1
|
Costa FM, Vidal R, de Almeida Silva NC, Veasey EA, de Oliveira Freitas F, Zucchi MI. Archaeological findings show the extent of primitive characteristics of maize in South America. SCIENCE ADVANCES 2024; 10:eadn1466. [PMID: 39231236 PMCID: PMC11373604 DOI: 10.1126/sciadv.adn1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Scientific research has suggested that maize spread from Mexico and arrived in lowland South America in a state of partial domestication. However, archaeological samples with primitive morphological characteristics that corroborate this finding have not been recorded in the region thus far. Unexpectedly, many samples were identified in the Peruaçu Valley with characteristics never previously observed in South America. These archaeological samples with primitive characteristics, which are the focus of this work, represent the furthest records from the center of origin of the species and the longest duration of the maintenance of such characteristics (between 1010 and 570 years before present). The findings of this study, including archaeological samples, native races, and samples of teosinte, attest to a long history of maize diversification in lowland South America.
Collapse
Affiliation(s)
- Flaviane Malaquias Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Rafael Vidal
- Universidad de la República, Facultad de Agronomía, Montevideo 12900, Uruguay
| | | | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | | | - Maria Imaculada Zucchi
- Secretaria de Agricultura e Abastecimento do Estado de São Paulo, APTA-URPD, Piracicaba, SP, CEP 13400-900, Brazil
| |
Collapse
|
2
|
Gutaker RM, Purugganan MD. Adaptation and the Geographic Spread of Crop Species. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:679-706. [PMID: 38012052 DOI: 10.1146/annurev-arplant-060223-030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Crops are plant species that were domesticated starting about 11,000 years ago from several centers of origin, most prominently the Fertile Crescent, East Asia, and Mesoamerica. From their domestication centers, these crops spread across the globe and had to adapt to differing environments as a result of this dispersal. We discuss broad patterns of crop spread, including the early diffusion of crops associated with the rise and spread of agriculture, the later movement via ancient trading networks, and the exchange between the Old and New Worlds over the last ∼550 years after the European colonization of the Americas. We also examine the various genetic mechanisms associated with the evolutionary adaptation of crops to their new environments after dispersal, most prominently seasonal adaptation associated with movement across latitudes, as well as altitudinal, temperature, and other environmental factors.
Collapse
Affiliation(s)
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, USA;
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, USA
| |
Collapse
|
3
|
Domic AI, VanDerwarker AM, Thakar HB, Hirth K, Capriles JM, Harper TK, Scheffler TE, Kistler L, Kennett DJ. Archaeobotanical evidence supports indigenous cucurbit long-term use in the Mesoamerican Neotropics. Sci Rep 2024; 14:10885. [PMID: 38740801 DOI: 10.1038/s41598-024-60723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The squash family (Cucurbitaceae) contains some of the most important crops cultivated worldwide and has played an important ecological, economic, and cultural role for millennia. In the American tropics, squashes were among the first cultivated crop species, but little is known about how their domestication unfolded. Here, we employ direct radiocarbon dating and morphological analyses of desiccated cucurbit seeds, rinds, and stems from El Gigante Rockshelter in Honduras to reconstruct human practices of selection and cultivation of Lagenaria siceraria, Cucurbita pepo, and Cucurbita moschata. Direct radiocarbon dating indicates that humans started using Lagenaria and wild Cucurbita starting ~ 10,950 calendar years before present (cal B.P.), primarily as watertight vessels and possibly as cooking and drinking containers. A rind directly dated to 11,150-10,765 cal B.P. represents the oldest known bottle gourd in the Americas. Domesticated C. moschata subsequently appeared ~ 4035 cal B.P., followed by domesticated C. pepo ~ 2190 cal B.P. associated with increasing evidence for their use as food crops. Multivariate statistical analysis of seed size and shape show that the archaeological C. pepo assemblage exhibits significant variability, representing at least three varieties: one similar to present-day zucchini, another like present-day vegetable marrow, and a native cultivar without modern analogs. Our archaeobotanical data supports the hypothesis that Indigenous cucurbit use started in the Early Holocene, and that agricultural complexity during the Late Holocene involved selective breeding that encouraged crop diversification.
Collapse
Affiliation(s)
- Alejandra I Domic
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Geosciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Amber M VanDerwarker
- Department of Anthropology, University of California, Santa Barbara, CA, 93106, USA
| | - Heather B Thakar
- Department of Anthropology, Texas A&M University, College Station, TX, 77843, USA
| | - Kenneth Hirth
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - José M Capriles
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Thomas K Harper
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Logan Kistler
- Department of Anthropology, Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
4
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
5
|
Alam O, Purugganan MD. Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. THE PLANT CELL 2024; 36:1227-1241. [PMID: 38243576 PMCID: PMC11062453 DOI: 10.1093/plcell/koae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Domestication can be considered a specialized mutualism in which a domesticator exerts control over the reproduction or propagation (fitness) of a domesticated species to gain resources or services. The evolution of crops by human-associated selection provides a powerful set of models to study recent evolutionary adaptations and their genetic bases. Moreover, the domestication and dispersal of crops such as rice, maize, and wheat during the Holocene transformed human social and political organization by serving as the key mechanism by which human societies fed themselves. Here we review major themes and identify emerging questions in three fundamental areas of crop domestication research: domestication phenotypes and syndromes, genetic architecture underlying crop evolution, and the ecology of domestication. Current insights on the domestication syndrome in crops largely come from research on cereal crops such as rice and maize, and recent work indicates distinct domestication phenotypes can arise from different domestication histories. While early studies on the genetics of domestication often identified single large-effect loci underlying major domestication traits, emerging evidence supports polygenic bases for many canonical traits such as shattering and plant architecture. Adaptation in human-constructed environments also influenced ecological traits in domesticates such as resource acquisition rates and interactions with other organisms such as root mycorrhizal fungi and pollinators. Understanding the ecological context of domestication will be key to developing resource-efficient crops and implementing more sustainable land management and cultivation practices.
Collapse
Affiliation(s)
- Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, 10028, USA
| |
Collapse
|
6
|
Liu X, Jones M. Needs for a conceptual bridge between biological domestication and early food globalization. Proc Natl Acad Sci U S A 2024; 121:e2219055121. [PMID: 38536744 PMCID: PMC11032431 DOI: 10.1073/pnas.2219055121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The past 15 y has seen much development in documentation of domestication of plants and animals as gradual traditions spanning millennia. There has also been considerable momentum in understanding the dispersals of major domesticated taxa across continents spanning thousands of miles. The two processes are often considered within different theoretical strains. What is missing from our repertoire of explanations is a conceptual bridge between the protracted process over millennia and the multiregional, globally dispersed nature of domestication. The evidence reviewed in this paper bears upon how we conceptualize domestication as an episode or a process. By bringing together the topics of crop domestication and crop movement, those complex, protracted, and continuous outcomes come more clearly into view.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO63130
| | - Martin Jones
- McDonald Institute for Archaeological Research, University of Cambridge, CambridgeCB2 3DZ, United Kingdom
| |
Collapse
|
7
|
Ebert CE, Hixon SW, Buckley GM, George RJ, Pacheco-Fores SI, Palomo JM, Sharpe AE, Solís-Torres ÓR, Davis JB, Fernandes R, Kennett DJ. The Caribbean and Mesoamerica Biogeochemical Isotope Overview (CAMBIO). Sci Data 2024; 11:349. [PMID: 38589396 PMCID: PMC11001905 DOI: 10.1038/s41597-024-03167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
The Caribbean & Mesoamerica Biogeochemical Isotope Overview (CAMBIO) is an archaeological data community designed to integrate published biogeochemical data from the Caribbean, Mesoamerica, and southern Central America to address questions about dynamic interactions among humans, animals, and the environment in the region over the past 10,000 years. Here we present the CAMBIO human dataset, which consists of more than 16,000 isotopic measurements from human skeletal tissue samples (δ13C, δ15N, δ34S, δ18O, 87Sr/86Sr, 206/204Pb, 207/204Pb, 208/204Pb, 207/206Pb) from 290 archaeological sites dating between 7000 BC to modern times. The open-access dataset also includes detailed chronological, contextual, and laboratory/sample preparation information for each measurement. The collated data are deposited on the open-access CAMBIO data community via the Pandora Initiative data platform ( https://pandoradata.earth/organization/cambio ).
Collapse
Affiliation(s)
- Claire E Ebert
- Department of Anthropology, University of Pittsburgh, 3302 WWPH, Pittsburgh, PA, 15260, USA.
| | - Sean W Hixon
- Department of Integrative Biology, Oregon State University, 4575 SW Research Way, Corvallis, OR, 97331, USA
- Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, D-07745, Jena, Germany
| | - Gina M Buckley
- Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour (ICArEHB), Faculdade das Ciências Humanas e Sociais, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Richard J George
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sofía I Pacheco-Fores
- Anthropology Department, Hamline University, 1536 Hewitt Avenue, Saint Paul, MN, 55104, USA
| | - Juan Manuel Palomo
- Department of Anthropology, University of Arizona, 1009 E South Campus Dr, Tucson, AZ, 85721, USA
| | - Ashley E Sharpe
- Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Ancon, Panama, Republic of Panama
| | - Óscar R Solís-Torres
- Department of Integrative Biology, Oregon State University, 4575 SW Research Way, Corvallis, OR, 97331, USA
- Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, D-07745, Jena, Germany
- Instituto Nacional de Antropología e Historia (INAH), Moneda 16, Col. Centro, Alcaldía Cuauhtémoc, 06060, Ciudad de México, México
| | - J Britt Davis
- School of Human Evolution and Social Change, Arizona State University, 900 S. Cady Mall, Tempe, AZ, 85281, USA
| | - Ricardo Fernandes
- Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, D-07745, Jena, Germany
- Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927, Warsaw, Poland
- Climate Change and History Research Initiative, Princeton University, 129 Dickinson Hall, Princeton, NJ, 08544-1017, USA
- Arne Faculty of Arts, Masaryk University, Nováka 1, 602 00, Brno, Czech Republic
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
8
|
Wagner S, Seguin-Orlando A, Leplé JC, Leroy T, Lalanne C, Labadie K, Aury JM, Poirier S, Wincker P, Plomion C, Kremer A, Orlando L. Tracking population structure and phenology through time using ancient genomes from waterlogged white oak wood. Mol Ecol 2024; 33:e16859. [PMID: 36748324 PMCID: PMC7615563 DOI: 10.1111/mec.16859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Whole genome characterizations of crop plants based on ancient DNA have provided unique keys for a better understanding of the evolutionary origins of modern cultivars, the pace and mode of selection underlying their adaptation to new environments and the production of phenotypes of interest. Although forests are among the most biologically rich ecosystems on earth and represent a fundamental resource for human societies, no ancient genome sequences have been generated for trees. This contrasts with the generation of multiple ancient reference genomes for important crops. Here, we sequenced the first ancient tree genomes using two white oak wood remains from Germany dating to the Last Little Ice Age (15th century CE, 7.3× and 4.0×) and one from France dating to the Bronze Age (1700 BCE, 3.4×). We assessed the underlying species and identified one medieval remains as a hybrid between two common oak species (Quercus robur and Q. petraea) and the other two remains as Q. robur. We found that diversity at the global genome level had not changed over time. However, exploratory analyses suggested that a reduction of diversity took place at different time periods. Finally, we determined the timing of leaf unfolding for ancient trees for the first time. The study extends the application of ancient wood beyond the classical proxies of dendroclimatology, dendrochronology, dendroarchaeology and dendroecology, thereby enhancing resolution of inferences on the responses of forest ecosystems to past environmental changes, epidemics and silvicultural practices.
Collapse
Affiliation(s)
- Stefanie Wagner
- Plant Genomic Resources Center (CNRGV), INRAE, Castanet-Tolosan, France
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| | - Andaine Seguin-Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| | | | - Thibault Leroy
- IRHS UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Patrick Wincker
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | | | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
9
|
Grasso G, Bianciotto V, Marmeisse R. Paleomicrobiology: Tracking the past microbial life from single species to entire microbial communities. Microb Biotechnol 2024; 17:e14390. [PMID: 38227345 PMCID: PMC10832523 DOI: 10.1111/1751-7915.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
By deciphering information encoded in degraded ancient DNA extracted from up to million-years-old samples, molecular paleomicrobiology enables to objectively retrace the temporal evolution of microbial species and communities. Assembly of full-length genomes of ancient pathogen lineages allows not only to follow historical epidemics in space and time but also to identify the acquisition of genetic features that represent landmarks in the evolution of the host-microbe interaction. Analysis of microbial community DNA extracted from essentially human paleo-artefacts (paleofeces, dental calculi) evaluates the relative contribution of diet, lifestyle and geography on the taxonomic and functional diversity of these guilds in which have been identified species that may have gone extinct in today's human microbiome. As for non-host-associated environmental samples, such as stratified sediment cores, analysis of their DNA illustrates how and at which pace microbial communities are affected by local or widespread environmental disturbance. Description of pre-disturbance microbial diversity patterns can aid in evaluating the relevance and effectiveness of remediation policies. We finally discuss how recent achievements in paleomicrobiology could contribute to microbial biotechnology in the fields of medical microbiology and food science to trace the domestication of microorganisms used in food processing or to illustrate the historic evolution of food processing microbial consortia.
Collapse
Affiliation(s)
- Gianluca Grasso
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi of TurinTurinItaly
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Valeria Bianciotto
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Roland Marmeisse
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| |
Collapse
|
10
|
Khalaf EM, Shrestha A, Reid M, McFadyen BJ, Raizada MN. Conservation and diversity of the pollen microbiome of Pan-American maize using PacBio and MiSeq. Front Microbiol 2023; 14:1276241. [PMID: 38179444 PMCID: PMC10764481 DOI: 10.3389/fmicb.2023.1276241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
Pollen is a vector for diversification, fitness-selection, and transmission of plant genetic material. The extent to which the pollen microbiome may contribute to host diversification is largely unknown, because pollen microbiome diversity within a plant species has not been reported, and studies have been limited to conventional short-read 16S rRNA gene sequencing (e.g., V4-MiSeq) which suffers from poor taxonomic resolution. Here we report the pollen microbiomes of 16 primitive and traditional accessions of maize (corn) selected by indigenous peoples across the Americas, along with the modern U.S. inbred B73. The maize pollen microbiome has not previously been reported. The pollen microbiomes were identified using full-length (FL) 16S rRNA gene PacBio SMRT sequencing compared to V4-MiSeq. The Pan-American maize pollen microbiome encompasses 765 taxa spanning 39 genera and 46 species, including known plant growth promoters, insect-obligates, plant pathogens, nitrogen-fixers and biocontrol agents. Eleven genera and 13 species composed the core microbiome. Of 765 taxa, 63% belonged to only four genera: 28% were Pantoea, 15% were Lactococcus, 11% were Pseudomonas, and 10% were Erwinia. Interestingly, of the 215 Pantoea taxa, 180 belonged to a single species, P. ananatis. Surprisingly, the diversity within P. ananatis ranged nearly 10-fold amongst the maize accessions analyzed (those with ≥3 replicates), despite being grown in a common field. The highest diversity within P. ananatis occurred in accessions that originated near the center of diversity of domesticated maize, with reduced diversity associated with the north-south migration of maize. This sub-species diversity was revealed by FL-PacBio but missed by V4-MiSeq. V4-MiSeq also mis-identified some dominant genera captured by FL-PacBio. The study, though limited to a single season and common field, provides initial evidence that pollen microbiomes reflect evolutionary and migratory relationships of their host plants.
Collapse
Affiliation(s)
- Eman M. Khalaf
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Michelle Reid
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Kim AS, Kreiner JM, Hernández F, Bock DG, Hodgins KA, Rieseberg LH. Temporal collections to study invasion biology. Mol Ecol 2023; 32:6729-6742. [PMID: 37873879 DOI: 10.1111/mec.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.
Collapse
Affiliation(s)
- Amy S Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Yang N, Wang Y, Liu X, Jin M, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes BP, Gui S, Fan X, Harper TK, Kennett DJ, Li W, Lu Y, Ding J, Chen Z, Luo J, Mambakkam S, Menon M, Snodgrass S, Veller C, Wu S, Wu S, Zhuo L, Xiao Y, Yang X, Stitzer MC, Runcie D, Yan J, Ross-Ibarra J. Two teosintes made modern maize. Science 2023; 382:eadg8940. [PMID: 38033071 DOI: 10.1126/science.adg8940] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023]
Abstract
The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.
Collapse
Affiliation(s)
- Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Miguel Vallebueno-Estrada
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, 36821 Guanajuato, México
| | - Erin Calfee
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Thomas K Harper
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sowmya Mambakkam
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
| | - Samantha Snodgrass
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Carl Veller
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Siying Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Michelle C Stitzer
- Institute for Genomic Diversity and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Runcie
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Kennett DJ, Harper TK, VanDerwarker A, Thakar HB, Domic A, Blake M, Benz BF, George RJ, Scheffler TE, Culleton BJ, Kistler L, Hirth KG. Trans-Holocene Bayesian chronology for tree and field crop use from El Gigante rockshelter, Honduras. PLoS One 2023; 18:e0287195. [PMID: 37352287 PMCID: PMC10289419 DOI: 10.1371/journal.pone.0287195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
El Gigante rockshelter in western Honduras provides a deeply stratified archaeological record of human-environment interaction spanning the entirety of the Holocene. Botanical materials are remarkably well preserved and include important tree (e.g., ciruela (Spondias), avocado (Persea americana)) and field (maize (Zea mays), beans (Phaseolus), and squash (Cucurbita)) crops. Here we provide a major update to the chronology of tree and field crop use evident in the sequence. We report 375 radiocarbon dates, a majority of which are for short-lived botanical macrofossils (e.g., maize cobs, avocado seeds, or rinds). Radiocarbon dates were used in combination with stratigraphic details to establish a Bayesian chronology for ~9,800 identified botanical samples spanning the last 11,000 years. We estimate that at least 16 discrete intervals of use occurred during this time, separated by gaps of ~100-2,000 years. The longest hiatus in rockshelter occupation was between ~6,400 and 4,400 years ago and the deposition of botanical remains peaked at ~2,000 calendar years before present (cal BP). Tree fruits and squash appeared early in the occupational sequence (~11,000 cal BP) with most other field crops appearing later in time (e.g., maize at ~4,400 cal BP; beans at ~2,200 cal BP). The early focus on tree fruits and squash is consistent with early coevolutionary partnering with humans as seed dispersers in the wake of megafaunal extinction in Mesoamerica. Tree crops predominated through much of the Holocene, and there was an overall shift to field crops after 4,000 cal BP that was largely driven by increased reliance on maize farming.
Collapse
Affiliation(s)
- Douglas J. Kennett
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Thomas K. Harper
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Amber VanDerwarker
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Heather B. Thakar
- Department of Anthropology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alejandra Domic
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael Blake
- Department of Biology, Texas Wesleyan University, Forth Worth, Texas, United States of America
| | - Bruce F. Benz
- Department of Anthropology, Texas A & M University, College Station, Texas, United States of America
| | - Richard J. George
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Timothy E. Scheffler
- Department of Anthropology, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| | - Brendan J. Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Logan Kistler
- Department of Anthropology, Smithsonian Institution, Washington, DC, United States of America
| | - Kenneth G. Hirth
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
14
|
Jiang Y, Yang L, Xie H, Qin L, Wang L, Xie X, Zhou H, Tan X, Zhou J, Cheng W. Metabolomics and transcriptomics strategies to reveal the mechanism of diversity of maize kernel color and quality. BMC Genomics 2023; 24:194. [PMID: 37046216 PMCID: PMC10091680 DOI: 10.1186/s12864-023-09272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Maize has many kernel colors, from white to dark black. However, research on the color and nutritional quality of the different varieties is limited. The color of the maize grain is an important characteristic. Colored maize is rich in nutrients, which have received attention for their role in diet-related chronic diseases and have different degrees of anti-stress protection for animal and human health. METHODS A comprehensive metabolome (LC-MS/MS) and transcriptome analysis was performed in this study to compare different colored maize varieties from the perspective of multiple recombination in order to study the nutritional value of maize with different colors and the molecular mechanism of color formation. RESULTS Maize kernels with diverse colors contain different types of health-promoting compounds, highlighting that different maize varieties can be used as functional foods according to human needs. Among them, red-purple and purple-black maize contain more flavonoids than white and yellow kernels. Purple-black kernels have a high content of amino acids and nucleotides, while red-purple kernels significantly accumulate sugar alcohols and lipids. CONCLUSION Our study can provide insights for improving people's diets and provide a theoretical basis for the study of food structure for chronic diseases.
Collapse
Affiliation(s)
- Yufeng Jiang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Li Yang
- Technical Support Department of Wuhan Metware Biotechnology, Wuhan, 430075, China
| | - Hexia Xie
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Lanqiu Qin
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiaodong Xie
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Haiyu Zhou
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xianjie Tan
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jinguo Zhou
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Weidong Cheng
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
15
|
Spengler RN. Insularity and early domestication: anthropogenic ecosystems as habitat islands. OIKOS 2022. [DOI: 10.1111/oik.09549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert N. Spengler
- Dept of Archaeology, Max Planck Inst. for the Science of Human History Jena Germany
| |
Collapse
|
16
|
Costa FM, Silva NCDA, Vidal R, Clement CR, Freitas FDO, Alves-Pereira A, Petroli CD, Zucchi MI, Veasey EA. Maize dispersal patterns associated with different types of endosperm and migration of indigenous groups in lowland South America. ANNALS OF BOTANY 2022; 129:737-751. [PMID: 35390119 PMCID: PMC9113157 DOI: 10.1093/aob/mcac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The lowlands of South America appear to be remarkably important in the evolutionary history of maize, due to new evidence that suggests that maize dispersed from Mexico and arrived in this region in a state of partial domestication. This study aimed to identify dispersal patterns of maize genetic diversity in this part of the continent. METHODS A total of 170 maize accessions were characterized with 4398 single nucleotide polymorphisms (SNPs) and analysed to determine if maize dispersal was associated with types of endosperm and indigenous language families. KEY RESULTS Four genetic groups were identified in the discriminant analysis of principal components and five groups in the cluster analysis (neighbour-joining method). The groups were structured according to the predominance of endosperm types (popcorn, floury, flint/semi-flint). Spatial principal component analysis of genetic variation suggests different dispersal patterns for each endosperm type and can be associated with hypotheses of expansions of different indigenous groups. CONCLUSIONS From a possible origin in Southwestern Amazonia, different maize dispersal routes emerged: (1) towards Northern Amazonia, which continued towards the Caatinga and south-eastern Atlantic Forest (Floury); (2) towards Southern Brazil, passing through the Cerrado and Southern Atlantic Forest reaching the Pampa region (Floury); and (3) along the Atlantic Coast, following Tupi movements originating from two separate expansions: one (Tupinamba) from north to south, and the other (Guarani) in the opposite direction, from south to north (flint, floury and popcorn).
Collapse
Affiliation(s)
- Flaviane Malaquias Costa
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, 13418-900, Brazil
| | | | - Rafael Vidal
- Facultad de Agronomía, Universidad de la República, Montevideo, 12900, Uruguay
| | | | | | | | | | - Maria Imaculada Zucchi
- Secretaria de Agricultura e Abastecimento do Estado de São Paulo, Piracicaba, SP, 13400-900, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
17
|
Janzen GM, Aguilar‐Rangel MR, Cíntora‐Martínez C, Blöcher‐Juárez KA, González‐Segovia E, Studer AJ, Runcie DE, Flint‐Garcia SA, Rellán‐Álvarez R, Sawers RJH, Hufford MB. Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evol Appl 2022; 15:817-837. [PMID: 35603032 PMCID: PMC9108319 DOI: 10.1111/eva.13372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
Populations are locally adapted when they exhibit higher fitness than foreign populations in their native habitat. Maize landrace adaptations to highland and lowland conditions are of interest to researchers and breeders. To determine the prevalence and strength of local adaptation in maize landraces, we performed a reciprocal transplant experiment across an elevational gradient in Mexico. We grew 120 landraces, grouped into four populations (Mexican Highland, Mexican Lowland, South American Highland, South American Lowland), in Mexican highland and lowland common gardens and collected phenotypes relevant to fitness and known highland-adaptive traits such as anthocyanin pigmentation and macrohair density. 67k DArTseq markers were generated from field specimens to allow comparisons between phenotypic patterns and population genetic structure. We found phenotypic patterns consistent with local adaptation, though these patterns differ between the Mexican and South American populations. Quantitative trait differentiation (Q ST) was greater than neutral allele frequency differentiation (F ST) for many traits, signaling directional selection between pairs of populations. All populations exhibited higher fitness metric values when grown at their native elevation, and Mexican landraces had higher fitness than South American landraces when grown in these Mexican sites. As environmental distance between landraces' native collection sites and common garden sites increased, fitness values dropped, suggesting landraces are adapted to environmental conditions at their natal sites. Correlations between fitness and anthocyanin pigmentation and macrohair traits were stronger in the highland site than the lowland site, supporting their status as highland-adaptive. These results give substance to the long-held presumption of local adaptation of New World maize landraces to elevation and other environmental variables across North and South America.
Collapse
Affiliation(s)
- Garrett M. Janzen
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
- Present address:
Department of Plant BiologyUniversity of GeorgiaAthensGeorgia30602USA
| | | | | | | | | | - Anthony J. Studer
- Department of Crop SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Daniel E. Runcie
- Department of Plant SciencesUniversity of California‐DavisBerkeleyCaliforniaUSA
| | - Sherry A. Flint‐Garcia
- Agricultural Research ServiceUnited States Department of AgricultureColumbiaMissouriUSA
- University of MissouriColumbiaMissouriUSA
| | - Rubén Rellán‐Álvarez
- LangebioIrapuato, GuanajuatoMexico
- Present address:
Molecular and Structural BiochemistryNorth Carolina State University128 Polk HallRaleighNorth Carolina27695‐7622USA
| | - Ruairidh J. H. Sawers
- LangebioIrapuato, GuanajuatoMexico
- Present address:
Department of Plant SciencePennsylvania State UniversityUniversity ParkPennsylvania16802USA
| | - Matthew B. Hufford
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
18
|
Gutaker RM, Chater CCC, Brinton J, Castillo-Lorenzo E, Breman E, Pironon S. Scaling up neodomestication for climate-ready crops. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102169. [PMID: 35065528 DOI: 10.1016/j.pbi.2021.102169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
We can increase the stability of our food systems against environmental variability and climate change by following the footsteps of our ancestors and domesticating edible wild plants. Reinforced by recent advances in comparative genomics and gene editing technologies, neodomestication opens possibilities for a rapid generation of new crops. By starting the candidate selection pipeline with climatic parameters, we orient neodomestication efforts to increase food security against climate change. We highlight the fact that the edible species conservation and characterization will be key in this process. Utilization of genetic resources, entrusted to conservationists and researchers by local communities, has to be conducted with highest ethical standards and benefit-sharing in mind.
Collapse
Affiliation(s)
- Rafal M Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK
| | - Jemima Brinton
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK
| | - Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Samuel Pironon
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| |
Collapse
|
19
|
South-to-north migration preceded the advent of intensive farming in the Maya region. Nat Commun 2022; 13:1530. [PMID: 35318319 PMCID: PMC8940966 DOI: 10.1038/s41467-022-29158-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The genetic prehistory of human populations in Central America is largely unexplored leaving an important gap in our knowledge of the global expansion of humans. We report genome-wide ancient DNA data for a transect of twenty individuals from two Belize rock-shelters dating between 9,600-3,700 calibrated radiocarbon years before present (cal. BP). The oldest individuals (9,600-7,300 cal. BP) descend from an Early Holocene Native American lineage with only distant relatedness to present-day Mesoamericans, including Mayan-speaking populations. After ~5,600 cal. BP a previously unknown human dispersal from the south made a major demographic impact on the region, contributing more than 50% of the ancestry of all later individuals. This new ancestry derived from a source related to present-day Chibchan speakers living from Costa Rica to Colombia. Its arrival corresponds to the first clear evidence for forest clearing and maize horticulture in what later became the Maya region. The genetic prehistory of central America has not been well explored. Here, the authors find evidence from ancient DNA from twenty individuals who lived in Belize 9,600 to 3,700 years ago of a migration from the south that coincided with the first evidence for forest clearing and the spread of maize horticulture.
Collapse
|
20
|
Turner NJ, Geralda Armstrong C, Lepofsky D. Adopting a Root: Documenting Ecological and Cultural Signatures of Plant Translocations in Northwestern North America. AMERICAN ANTHROPOLOGIST 2021. [DOI: 10.1111/aman.13658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nancy J. Turner
- School of Environmental Studies University of Victoria Canada
| | | | - Dana Lepofsky
- Department of Archaeology Simon Fraser University Canada
| |
Collapse
|
21
|
Lentz DL, Hamilton TL, Dunning NP, Tepe EJ, Scarborough VL, Meyers SA, Grazioso L, Weiss AA. Environmental DNA reveals arboreal cityscapes at the Ancient Maya Center of Tikal. Sci Rep 2021; 11:12725. [PMID: 34135357 PMCID: PMC8209062 DOI: 10.1038/s41598-021-91620-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Tikal, a major city of the ancient Maya world, has been the focus of archaeological research for over a century, yet the interactions between the Maya and the surrounding Neotropical forests remain largely enigmatic. This study aimed to help fill that void by using a powerful new technology, environmental DNA analysis, that enabled us to characterize the site core vegetation growing in association with the artificial reservoirs that provided the city water supply. Because the area has no permanent water sources, such as lakes or rivers, these reservoirs were key to the survival of the city, especially during the population expansion of the Classic period (250-850 CE). In the absence of specific evidence, the nature of the vegetation surrounding the reservoirs has been the subject of scientific hypotheses and artistic renderings for decades. To address these hypotheses we captured homologous sequences of vascular plant DNA extracted from reservoir sediments by using a targeted enrichment approach involving 120-bp genetic probes. Our samples encompassed the time before, during and after the occupation of Tikal (1000 BCE-900 CE). Results indicate that the banks of the ancient reservoirs were primarily fringed with native tropical forest vegetation rather than domesticated species during the Maya occupation.
Collapse
Affiliation(s)
- David L Lentz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology and the BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nicholas P Dunning
- Department of Geography and GIS, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Vernon L Scarborough
- Department of Anthropology, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Stephanie A Meyers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Liwy Grazioso
- Department of Archaeology, Universidad de San Carlos de Guatemala, Ciudad Universitaria, 01012, Guatemala, Guatemala
| | - Alison A Weiss
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|