Lakmes A, Jhar A, Sadanandom A, Brennan AC, Kahriman A. Inheritance of Resistance to Chickpea Fusarium Wilt Disease ( Fusarium oxysporum f. sp. ciceris Race 2) in a Wide-Cross Cicer arietinum × Cicer reticulatum Mapping Family. Genes (Basel) 2024; 15:819. [PMID: 38927754 PMCID: PMC11202674 DOI: 10.3390/genes15060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chickpea (Cicer arietinum) is a major food legume providing high quality nutrition, especially in developing regions. Chickpea wilt (Fusarium oxysporum f. sp. ciceris) causes significant annual losses. Integrated disease management of Fusarium wilt is supported by resistant varieties. Relatively few resistance genes are known so there is value in exploring genetic resources in chickpea wild relatives. This study investigates the inheritance of Fusarium wilt resistance (race 2) in recombinant inbred lines (RILs) from a cross between a cultivated susceptible chickpea variety (Gokce) and a wild resistant Cicer reticulatum line (Kayat-077). RILs, parents, resistant and susceptible tester lines were twice grown in the greenhouse with inoculation and disease symptoms scored. DNA was extracted from dried leaves and individuals were single nucleotide polymorphism (SNP) genotyped. SNPs were placed on the reference chickpea genome and quantitative trait locus (QTL) mapping was performed. Significant QTL regions were examined using PulseDB to identify candidate genes. The results showed the segregation of Fusarium wilt resistance conforming to a single gene inheritance. One significant QTL was found at the start of chromosome 8, containing 138 genes, three of which were disease-resistance candidates for chickpea breeding.
Collapse
Affiliation(s)
- Abdulkarim Lakmes
- Department of Field Crops, Harran University, Sanliurfa 63100, Türkiye; (A.L.); (A.J.); (A.K.)
| | - Abdullah Jhar
- Department of Field Crops, Harran University, Sanliurfa 63100, Türkiye; (A.L.); (A.J.); (A.K.)
| | - Ari Sadanandom
- Biosciences Department, Durham University, Durham DH1 3LE, UK;
| | | | - Abdullah Kahriman
- Department of Field Crops, Harran University, Sanliurfa 63100, Türkiye; (A.L.); (A.J.); (A.K.)
| |
Collapse
|
8
|
Li W, Li P, Deng Y, Zhang Z, Situ J, Huang J, Li M, Xi P, Jiang Z, Kong G. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii. THE NEW PHYTOLOGIST 2024; 242:2682-2701. [PMID: 38622771 DOI: 10.1111/nph.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zijing Zhang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Roussin-Léveillée C, Mackey D, Ekanayake G, Gohmann R, Moffett P. Extracellular niche establishment by plant pathogens. Nat Rev Microbiol 2024; 22:360-372. [PMID: 38191847 DOI: 10.1038/s41579-023-00999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
The plant extracellular space, referred to as the apoplast, is inhabited by a variety of microorganisms. Reflecting the crucial nature of this compartment, both plants and microorganisms seek to control, exploit and respond to its composition. Upon sensing the apoplastic environment, pathogens activate virulence programmes, including the delivery of effectors with well-established roles in suppressing plant immunity. We posit that another key and foundational role of effectors is niche establishment - specifically, the manipulation of plant physiological processes to enrich the apoplast in water and nutritive metabolites. Facets of plant immunity counteract niche establishment by restricting water, nutrients and signals for virulence activation. The complex competition to control and, in the case of pathogens, exploit the apoplast provides remarkable insights into the nature of virulence, host susceptibility, host defence and, ultimately, the origin of phytopathogenesis. This novel framework focuses on the ecology of a microbial niche and highlights areas of future research on plant-microorganism interactions.
Collapse
Affiliation(s)
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA.
| | - Gayani Ekanayake
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Reid Gohmann
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
10
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
11
|
Haynes CA, Keppel TR, Mekonnen B, Osman SH, Zhou Y, Woolfitt AR, Baudys J, Barr JR, Wang D. Inclusion of deuterated glycopeptides provides increased sequence coverage in hydrogen/deuterium exchange mass spectrometry analysis of SARS-CoV-2 spike glycoprotein. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9690. [PMID: 38355883 PMCID: PMC10871554 DOI: 10.1002/rcm.9690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Hydrogen/deuterium exchange mass spectrometry (HDX-MS) can provide precise analysis of a protein's conformational dynamics across varied states, such as heat-denatured versus native protein structures, localizing regions that are specifically affected by such conditional changes. Maximizing protein sequence coverage provides high confidence that regions of interest were located by HDX-MS, but one challenge for complete sequence coverage is N-glycosylation sites. The deuteration of peptides post-translationally modified by asparagine-bound glycans (glycopeptides) has not always been identified in previous reports of HDX-MS analyses, causing significant sequence coverage gaps in heavily glycosylated proteins and uncertainty in structural dynamics in many regions throughout a glycoprotein. METHODS We detected deuterated glycopeptides with a Tribrid Orbitrap Eclipse mass spectrometer performing data-dependent acquisition. An MS scan was used to identify precursor ions; if high-energy collision-induced dissociation MS/MS of the precursor indicated oxonium ions diagnostic for complex glycans, then electron transfer low-energy collision-induced dissociation MS/MS scans of the precursor identified the modified asparagine residue and the glycan's mass. As in traditional HDX-MS, the identified glycopeptides were then analyzed at the MS level in samples labeled with D2 O. RESULTS We report HDX-MS analysis of the SARS-CoV-2 spike protein ectodomain in its trimeric prefusion form, which has 22 predicted N-glycosylation sites per monomer, with and without heat treatment. We identified glycopeptides and calculated their average isotopic mass shifts from deuteration. Inclusion of the deuterated glycopeptides increased sequence coverage of spike ectodomain from 76% to 84%, demonstrated that glycopeptides had been deuterated, and improved confidence in results localizing structural rearrangements. CONCLUSION Inclusion of deuterated glycopeptides improves the analysis of the conformational dynamics of glycoproteins such as viral surface antigens and cellular receptors.
Collapse
Affiliation(s)
- Christopher A Haynes
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Theodore R Keppel
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Betlehem Mekonnen
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah H Osman
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yu Zhou
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adrian R Woolfitt
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jakub Baudys
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dongxia Wang
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Situ J, Song Y, Feng D, Wan L, Li W, Ning Y, Huang W, Li M, Xi P, Deng Y, Jiang Z, Kong G. Oomycete pathogen pectin acetylesterase targets host lipid transfer protein to reduce salicylic acid signaling. PLANT PHYSIOLOGY 2024; 194:1779-1793. [PMID: 38039157 DOI: 10.1093/plphys/kiad638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.
Collapse
Affiliation(s)
- Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yu Song
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Dinan Feng
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lang Wan
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yue Ning
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Weixiong Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Liu X, Zhao H, Xie J, Fu Y, Li B, Yu X, Chen T, Lin Y, Jiang D, Cheng J. A Glycosyl Hydrolase 5 Family Protein Is Essential for Virulence of Necrotrophic Fungi and Can Suppress Plant Immunity. Int J Mol Sci 2024; 25:2693. [PMID: 38473940 DOI: 10.3390/ijms25052693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Phytopathogenic fungi normally secrete large amounts of CWDEs to enhance infection of plants. In this study, we identified and characterized a secreted glycosyl hydrolase 5 family member in Sclerotinia sclerotiorum (SsGH5, Sclerotinia sclerotiorum Glycosyl Hydrolase 5). SsGH5 was significantly upregulated during the early stages of infection. Knocking out SsGH5 did not affect the growth and acid production of S. sclerotiorum but resulted in decreased glucan utilization and significantly reduced virulence. In addition, Arabidopsis thaliana expressing SsGH5 became more susceptible to necrotrophic pathogens and basal immune responses were inhibited in these plants. Remarkably, the lost virulence of the ΔSsGH5 mutants was restored after inoculating onto SsGH5 transgenic Arabidopsis. In summary, these results highlight that S. sclerotiorum suppresses the immune responses of Arabidopsis through secreting SsGH5, and thus exerts full virulence for successful infection.
Collapse
Affiliation(s)
- Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Wang M, Wang Z, Ding Y, Kang S, Jiang S, Yang Z, Xie Z, Wang J, Wei S, Huang J, Li D, Jiang X, Tang H. Host-pathogen interaction between pitaya and Neoscytalidium dimidiatum reveals the mechanisms of immune response associated with defense regulators and metabolic pathways. BMC PLANT BIOLOGY 2024; 24:4. [PMID: 38163897 PMCID: PMC10759344 DOI: 10.1186/s12870-023-04685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Understanding how plants and pathogens regulate each other's gene expression during their interactions is key to revealing the mechanisms of disease resistance and controlling the development of pathogens. Despite extensive studies on the molecular and genetic basis of plant immunity against pathogens, the influence of pitaya immunity on N. dimidiatum metabolism to restrict pathogen growth is poorly understood, and how N. dimidiatum breaks through pitaya defenses. In this study, we used the RNA-seq method to assess the expression profiles of pitaya and N. dimidiatum at 4 time periods after interactions to capture the early effects of N. dimidiatum on pitaya processes. RESULTS The study defined the establishment of an effective method for analyzing transcriptome interactions between pitaya and N. dimidiatum and to obtain global expression profiles. We identified gene expression clusters in both the host pitaya and the pathogen N. dimidiatum. The analysis showed that numerous differentially expressed genes (DEGs) involved in the recognition and defense of pitaya against N. dimidiatum, as well as N. dimidiatum's evasion of recognition and inhibition of pitaya. The major functional groups identified by GO and KEGG enrichment were responsible for plant and pathogen recognition, phytohormone signaling (such as salicylic acid, abscisic acid). Furthermore, the gene expression of 13 candidate genes involved in phytopathogen recognition, phytohormone receptors, and the plant resistance gene (PG), as well as 7 effector genes of N. dimidiatum, including glycoside hydrolases, pectinase, and putative genes, were validated by qPCR. By focusing on gene expression changes during interactions between pitaya and N. dimidiatum, we were able to observe the infection of N. dimidiatum and its effects on the expression of various defense components and host immune receptors. CONCLUSION Our data show that various regulators of the immune response are modified during interactions between pitaya and N. dimidiatum. Furthermore, the activation and repression of these genes are temporally coordinated. These findings provide a framework for better understanding the pathogenicity of N. dimidiatum and its role as an opportunistic pathogen. This offers the potential for a more effective defense against N. dimidiatum.
Collapse
Affiliation(s)
- Meng Wang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhouwen Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- Yazhou Bay Laboratory, Sanya, 572025, China
| | - Yi Ding
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Shaoling Kang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Senrong Jiang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Zhuangjia Yang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Zhan Xie
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jialin Wang
- College of Life Sciences, Hainan University, Haikou, 570228, China
| | - Shuangshuang Wei
- College of Life Sciences, Hainan University, Haikou, 570228, China
| | - Jiaquan Huang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Dongdong Li
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Xingyu Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Hua Tang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
15
|
Kesten C, Leitner V, Dora S, Sims JW, Dindas J, Zipfel C, De Moraes CM, Sanchez-Rodriguez C. Soil-borne fungi alter the apoplastic purinergic signaling in plants by deregulating the homeostasis of extracellular ATP and its metabolite adenosine. eLife 2023; 12:e92913. [PMID: 37994905 PMCID: PMC10746138 DOI: 10.7554/elife.92913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023] Open
Abstract
Purinergic signaling activated by extracellular nucleotides and their derivative nucleosides trigger sophisticated signaling networks. The outcome of these pathways determine the capacity of the organism to survive under challenging conditions. Both extracellular ATP (eATP) and Adenosine (eAdo) act as primary messengers in mammals, essential for immunosuppressive responses. Despite the clear role of eATP as a plant damage-associated molecular pattern, the function of its nucleoside, eAdo, and of the eAdo/eATP balance in plant stress response remain to be fully elucidated. This is particularly relevant in the context of plant-microbe interaction, where the intruder manipulates the extracellular matrix. Here, we identify Ado as a main molecule secreted by the vascular fungus Fusarium oxysporum. We show that eAdo modulates the plant's susceptibility to fungal colonization by altering the eATP-mediated apoplastic pH homeostasis, an essential physiological player during the infection of this pathogen. Our work indicates that plant pathogens actively imbalance the apoplastic eAdo/eATP levels as a virulence mechanism.
Collapse
Affiliation(s)
- Christopher Kesten
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
- Department for Plant and Environmental Sciences, University of CopenhagenCopenhagenDenmark
| | - Valentin Leitner
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
| | - Susanne Dora
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
| | - James W Sims
- Department of Environmental Systems Science, ETH ZürichZurichSwitzerland
| | - Julian Dindas
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | | | - Clara Sanchez-Rodriguez
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC)Pozuelo de AlarcónSpain
| |
Collapse
|
16
|
Zou J, Jiang C, Qiu S, Duan G, Wang G, Li D, Yu S, Zhao D, Sun W. An Ustilaginoidea virens glycoside hydrolase 42 protein is an essential virulence factor and elicits plant immunity as a PAMP. MOLECULAR PLANT PATHOLOGY 2023; 24:1414-1429. [PMID: 37452482 PMCID: PMC10576179 DOI: 10.1111/mpp.13377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Rice false smut, caused by the ascomycete fungus Ustilaginoidea virens, which infects rice florets before heading, severely threatens rice grain yield and quality worldwide. The U. virens genome encodes a number of glycoside hydrolase (GH) proteins. So far, the functions of these GHs in U. virens are largely unknown. In this study, we identified a GH42 protein secreted by U. virens, named UvGHF1, that exhibits β-galactosidase activity. UvGHF1 not only functions as an essential virulence factor during U. virens infection, but also serves as a pathogen-associated molecular pattern (PAMP) in Nicotiana benthamiana and rice. The PAMP activity of UvGHF1 is independent of its β-galactosidase activity. Moreover, UvGHF1 triggers cell death in N. benthamiana in a BAK1-dependent manner. Ectopic expression of UvGHF1 in rice induces pattern-triggered immunity and enhances rice resistance to fungal and bacterial diseases. RNA-seq analysis revealed that UvGHF1 expression in rice not only activates expression of many defence-related genes encoding leucine-rich repeat receptor-like kinases and WRKY and ERF transcription factors, but also induces diterpenoid biosynthesis and phenylpropanoid biosynthesis pathways. Therefore, UvGHF1 contributes to U. virens virulence, but is also recognized by the rice surveillance system to trigger plant immunity.
Collapse
Affiliation(s)
- Jiaying Zou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Chunquan Jiang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Shanshan Qiu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Guanqun Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Siwen Yu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dan Zhao
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
17
|
Xie Y, Shi L, Cheng K, Li Y, Yu S. Host Recognition and Specific Infection of Endomelanconiopsis endophytica during Early Infection. J Fungi (Basel) 2023; 9:1040. [PMID: 37888296 PMCID: PMC10607883 DOI: 10.3390/jof9101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Coevolution between the pathogen and host plant drives pathogenic effector diversity. However, the molecular mechanism behind host-specific pathogenesis remains to be explored. Here, we present a 43 Mb whole-genome sequence of Endomelanconiopsis endophytica strain LS29, a host-specific pathogen of the common subtropical tree Castanopsis fissa. We described its genome annotations and identified its effector candidates. By performing temporal transcriptome sequencing of E. endophytica on C. fissa during early infection, we found that E. endophytica repressed other microbes in order to attack the tissue of the host by producing antibiotics earlier than 24 h post-inoculation (hpi). Simultaneously, a variety of effectors were secreted to recognize the host plant, but most of them showed a significantly opposing expression regulation trend after 24 hpi, indicating that 24 hpi represents a key time point between host recognition and specific infection. Furthermore, a comparison of isoenzymes showed that only a few effectors were identified as specific effectors, which were involved in hydrolyzing the compounds of the plant cell wall and releasing fatty acids during the early infection of C. fissa. Our results determined host recognition timing and identified a specific catalog of effectors, which are crucial for revealing the molecular mechanism of host-specific pathogenesis.
Collapse
Affiliation(s)
- Yan Xie
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Liuqing Shi
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Keke Cheng
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Li
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Attah V, Milner DS, Fang Y, Yan X, Leonard G, Heitman J, Talbot NJ, Richards TA. Duplication and neofunctionalization of a horizontally-transferred xyloglucanase as a facet of the red queen co-evolutionary dynamic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561229. [PMID: 37873201 PMCID: PMC10592688 DOI: 10.1101/2023.10.09.561229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Oomycetes are heterotrophic protists that share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a separate and distant region of the eukaryotic tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls. This is a key trait in the pathology of many oomycetes, as the plant cell wall represents a primary barrier to pathogen invasion and a rich source of carbohydrates. Many of the HGT gene families identified have undergone multiple rounds of duplication. Using a combination of phylogenomic analysis and functional assays, we investigate the diversification of a horizontally-transferred xyloglucanase gene family in the model oomycete species Phytophthora sojae. Our analyses detect 11 genes retained in P. sojae among a complex pattern of gene duplications and losses. Using a phenotype assay, based on heterologous expression in yeast, we show that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional xyloglucanase variants analysed subtend an ancestral node close to the fungi-oomycetes gene transfer, suggesting the horizontally-transferred gene was a bona fide xyloglucanase. Expression of xyloglucanase paralogs in Nicotiana benthamiana triggers distinct patterns of reactive oxygen species (ROS) generation, demonstrating that enzyme variants differentially stimulate pattern-triggered immunity in plants. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze production of variant breakdown profiles, suggesting that secretion of multiple xyloglucanase variants increases efficiency of xyloglucan breakdown, as well as potentially diversifying the range of Damage-Associated Molecular Patterns (DAMPs) released during pathogen attack. We suggest that such patterns of protein neofunctionalization, and variant host responses, represent an aspect of the Red Queen host-pathogen co-evolutionary dynamic. Significance Statement The oomycetes are a diverse group of eukaryotic microbes that include some of the most devastating pathogens of plants. Oomycetes perceive, invade, and colonize plants in similar ways to fungi, in part because they acquired the genes to attack and feed on plants from fungi. These genes are predicted to be useful to oomycete plant pathogens because they have undergone multiple rounds of gene duplication. One key enzyme for attacking plant cell wall structures is called xyloglucanase. Xyloglucanase in the oomycetes has undergone multiple rounds of gene duplication, leading to variants including an enzyme with a C-terminal extension that increases activity. Some xyloglucanase variants trigger unique patterns of reactive oxygen species (ROS) in planta, and generate different profiles of cell wall breakdown products - such outcomes could act to mystify and increase the workload of the plant immune system, allowing successful pathogens to proliferate.
Collapse
Affiliation(s)
- Victoria Attah
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Yufeng Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Current address: GreenLight Biosciences Inc., Research Triangle Park, North Carolina, United States of America
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, United Kingdom
| | - Guy Leonard
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, United Kingdom
| | | |
Collapse
|
19
|
Jiang H, Xia Y, Zhang S, Zhang Z, Feng H, Zhang Q, Chen X, Xiao J, Yang S, Zeng M, Chen Z, Ouyang H, He X, Sun G, Wu J, Dong S, Ye W, Ma Z, Wang Y, Wang Y. The CAP superfamily protein PsCAP1 secreted by Phytophthora triggers immune responses in Nicotiana benthamiana through a leucine-rich repeat receptor-like protein. THE NEW PHYTOLOGIST 2023; 240:784-801. [PMID: 37615219 DOI: 10.1111/nph.19194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.
Collapse
Affiliation(s)
- Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
20
|
Rao W, Wan L, Wang E. Plant immunity in soybean: progress, strategies, and perspectives. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:52. [PMID: 37323469 PMCID: PMC10267034 DOI: 10.1007/s11032-023-01398-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is one of the most important commercial crops worldwide. Soybean hosts diverse microbes, including pathogens that may cause diseases and symbionts that contribute to nitrogen fixation. Study on soybean-microbe interactions to understand pathogenesis, immunity, and symbiosis represents an important research direction toward plant protection in soybean. In terms of immune mechanisms, current research in soybean lags far behind that in the model plants Arabidopsis and rice. In this review, we summarized the shared and unique mechanisms involved in the two-tiered plant immunity and the virulence function of pathogen effectors between soybean and Arabidopsis, providing a molecular roadmap for future research on soybean immunity. We also discussed disease resistance engineering and future perspectives in soybean.
Collapse
Affiliation(s)
- Weiwei Rao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Jia X, Zhang H, Qin H, Li K, Liu X, Wang W, Ye M, Yin H. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:613-635. [PMID: 36799458 DOI: 10.1111/tpj.16156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongyan Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
22
|
Fu B, Xu Z, Lei Y, Dong R, Wang Y, Guo X, Zhu H, Cao Y, Yan Z. A novel secreted protein, NISP1, is phosphorylated by soybean Nodulation Receptor Kinase to promote nodule symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1297-1311. [PMID: 36534458 DOI: 10.1111/jipb.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
Nodulation Receptor Kinase (NORK) functions as a co-receptor of Nod factor receptors to mediate rhizobial symbiosis in legumes, but its direct phosphorylation substrates that positively mediate root nodulation remain to be fully identified. Here, we identified a GmNORK-Interacting Small Protein (GmNISP1) that functions as a phosphorylation target of GmNORK to promote soybean nodulation. GmNORKα directly interacted with and phosphorylated GmNISP1. Transcription of GmNISP1 was strongly induced after rhizobial infection in soybean roots and nodules. GmNISP1 encodes a peptide containing 90 amino acids with a "DY" consensus motif at its N-terminus. GmNISP1 protein was detected to be present in the apoplastic space. Phosphorylation of GmNISP1 by GmNORKα could enhance its secretion into the apoplast. Pretreatment with either purified GmNISP1 or phosphorylation-mimic GmNISP112D on the roots could significantly increase nodule numbers compared with the treatment with phosphorylation-inactive GmNISP112A . The data suggested a model that soybean GmNORK phosphorylates GmNISP1 to promote its secretion into the apoplast, which might function as a potential peptide hormone to promote root nodulation.
Collapse
Affiliation(s)
- Baolan Fu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhipeng Xu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutao Lei
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ru Dong
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanan Wang
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Lab of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Yan
- National Key Facility for Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
23
|
Chen Z, Liu F, Zeng M, Wang L, Liu H, Sun Y, Wang L, Zhang Z, Chen Z, Xu Y, Zhang M, Xia Y, Ye W, Dong S, Govers F, Wang Y, Wang Y. Convergent evolution of immune receptors underpins distinct elicitin recognition in closely related Solanaceous plants. THE PLANT CELL 2023; 35:1186-1201. [PMID: 36625683 PMCID: PMC10052394 DOI: 10.1093/plcell/koad002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.
Collapse
Affiliation(s)
- Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanmei Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingmei Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Francine Govers
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen NL-6708 PB, The Netherlands
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
VdGAL4 Modulates Microsclerotium Formation, Conidial Morphology, and Germination To Promote Virulence in Verticillium dahliae. Microbiol Spectr 2023; 11:e0351522. [PMID: 36475739 PMCID: PMC9927093 DOI: 10.1128/spectrum.03515-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Verticillium dahliae Kleb is a typical soilborne pathogen that can cause vascular wilt disease on more than 400 plants. Functional analysis of genes related to the growth and virulence is crucial to revealing the molecular mechanism of the pathogenicity of V. dahliae. Glycosidase hydrolases can hydrolyze the glycosidic bond, and some can cause host plant immune response to V. dahliae. Here, we reported a functional validation of VdGAL4 as an α-galactosidase that belongs to glycoside hydrolase family 27. VdGAL4 could cause plant cell death, and its signal peptide plays an important role in cellular immune response. VdGAL4-triggered cell death depends on BAK1 and SOBIR1 in Nicotiana benthamiana. In V. dahliae, the function of VdGAL4 in mycelial growth, conidia, microsclerotium, and pathogenicity was studied by constructing VdGAL4 deletion and complementation mutants. Results showed that the deletion of VdGAL4 reduced the conidial yield and conidial germination rate of V. dahliae and changed the microscopic morphology of conidia; the mycelia were arranged more disorderly and were unable to produce microsclerotium. The VdGAL4 deletion mutants exhibited reduced utilization of different carbon sources, such as raffinose and sucrose. The VdGAL4 deletion mutants were also more sensitive to abiotic stress agents of SDS, sorbitol, low-temperature stress of 16°C, and high-temperature stress of 45°C. In addition, the VdGAL4 deletion mutants lost the ability to penetrate cellophane and its mycelium were disorderly arranged. Remarkably, VdGAL4 deletion mutants exhibited reduced pathogenicity of V. dahliae. These results showed that VdGAL4 played a critical role in the pathogenicity of V. dahliae by regulating mycelial growth, conidial morphology, and the formation of microsclerotium. IMPORTANCE This study showed that α-galactosidase VdGAL4 of V. dahliae could activate plant immune response and plays an important role in conidial morphology and yield, formation of microsclerotia, and mycelial penetration. VdGAL4 deletion mutants significantly reduced the pathogenicity of V. dahliae. These findings deepened the understanding of pathogenic virulence factors and how the mechanism of pathogenic fungi infected the host, which may help to seek new strategies for effective control of plant diseases caused by pathogenic fungi.
Collapse
|
25
|
Wang H, Xiang Y, Wang D, Fu ZQ. An epic war between an oomycete pathogen and plants. MOLECULAR PLANT 2022; 15:1828-1830. [PMID: 36245121 DOI: 10.1016/j.molp.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Huan Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Youhuang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; The Shennong Laboratory, Zhengzhou, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
26
|
Yu H, Jia W, Zhao M, Li L, Liu J, Chen J, Pan H, Zhang X. Antifungal mechanism of isothiocyanates against Cochliobolus heterostrophus. PEST MANAGEMENT SCIENCE 2022; 78:5133-5141. [PMID: 36053944 DOI: 10.1002/ps.7131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Isothiocyanates (ITCs) generated from the 'glucosinolates-myrosinase' defense system in the Brassicaceae exhibit broad antagonistic activity to various fungal pathogens. Nevertheless, the antifungal activity of ITCs to non-adapted fungi of Brassicaceae plants were seldom determined. The inhibitory effects of ITCs on Cochliobolus heterostrophus were evaluated and the antagonistic mechanism was explored. RESULTS The mycelium growth of C. heterostrophus was hindered significantly by allyl, 4-(methylthio)-butyl, and phenyethyl ITCs, 4MTB-ITC exhibited the highest inhibitory effect on mycelium growth with an IC50 value of 53.4 μmol L-1 . In addition, ITCs exhibited obvious inhibitory effect on conidia germination and pathogenicity of C. heterostrophus. Proteomic analysis indicated that the inhibition of C. heterostrophus by A-ITC downregulated the expression of genes related to energy metabolism, oxidoreductase activity, melanin biosynthesis, and cell wall-degrading enzymes. Furthermore, mutants ΔChtrx2 and ΔChnox1 showed increased sensitivity to ITCs, and melanin biosynthesis was inhibited significantly in C. heterostrophus in response to A-ITC. Interestingly, unlike other pathogens that infected Brassicaceae plants, the SaxA in C. heterostrophus displayed no function in ITC degradation. In addition, the ITCs also exhibited obvious inhibitory effect on mycelium growth of Setosphaeria turcica, Fusarium graminearum, and Magnaporthe oryzae. CONCLUSION This study indicated that non-Brassicaceae-adapted pathogens are more sensitive to ITCs, and ITCs could have applications in protecting non-Brassicaceae crops in future. In addition, loss of ChNOX1 and ChTRX2 increased the sensitivity of C. heterostrophus to ITCs. Our results provided potential utilization of ITCs to control diseases caused by non-Brassicaceae pathogenic fungi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huilin Yu
- College of Plant Science, Jilin University, Changchun, China
| | - Wantong Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Meixi Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Le Li
- College of Plant Science, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Jingyuan Chen
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
27
|
Li X, An M, Xu C, Jiang L, Yan F, Yang Y, Zhang C, Wu Y. Integrative transcriptome analysis revealed the pathogenic molecular basis of Rhizoctonia solani AG-3 TB at three progressive stages of infection. Front Microbiol 2022; 13:1001327. [PMID: 36304957 PMCID: PMC9593035 DOI: 10.3389/fmicb.2022.1001327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Rhizoctonia solani has a broad host range and results in significant losses in agricultural production. Here, an integrated transcriptomic analysis was performed to reveal the critical genes responsible for the pathogenesis of R. solani AG-3 TB on Nicotiana tabacum at different infection stages. The results showed that various differential expressed genes (DEGs) were enriched in fatty acid metabolism, amino sugar, carbon metabolism, and cellular carbohydrate biosynthetic process at the early (6–12 hpi), middle (24–36 hpi), and late stage (48–72 hpi) of infection. Specifically, several critical genes such as shikimate kinase that were involved in the biosynthesis of an important fungal toxin, phenylacetic acid (PAA) showed markedly increase at 24 hpi. Additionally, the genes expression levels of carbohydrate-active enzymes (CAZymes) and cell wall degrading enzymes (CWDEs) were significantly increased at the late infection stage. Furthermore, we identified 807 potential secreted proteins and 78 small cysteine-rich proteins, which may function as fungal effectors and involved in the pathogenicity. These results provide valuable insights into critical and potential genes as well as the pathways involved in the pathogenesis of R. solani AG-3 TB.
Collapse
Affiliation(s)
- Xinchun Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou, China
| | - Lianqiang Jiang
- Liangshan Branch of Sichuan Province Tobacco Company, Xichang, China
| | - Fangfang Yan
- Panzhihua Branch of Sichuan Province Tobacco Company, Panzhihua, China
| | - Yang Yang
- Yibin Branch of Sichuan Province Tobacco Company, Yibin, China
| | - Chong Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Chong Zhang,
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Yuanhua Wu,
| |
Collapse
|
28
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Sun Y, Wang Y, Zhang X, Chen Z, Xia Y, Wang L, Sun Y, Zhang M, Xiao Y, Han Z, Wang Y, Chai J. Plant receptor-like protein activation by a microbial glycoside hydrolase. Nature 2022; 610:335-342. [PMID: 36131021 DOI: 10.1038/s41586-022-05214-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Plants rely on cell-surface-localized pattern recognition receptors to detect pathogen- or host-derived danger signals and trigger an immune response1-6. Receptor-like proteins (RLPs) with a leucine-rich repeat (LRR) ectodomain constitute a subgroup of pattern recognition receptors and play a critical role in plant immunity1-3. Mechanisms underlying ligand recognition and activation of LRR-RLPs remain elusive. Here we report a crystal structure of the LRR-RLP RXEG1 from Nicotiana benthamiana that recognizes XEG1 xyloglucanase from the pathogen Phytophthora sojae. The structure reveals that specific XEG1 recognition is predominantly mediated by an amino-terminal and a carboxy-terminal loop-out region (RXEG1(ID)) of RXEG1. The two loops bind to the active-site groove of XEG1, inhibiting its enzymatic activity and suppressing Phytophthora infection of N. benthamiana. Binding of XEG1 promotes association of RXEG1(LRR) with the LRR-type co-receptor BAK1 through RXEG1(ID) and the last four conserved LRRs to trigger RXEG1-mediated immune responses. Comparison of the structures of apo-RXEG1(LRR), XEG1-RXEG1(LRR) and XEG1-BAK1-RXEG1(LRR) shows that binding of XEG1 induces conformational changes in the N-terminal region of RXEG1(ID) and enhances structural flexibility of the BAK1-associating regions of RXEG1(LRR). These changes allow fold switching of RXEG1(ID) for recruitment of BAK1(LRR). Our data reveal a conserved mechanism of ligand-induced heterodimerization of an LRR-RLP with BAK1 and suggest a dual function for the LRR-RLP in plant immunity.
Collapse
Affiliation(s)
- Yue Sun
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| | - Xiaoxiao Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Mingmei Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yu Xiao
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhifu Han
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Max Planck Institute for Plant Breeding Research, Cologne, Germany. .,Institute of Biochemistry, University of Cologne, Cologne, Germany. .,Cluster of Excellence in Plant Sciences (CEPLAS), Düsseldorf, Germany.
| |
Collapse
|
30
|
Andronis CE, Jacques S, Lipscombe R, Tan KC. Comparative sub-cellular proteome analyses reveals metabolic differentiation and production of effector-like molecules in the dieback phytopathogen Phytophthora cinnamomi. J Proteomics 2022; 269:104725. [PMID: 36096432 DOI: 10.1016/j.jprot.2022.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Phytopathogenic oomycetes pose a significant threat to global biodiversity and food security. The proteomes of these oomycetes likely contain important factors that contribute to their pathogenic success, making their discovery crucial for elucidating pathogenicity. Phytophthora cinnamomi is a root pathogen that causes dieback in a wide variety of crops and native vegetation world-wide. Virulence proteins produced by P. cinnamomi are not well defined and a large-scale approach to understand the biochemistry of this pathogen has not been documented. Soluble mycelial, zoospore and secreted proteomes were obtained and label-free quantitative proteomics was used to compare the composition of the three sub-proteomes. A total of 4635 proteins were identified, validating 17.7% of the predicted gene set. The mycelia were abundant in transporters for nutrient acquisition, metabolism and cellular proliferation. The zoospores had less metabolic related ontologies but were abundant in energy generating, motility and signalling associated proteins. Virulence-associated proteins were identified in the secretome such as candidate effector and effector-like proteins, which interfere with the host immune system. These include hydrolases, cell wall degrading enzymes, putative necrosis-inducing proteins and elicitins. The secretome elicited a hypersensitive response on the roots of a model host and thus suggests evidence of effector activity. SIGNIFICANCE: Phytophthora cinnamomi is a phytopathogenic oomycete that causes dieback disease in native vegetation and several horticultural crops such as avocado, pineapple and macadamia. Whilst this pathogen has significance world-wide, its pathogenicity and virulence have not been described in depth. We carried out comparative label-free proteomics of the mycelia, zoospores and secretome of P. cinnamomi. This study highlights the differential metabolism and cellular processes between the sub-proteomes. Proteins associated with metabolism, nutrient transport and cellular proliferation were over represented in the mycelia. The zoospores have a specialised proteome showing increased energy generation geared towards motility. Candidate effectors and effector-like secreted proteins were also identified, which can be exploited for genetic resistance. This demonstrates a better understanding of the biology and pathogenicity of P. cinnamomi infection that can subsequently be used to develop effective methods of disease management.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia; Proteomics International, Nedlands, WA, Australia.
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
31
|
Zhang D, Wang Z, Yamamoto N, Wang M, Yi X, Li P, Lin R, Nasimi Z, Okada K, Mochida K, Noutoshi Y, Zheng A. Secreted Glycosyltransferase RsIA_GT of Rhizoctonia solani AG-1 IA Inhibits Defense Responses in Nicotiana benthamiana. Pathogens 2022; 11:pathogens11091026. [PMID: 36145458 PMCID: PMC9501517 DOI: 10.3390/pathogens11091026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Anastomosis group AG-1 IA of Rhizoctonia solani Khün has a wide host range and threatens crop production. Various glycosyltransferases secreted by phytopathogenic fungi play an essential role in pathogenicity. Previously, we identified a glycosyltransferase RsIA_GT (AG11A_09161) as a secreted protein-encoding gene of R. solani AG-1 IA, whose expression levels increased during infection in rice. In this study, we further characterized the virulence function of RsIA_GT. It is conserved not only in Basidiomycota, including multiple anastomosis groups of R. solani, but also in other primary fungal taxonomic categories. RsIA_GT possesses a signal peptide (SP) for protein secretion, and its functionality was proven using yeast and Nicotiana benthamiana. The SP-truncated form of RsIA_GT (RsIA_GT(ΔS)) expressed in Escherichia coli-induced lesion-like phenotype in rice leaves when applied to punched leaves. However, Agrobacterium-mediated transient expressions of both the full-length RsIA_GT and RsIA_GT(ΔS) did not induce cell death in N. benthamiana leaves. Instead, only RsIA_GT(ΔS) suppressed the cell death induced by two reference cell death factors BAX and INF1 in N.benthamiana. RsIA_GT(ΔS)R154A D168A D170A, a mutant RsIA_GT(ΔS) for the glycosyltransferase catalytic domain, still suppressed the BAX- or INF1-induced cell death, suggesting that the cell death suppression activity of RsIA_GT(ΔS) would be independent from its enzymatic activity. RsIA_GT(ΔS) also suppressed the H2O2 production and callose deposition and showed an effect on the induction of defense genes associated with the expression of BAX and INF1. The transient expression of RsIA_GT(ΔS) in N. benthamiana enhanced the lesion area caused by R. solani AG-1 IA. The secreted glycosyltransferase, RsIA_GT, of R. solani AG-1 IA is likely to have a dual role in virulence inside and outside of host cells.
Collapse
Affiliation(s)
- Danhua Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoyilin Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Naoki Yamamoto
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyue Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zohreh Nasimi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Kazunori Okada
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 2300045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama 2300045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 2440813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
32
|
Apoplastic and vascular defences. Essays Biochem 2022; 66:595-605. [PMID: 36062526 DOI: 10.1042/ebc20220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
The apoplast comprises the intercellular space between cell membranes, includes the xylem, and extends to the rhizoplane and the outer surfaces of the plant. The apoplast plays roles in different biological processes including plant immunity. This highly specialised space is often the first place where pathogen recognition occurs, and this then triggers the immune response. The immune response in the apoplast involves different mechanisms that restrict pathogen infection. Among these responses, secretion of different molecules like proteases, proteins related to immunity, small RNAs and secondary metabolites play important and often additive or synergistic roles. In addition, production of reactive oxygen species occurs to cause direct deleterious effects on the pathogen as well as reinforce the plant's immune response by triggering modifications to cell wall composition and providing additional defence signalling capabilities. The pool of available sugar in the apoplast also plays a role in immunity. These sugars can be manipulated by both interactors, pathogens gaining access to nutrients whilst the plant's responses restrict the pathogen's access to nutrients. In this review, we describe the latest findings in the field to highlight the importance of the apoplast in plant-pathogen interactions and plant immunity. We also indicate where new discoveries are needed.
Collapse
|
33
|
Backer R, Engelbrecht J, van den Berg N. Differing Responses to Phytophthora cinnamomi Infection in Susceptible and Partially Resistant Persea americana (Mill.) Rootstocks: A Case for the Role of Receptor-Like Kinases and Apoplastic Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:928176. [PMID: 35837458 PMCID: PMC9274290 DOI: 10.3389/fpls.2022.928176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The hemibiotrophic plant pathogen Phytophthora cinnamomi Rands is the most devastating pathogen of avocado (Persea americana Mill.) and, as such, causes significant annual losses in the industry. Although the molecular basis of P. cinnamomi resistance in avocado and P. cinnamomi virulence determinants have been the subject of recent research, none have yet attempted to compare the transcriptomic responses of both pathogen and host during their interaction. In the current study, the transcriptomes of both avocado and P. cinnamomi were explored by dual RNA sequencing. The basis for partial resistance was sought by the inclusion of both susceptible (R0.12) and partially resistant (Dusa®) rootstocks sampled at early (6, 12 and 24 hours post-inoculation, hpi) and late time-points (120 hpi). Substantial differences were noted in the number of differentially expressed genes found in Dusa® and R0.12, specifically at 12 and 24 hpi. Here, the partially resistant rootstock perpetuated defense responses initiated at 6 hpi, while the susceptible rootstock abruptly reversed course. Instead, gene ontology enrichment confirmed that R0.12 activated pathways related to growth and development, essentially rendering its response at 12 and 24 hpi no different from that of the mock-inoculated controls. As expected, several classes of P. cinnamomi effector genes were differentially expressed in both Dusa® and R0.12. However, their expression differed between rootstocks, indicating that P. cinnamomi might alter the expression of its effector arsenal based on the rootstock. Based on some of the observed differences, several P. cinnamomi effectors were highlighted as potential candidates for further research. Similarly, the receptor-like kinase (RLK) and apoplastic protease coding genes in avocado were investigated, focusing on their potential role in differing rootstock responses. This study suggests that the basis of partial resistance in Dusa® is predicated on its ability to respond appropriately during the early stages following P. cinnamomi inoculation, and that important components of the first line of inducible defense, apoplastic proteases and RLKs, are likely to be important to the observed outcome.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Engelbrecht
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Effects of Magnesium, Pyrophosphate and Phosphonates on Pyrophosphorolytic Reaction of UDP-Glucose Pyrophosphorylase. PLANTS 2022; 11:plants11121611. [PMID: 35736762 PMCID: PMC9230926 DOI: 10.3390/plants11121611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
UDP-glucose pyrophosphorylase (UGPase) carries a freely reversible reaction, using glucose-1-P and UTP to produce UDP-glucose (UDPG) and pyrophosphate (PPi), with UDPG being essential for glycosylation reactions in all organisms including, e.g., synthesis of sucrose, cellulose and glycoproteins. In the present study, we found that free magnesium (Mg2+) had profound effects on the reverse reaction of purified barley UGPase, and was absolutely required for its activity, with an apparent Km of 0.13 mM. More detailed analyses with varied concentrations of MgPPi allowed us to conclude that it is the MgPPi complex which serves as true substrate for UGPase in its reverse reaction, with an apparent Km of 0.06 mM. Free PPi was an inhibitor in this reaction. Given the key role of PPi in the UGPase reaction, we have also tested possible effects of phosphonates, which are analogs of PPi and phosphate (Pi). Clodronate and etidronate (PPi analogs) had little or no effect on UGPase activity, whereas fosetyl-Al (Pi analog), a known fungicide, acted as effective near-competitive inhibitor versus PPi, with Ki of 0.15 mM. The data are discussed with respect to the role of magnesium in the UGPase reaction and elucidating the use of inhibitors in studies on cellular function of UGPase and related enzymes.
Collapse
|
35
|
Wang J, Ma C, Ma S, Zheng H, Feng H, Wang Y, Wang J, Liu C, Xin D, Chen Q, Yang M. GmARP is Related to the Type III Effector NopAA to Promote Nodulation in Soybean (Glycine max). Front Genet 2022; 13:889795. [PMID: 35692823 PMCID: PMC9184740 DOI: 10.3389/fgene.2022.889795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Type III effectors secreted by rhizobia regulate nodulation in the host plant and are important modulators of symbiosis between rhizobia and soybean (Glycine max), although the underlying mechanisms are poorly understood. Here, we studied the type III effector NopAA in Sinorhizobium fredii HH103, confirming its secretion into the extracellular environment under the action of genistein. The enzyme activity of NopAA was investigated in vitro, using xyloglucan and β-glucan as substrates. NopAA functions were investigated by the generation of a NopAA mutant and the effects of NopAA deficiency on symbiosis were analyzed. Soybean genes associated with NopAA were identified in a recombinant inbred line (RIL) population and their functions were verified. NopAA was confirmed to be a type III effector with glycosyl hydrolase activity, and its mutant did not promote nodulation. Quantitative trait locus (QTL) analysis identified 10 QTLs with one, Glyma.19g074200 (GmARP), found to be associated with NopAA and to positively regulate the establishment of symbiosis. All these results support the hypothesis that type III effectors interact with host proteins to regulate the establishment of symbiosis and suggest the possibility of manipulating the symbiotic soybean–rhizobia interaction to promote efficient nitrogen fixation.
Collapse
Affiliation(s)
- Jinhui Wang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chao Ma
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Shengnan Ma
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haiyang Zheng
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haojie Feng
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yue Wang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jiangxu Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chunyan Liu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| | - Qingshan Chen
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| | - Mingliang Yang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| |
Collapse
|
36
|
Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet KA, Vandemark G, Chen W. A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun 2022; 13:2213. [PMID: 35468894 PMCID: PMC9038911 DOI: 10.1038/s41467-022-29788-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/22/2022] [Indexed: 01/16/2023] Open
Abstract
Plant pathogens degrade cell wall through secreted polygalacturonases (PGs) during infection. Plants counteract the PGs by producing PG-inhibiting proteins (PGIPs) for protection, reversibly binding fungal PGs, and mitigating their hydrolytic activities. To date, how fungal pathogens specifically overcome PGIP inhibition is unknown. Here, we report an effector, Sclerotinia sclerotiorum PGIP-INactivating Effector 1 (SsPINE1), which directly interacts with and functionally inactivates PGIP. S. sclerotiorum is a necrotrophic fungus that causes stem rot diseases on more than 600 plant species with tissue maceration being the most prominent symptom. SsPINE1 enhances S. sclerotiorum necrotrophic virulence by specifically interacting with host PGIPs to negate their polygalacturonase-inhibiting function via enhanced dissociation of PGIPs from PGs. Targeted deletion of SsPINE1 reduces the fungal virulence. Ectopic expression of SsPINE1 in plant reduces its resistance against S. sclerotiorum. Functional and genomic analyses reveal a conserved virulence mechanism of cognate PINE1 proteins in broad host range necrotrophic fungal pathogens. Plants produce polygalacuturonase-inhibiting proteins (PGIPs) to counteract cell wall degradation by pathogenic microbes. Here the authors show that Sclerotinia sclerotiorum, a fungal pathogen that causes stem rot disease, secretes a PGIP-inactivating effector to diminish plant resistance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Peng
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Karen A Sanguinet
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - George Vandemark
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA. .,Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA. .,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA. .,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA.
| |
Collapse
|
37
|
Zhang Y, Zhao M, Chen W, Yu H, Jia W, Pan H, Zhang X. Multi-Omics Techniques for Analysis Antifungal Mechanisms of Lipopeptides Produced by Bacillus velezensis GS-1 against Magnaporthe oryzae In Vitro. Int J Mol Sci 2022; 23:ijms23073762. [PMID: 35409115 PMCID: PMC8998706 DOI: 10.3390/ijms23073762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Magnaporthe oryzae is a fungal pathogen that causes rice blast, a highly destructive disease. In the present study, the bacteria strain GS-1 was isolated from the rhizosphere soil of ginseng and identified as Bacillus velezensis through 16S rRNA gene sequencing, whole genome assembly, and average nucleotide identity analysis. B. velezensis strain GS-1 exhibited significant antagonistic activity to several plant fungal pathogens. Through whole genome sequencing, 92 Carbohydrate-Active Enzymes and 13 gene clusters that encoded for secondary metabolites were identified. In addition, strain GS-1 was able to produce the lipopeptide compounds, surfactin, fengycin, and plantazolicin. The inhibitory effects of lipopeptide compounds on M. oryzae were confirmed, and the antagonistic mechanism was explored using transcriptomics and metabolomics analysis. Differential expressed genes (DEGs) and differential accumulated metabolites (DAMs) revealed that the inhibition of M. oryzae by lipopeptide produced by GS-1 downregulated the expression of genes involved in amino acid metabolism, sugar metabolism, oxidative phosphorylation, and autophagy. These results may explain why GS-1 has antagonistic activity to fungal pathogens and revealed the mechanisms underlying the inhibitory effects of lipopeptides produced by GS-1 on fungal growth, which may provide a theoretical basis for the potential application of B. velezensis GS-1 in future plant protection.
Collapse
|
38
|
Wang Y, Pruitt RN, Nürnberger T, Wang Y. Evasion of plant immunity by microbial pathogens. Nat Rev Microbiol 2022; 20:449-464. [PMID: 35296800 DOI: 10.1038/s41579-022-00710-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Plant pathogenic viruses, bacteria, fungi and oomycetes cause destructive diseases in natural habitats and agricultural settings, thereby threatening plant biodiversity and global food security. The capability of plants to sense and respond to microbial infection determines the outcome of plant-microorganism interactions. Host-adapted microbial pathogens exploit various infection strategies to evade or counter plant immunity and eventually establish a replicative niche. Evasion of plant immunity through dampening host recognition or the subsequent immune signalling and defence execution is a crucial infection strategy used by different microbial pathogens to cause diseases, underpinning a substantial obstacle for efficient deployment of host genetic resistance genes for sustainable disease control. In this Review, we discuss current knowledge of the varied strategies microbial pathogens use to evade the complicated network of plant immunity for successful infection. In addition, we discuss how to exploit this knowledge to engineer crop resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Rory N Pruitt
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thorsten Nürnberger
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
39
|
Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes. FRONTIERS IN PLANT SCIENCE 2022; 13:853106. [PMID: 35360318 PMCID: PMC8960721 DOI: 10.3389/fpls.2022.853106] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.
Collapse
Affiliation(s)
- Ellie L. Bradley
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bilal Ökmen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosie E. Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
40
|
Wang Z, Zhou L, Lan Y, Li X, Wang J, Dong J, Guo W, Jing D, Liu Q, Zhang S, Liu Z, Shi W, Yang W, Yang T, Sun F, Du L, Fu H, Ma Y, Shao Y, Chen L, Li J, Li S, Fan Y, Wang Y, Leung H, Liu B, Zhou Y, Zhao J, Zhou T. An aspartic protease 47 causes quantitative recessive resistance to rice black-streaked dwarf virus disease and southern rice black-streaked dwarf virus disease. THE NEW PHYTOLOGIST 2022; 233:2520-2533. [PMID: 35015901 DOI: 10.1111/nph.17961] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Rice black-streaked dwarf virus disease (RBSDVD) and southern rice black-streaked dwarf virus disease (SRBSDVD) are the most destructive viral diseases in rice. Progress is limited in breeding due to lack of resistance resource and inadequate knowledge on the underlying functional gene. Using genome-wide association study (GWAS), linkage disequilibrium (LD) decay analyses, RNA-sequencing, and genome editing, we identified a highly RBSDVD-resistant variety and its first functional gene. A highly RBSDVD-resistant variety W44 was identified through extensive evaluation of a diverse international rice panel. Seventeen quantitative trait loci (QTLs) were identified among which qRBSDV6-1 had the largest phenotypic effect. It was finely mapped to a 0.8-1.2 Mb region on chromosome 6, with 62 annotated genes. Analysis of the candidate genes underlying qRBSDV6-1 showed high expression of aspartic proteinase 47 (OsAP47) in a susceptible variety, W122, and a low resistance variety, W44. OsAP47 overexpressing lines exhibited significantly reduced resistance, while the knockout mutants exhibited significantly reduced SRBSDVD and RBSDVD severity. Furthermore, the resistant allele Hap1 of OsAP47 is almost exclusive to Indica, but rare in Japonica. Results suggest that OsAP47 knockout by editing is effective for improving RBSDVD and SRBSDVD resistance. This study provides genetic information for breeding resistant cultivars.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Ying Lan
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Xuejuan Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Wei Guo
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- Key Laboratory of Agricultural Biodiversity and Disease Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Dedao Jing
- Zhenjiang Institute of Agricultural Sciences of the Ning-Zhen Hilly District, Jurong, 212400, Jiangsu Province, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Zhiyang Liu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenjuan Shi
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Linlin Du
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Yudong Shao
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Jitong Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Shuo Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yongjian Fan
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yunyue Wang
- Key Laboratory of Agricultural Biodiversity and Disease Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Hei Leung
- International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, 210014, Jiangsu Province, China
| |
Collapse
|
41
|
Yang Y, Fan P, Liu J, Xie W, Liu N, Niu Z, Li Q, Song J, Tian Q, Bao Y, Wang H, Feng D. Thinopyrum intermedium TiAP1 interacts with a chitin deacetylase from Blumeria graminis f. sp. tritici and increases the resistance to Bgt in wheat. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:454-467. [PMID: 34651397 PMCID: PMC8882775 DOI: 10.1111/pbi.13728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
The biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt) is a crucial factor causing reduction in global wheat production. Wild wheat relatives, for example Thinopyrum intermedium, is one of the wild-used parents in wheat disease-resistant breeding. From T. intermedium line, we identified the aspartic protease gene, TiAP1, which is involved in resistance against Bgt. TiAP1 is a secreted protein that accumulates in large amounts at the infection sites of Bgt and extends to the intercellular space. Yeast two-hybrid, luciferase complementation imaging and bimolecular florescent complimentary analysis showed that TiAP1 interacted with the chitin deacetylase (BgtCDA1) of Bgt. The yeast expression, purification and in vitro test confirmed the chitin deacetylase activity of BgtCDA1. The bombardment and VIGS-mediated host-induced gene silencing showed that BgtCDA1 promotes the invasion of Bgt. Transcriptome analysis showed the cell wall xylan metabolism, lignin biosynthesis-related and defence genes involved in the signal transduction were up-regulated in the transgenic TiAP1 wheat induced by Bgt. The TiAP1 in wheat may inactivate the deacetylation function of BgtCDA1, cause chitin oligomers expose to wheat chitin receptor, then trigger the wheat immune response to inhibit the growth and penetration of Bgt, and thereby enhance the resistance of wheat to pathogens.
Collapse
Affiliation(s)
- Yanlin Yang
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Pan Fan
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Jingxia Liu
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Wenjun Xie
- Plant Defence Genetics LabDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Na Liu
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Zubiao Niu
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Quanquan Li
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Jing Song
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Qiuju Tian
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Yinguang Bao
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Honggang Wang
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| | - Deshun Feng
- State Key Laboratory of Crop BiologyShandong Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’anChina
| |
Collapse
|
42
|
Zhang W, Li H, Wang L, Xie S, Zhang Y, Kang R, Zhang M, Zhang P, Li Y, Hu Y, Wang M, Chen L, Yuan H, Ding S, Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:218-236. [PMID: 34741560 PMCID: PMC8743017 DOI: 10.1111/mpp.13155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host-pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Haiyang Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Limin Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shunpei Xie
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Ruijiao Kang
- Department of Landscape Architecture and Food EngineeringXuchang Vocational Technical CollegeXuchangChina
| | - Mengjuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Panpan Zhang
- Agriculture and Rural Affairs BureauXuchangChina
| | - Yonghui Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Min Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Linlin Chen
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Hongxia Yuan
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shengli Ding
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Honglian Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| |
Collapse
|
43
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
44
|
Yin J, Wang L, Jin T, Nie Y, Liu H, Qiu Y, Yang Y, Li B, Zhang J, Wang D, Li K, Xu K, Zhi H. A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. MOLECULAR PLANT 2021; 14:1881-1900. [PMID: 34303025 DOI: 10.1016/j.molp.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three nucleotide-binding domain leucine-rich repeat-containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this study, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to confer resistance to SMV, and CRISPR/Cas9-mediated editing of Rsc4-3 in resistant cultivar Dabaima compromised the resistance. Interestingly, Rsc4-3 encodes a cell-wall-localized NLR-type resistant protein. We found that the internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N terminus are essential for the resistance. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3-mediated resistance. Taken together, our work identified a unique NLR that recognizes plant virus in the apoplast, and provided a simple and effective method for identifying resistant genes against SMV infection.
Collapse
Affiliation(s)
- Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yang Nie
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bowen Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiaojiao Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dagang Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
45
|
Di DW, Sun L, Wang M, Wu J, Kronzucker HJ, Fang S, Chu J, Shi W, Li G. WRKY46 promotes ammonium tolerance in Arabidopsis by repressing NUDX9 and indole-3-acetic acid-conjugating genes and by inhibiting ammonium efflux in the root elongation zone. THE NEW PHYTOLOGIST 2021; 232:190-207. [PMID: 34128546 DOI: 10.1111/nph.17554] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 05/11/2023]
Abstract
Ammonium (NH4+ ) is toxic to root growth in most plants, even at moderate concentrations. Transcriptional regulation is one of the most important mechanisms in the response of plants to NH4+ toxicity, but the nature of the involvement of transcription factors (TFs) in this regulation remains unclear. Here, RNA-seq analysis was performed on Arabidopsis roots to screen for ammonium-responsive TFs. WRKY46, the member of the WRKY transcription factor family most responsive to NH4+ , was selected. We defined the role of WRKY46 using mutation and overexpression assays, and characterized the regulation of NUDX9 and indole-3-acetic acid (IAA)-conjugating genes by WRKY46 via yeast one-hybrid and electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative real-time polymerase chain reaction (ChIP-qPCR). Knockout of WRKY46 increased, while overexpression of WRKY46 decreased, NH4+ -suppression of the primary root. WRKY46 is shown to directly bind to the promoters of the NUDX9 and IAA-conjugating genes (GH3.1, GH3.6, UGT75D1, UGT84B2) and to inhibit their transcription, thus positively regulating free IAA content and stabilizing protein N-glycosylation, leading to an inhibition of NH4+ efflux in the root elongation zone (EZ). We identify TF involvement in the regulation of NH4+ efflux in the EZ, and show that WRKY46 inhibits NH4+ efflux by negative regulation of NUDX9 and IAA-conjugating genes.
Collapse
Affiliation(s)
- Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
46
|
Liu C, Niu G, Li X, Zhang H, Chen H, Hou D, Lan P, Hong Z. Comparative Label-Free Quantitative Proteomics Analysis Reveals the Essential Roles of N-Glycans in Salt Tolerance by Modulating Protein Abundance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:646425. [PMID: 34276718 PMCID: PMC8283305 DOI: 10.3389/fpls.2021.646425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/02/2021] [Indexed: 06/01/2023]
Abstract
Many pieces of evidence show that the adaptive response of plants to salt stress requires the maturation of N-glycan on associated proteins. However, it is still little known about the salt-responsive glycoproteins that function in this process. In the present study, we identified salt-responsive glycoproteins in wild-type (WT) Arabidopsis and two mutants defective in N-glycan maturation, mns1 mns2 and cgl1. A total of 97 proteins with abundance changes of >1.5- or <0.67-fold were identified against salt stress by label-free liquid chromatography coupled mass spectrometry (LC-MS/MS) quantitative analyses. A comparison of differentially abundant glycoproteins (DAGs) indicated the substrate preferences regulated by MNS1/MNS2 and CGL1. In addition, the DAGs in mns1 mns2 hardly form functional regulatory networks in STRING analysis. Comparably, the regulatory network in cgl1 was visible and shared overlapping with that in WT. Such difference may supply the evidence to partially explain the lower salt sensitivity of mutant cgl1 than mns1 mns2. We further confirmed that two N-glycosylation clients, peroxidases PRX32 and PRX34, were involved in the salt stress response since the double mutants showed enhanced salt sensitivity. Together, our study provided proteomic evidence that N-glycans are crucial for modulating stress-responsive protein levels, and several novel glycoproteins responsible for salt stress tolerance in Arabidopsis were listed. Data are available via ProteomeXchange with identifier PXD006893.
Collapse
Affiliation(s)
- Chuanfa Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Guanting Niu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaowen Li
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Huchen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Huawei Chen
- Research Center for Proteome Analysis, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongxia Hou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Liu C, Talbot NJ, Chen XL. Protein glycosylation during infection by plant pathogenic fungi. THE NEW PHYTOLOGIST 2021; 230:1329-1335. [PMID: 33454977 DOI: 10.1111/nph.17207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Glycosylation is a conserved set of post-translational modifications that exists in all eukaryotic cells. During the last decade, the role of glycosylation in plant pathogenic fungi has received significant attention and considerable progress has been made especially in Ustilago maydis and Magnaporthe oryzae. Here, we review recent advances in our understanding of the role of N-glycosylation, O-glycosylation and glycosylphosphatidylinositol (GPI) anchors during plant infection by pathogenic fungi. We highlight the roles of these processes in regulatory mechanisms associated with appressorium formation, host penetration, biotrophic growth and immune evasion. We argue that improved knowledge of glycosylation pathways and the impact of these modifications on fungal pathogenesis is overdue and could provide novel strategies for disease control.
Collapse
Affiliation(s)
- Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
48
|
Figueiredo L, Santos RB, Figueiredo A. Defense and Offense Strategies: The Role of Aspartic Proteases in Plant-Pathogen Interactions. BIOLOGY 2021; 10:75. [PMID: 33494266 PMCID: PMC7909840 DOI: 10.3390/biology10020075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Plant aspartic proteases (APs; E.C.3.4.23) are a group of proteolytic enzymes widely distributed among different species characterized by the conserved sequence Asp-Gly-Thr at the active site. With a broad spectrum of biological roles, plant APs are suggested to undergo functional specialization and to be crucial in developmental processes, such as in both biotic and abiotic stress responses. Over the last decade, an increasing number of publications highlighted the APs' involvement in plant defense responses against a diversity of stresses. In contrast, few studies regarding pathogen-secreted APs and AP inhibitors have been published so far. In this review, we provide a comprehensive picture of aspartic proteases from plant and pathogenic origins, focusing on their relevance and participation in defense and offense strategies in plant-pathogen interactions.
Collapse
|