1
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
2
|
Moolla N, Weaver H, Bailo R, Singh A, Bavro VN, Bhatt A. The role of ABC transporter DrrABC in the export of PDIM in Mycobacterium tuberculosis. Cell Surf 2024; 12:100132. [PMID: 39507394 PMCID: PMC11539658 DOI: 10.1016/j.tcsw.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
The Mycobacterium tuberculosis virulence lipid phthiocerol dimycocerosate (PDIM) is exported by a complex mechanism that involves multiple proteins including the Resistance-Nodulation-Division (RND) transporter MmpL7 and the lipoprotein LppX. Here, we probe the role of the putative heterooligomeric ATP-Binding Cassette (ABC) transporter complex composed of DrrA, DrrB and DrrC in PDIM transport by constructing a set of individual null mutants of drrA, drrB and drrC in the vaccine strain Mycobacterium bovis BCG. Loss of all three, or individual drr genes, all resulted in a complete loss of PDIM export to the outer envelope of the mycobacterial cell. Furthermore, guided by a bioinformatic analysis we interrogated specific signature residues within the DrrABC to demonstrate that it is indeed an ABC transporter, and our modelling, together with the mutagenesis identify it as a member of the Type V family of ABC exporters. We identify several unique structural elements of the transporter, including a non-canonical C-terminally inserted domain (CTD) structure within DrrA, which may account for its functional properties.
Collapse
Affiliation(s)
- Nabiela Moolla
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helen Weaver
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Kelly SD, Williams DM, Zhu S, Kim T, Jana M, Nothof J, Thota VN, Lowary TL, Whitfield C. Klebsiella pneumoniae O-polysaccharide biosynthesis highlights the diverse organization of catalytic modules in ABC transporter-dependent glycan assembly. J Biol Chem 2024; 300:107420. [PMID: 38815868 PMCID: PMC11231755 DOI: 10.1016/j.jbc.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shawna Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manas Jana
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Nothof
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
4
|
Kelly SD, Ovchinnikova OG, Müller F, Steffen M, Braun M, Sweeney RP, Kowarik M, Follador R, Lowary TL, Serventi F, Whitfield C. Identification of a second glycoform of the clinically prevalent O1 antigen from Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2023; 120:e2301302120. [PMID: 37428935 PMCID: PMC10629545 DOI: 10.1073/pnas.2301302120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023] Open
Abstract
Carbapenemase and extended β-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | | | | | - Martin Braun
- LimmaTech Biologics AG, Schlieren8952, Switzerland
| | - Ryan P. Sweeney
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | | | | | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Nangang11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | | | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
5
|
Han Y, Luo P, Zeng H, Wang P, Xu J, Chen P, Chen X, Chen Y, Cao Q, Zhai R, Xia J, Deng S, Cheng A, Cheng C, Song H. The effect of O-antigen length determinant wzz on the immunogenicity of Salmonella Typhimurium for Escherichia coli O2 O-polysaccharides delivery. Vet Res 2023; 54:15. [PMID: 36849993 PMCID: PMC9969949 DOI: 10.1186/s13567-023-01142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/15/2022] [Indexed: 03/01/2023] Open
Abstract
Attenuated Salmonella Typhimurium is a promising antigen delivery system for live vaccines such as polysaccharides. The length of polysaccharides is a well-known key factor in modulating the immune response induced by glycoconjugates. However, the relationship between the length of Lipopolysaccharide (LPS) O-antigen (OAg) and the immunogenicity of S. Typhimurium remains unclear. In this study, we assessed the effect of OAg length determined by wzzST on Salmonella colonization, cell membrane permeability, antimicrobial activity, and immunogenicity by comparing the S. Typhimurium wild-type ATCC14028 strain to those with various OAg lengths of the ΔwzzST mutant and ΔwzzST::wzzECO2. The analysis of the OAg length distribution revealed that, except for the very long OAg, the short OAg length of 2-7 repeat units (RUs) was obtained from the ΔwzzST mutant, the intermediate OAg length of 13-21 RUs was gained from ΔwzzST::wzzECO2, and the long OAg length of over 20 RUs was gained from the wild-type. In addition, we found that the OAg length affected Salmonella colonization, cell permeability, and antibiotic resistance. Immunization of mice revealed that shortening the OAg length by altering wzzST had an effect on serum bactericidal ability, complement deposition, and humoral immune response. S. Typhimurium mutant strain ΔwzzST::wzzECO2 possessed good immunogenicity and was the optimum option for delivering E. coli O2 O-polysaccharides. Furthermore, the attenuated strain ATCC14028 ΔasdΔcrpΔcyaΔrfbPΔwzzST::wzzECO2-delivered E. coli O2 OAg gene cluster outperforms the ATCC14028 ΔasdΔcrpΔcyaΔrfbP in terms of IgG eliciting, cytokine expression, and immune protection in chickens. This study sheds light on the role of OAg length in Salmonella characteristics, which may have a potential application in optimizing the efficacy of delivered polysaccharide vaccines.
Collapse
Affiliation(s)
- Yue Han
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China ,grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Luo
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Huan Zeng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pu Wang
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jiali Xu
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pengju Chen
- Henan Institute of Morden Chinese Veterinary Medicine, Zhengzhou, 450002 China ,Shangdong Xindehui Biotechnology Co., Ltd, Yunchengxian, 274700 China
| | - Xindan Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Yuji Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Qiyu Cao
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Ruidong Zhai
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jing Xia
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Simin Deng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Anchun Cheng
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changyong Cheng
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC. Lipid Transport Across Bacterial Membranes. Annu Rev Cell Dev Biol 2022; 38:125-153. [PMID: 35850151 DOI: 10.1146/annurev-cellbio-120420-022914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
Collapse
Affiliation(s)
- Sabrina I Giacometti
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Kristen Dancel-Manning
- Office of Science and Research, New York University School of Medicine, New York, NY, USA;
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Hilton MA, Manning HW, Górniak I, Brady SK, Johnson MM, Zimmer J, Lang MJ. Single-molecule investigations of single-chain cellulose biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2122770119. [PMID: 36161928 PMCID: PMC9546554 DOI: 10.1073/pnas.2122770119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg2+, and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity.
Collapse
Affiliation(s)
- Mark A. Hilton
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Harris W. Manning
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| | - Sonia K. Brady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Madeline M. Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
- HHMI, Chevy Chase, MD 20815
| | - Matthew J. Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37235
| |
Collapse
|
8
|
Ekiert DC, Coudray N, Bhabha G. Structure and mechanism of the bacterial lipid ABC transporter, MlaFEDB. Curr Opin Struct Biol 2022; 76:102429. [PMID: 35981415 PMCID: PMC9509461 DOI: 10.1016/j.sbi.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Molecular basis for polysaccharide recognition and modulated ATP hydrolysis by the O antigen ABC transporter. Nat Commun 2022; 13:5226. [PMID: 36064941 PMCID: PMC9445017 DOI: 10.1038/s41467-022-32597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
O antigens are ubiquitous protective extensions of lipopolysaccharides in the extracellular leaflet of the Gram-negative outer membrane. Following biosynthesis in the cytosol, the lipid-linked polysaccharide is transported to the periplasm by the WzmWzt ABC transporter. Often, O antigen secretion requires the chemical modification of its elongating terminus, which the transporter recognizes via a carbohydrate-binding domain (CBD). Here, using components from A. aeolicus, we identify the O antigen structure with methylated mannose or rhamnose as its cap. Crystal and cryo electron microscopy structures reveal how WzmWzt recognizes this cap between its carbohydrate and nucleotide-binding domains in a nucleotide-free state. ATP binding induces drastic conformational changes of its CBD, terminating interactions with the O antigen. ATPase assays and site directed mutagenesis reveal reduced hydrolytic activity upon O antigen binding, likely to facilitate polymer loading into the ABC transporter. Our results elucidate critical steps in the recognition and translocation of polysaccharides by ABC transporters.
Collapse
|
10
|
Mena-Bueno S, Poveda-Urkixo I, Irazoki O, Palacios L, Cava F, Zabalza-Baranguá A, Grilló MJ. Brucella melitensis Wzm/Wzt System: Changes in the Bacterial Envelope Lead to Improved Rev1Δwzm Vaccine Properties. Front Microbiol 2022; 13:908495. [PMID: 35875565 PMCID: PMC9306315 DOI: 10.3389/fmicb.2022.908495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The lipopolysaccharide (LPS) O-polysaccharide (O-PS) is the main virulence factor in Brucella. After synthesis in the cytoplasmic membrane, O-PS is exported to the periplasm by the Wzm/Wzt system, where it is assembled into a LPS. This translocation also engages a bactoprenol carrier required for further biosynthesis pathways, such as cell wall biogenesis. Targeting O-PS export by blockage holds great potential for vaccine development, but little is known about the biological implications of each Wzm/Wzt moiety. To improve this knowledge and to elucidate its potential application as a vaccine, we constructed and studied wzm/wzt single- and double-deletion mutants, using the attenuated strain Brucella melitensis Rev1 as the parental strain. This allowed us to describe the composition of Brucella peptidoglycan for the first time. We observed that these mutants lack external O-PS yet trigger changes in genetic transcription and in phenotypic properties associated with the outer membrane and cell wall. The three mutants are highly attenuated; unexpectedly, Rev1Δwzm also excels as an immunogenic and effective vaccine against B. melitensis and Brucella ovis in mice, revealing that low persistence is not at odds with efficacy. Rev1Δwzm is attenuated in BeWo trophoblasts, does not infect mouse placentas, and is safe in pregnant ewes. Overall, these attributes and the minimal serological interference induced in sheep make Rev1Δwzm a highly promising vaccine candidate.
Collapse
Affiliation(s)
- Sara Mena-Bueno
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- Agronomy, Biotecnology and Food Department, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Irati Poveda-Urkixo
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Leyre Palacios
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ana Zabalza-Baranguá
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - María Jesús Grilló
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- *Correspondence: María Jesús Grilló,
| |
Collapse
|
11
|
Raschka SL, Harris A, Luisi BF, Schmitt L. Flipping and other astonishing transporter dance moves in fungal drug resistance. Bioessays 2022; 44:e2200035. [PMID: 35451123 DOI: 10.1002/bies.202200035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
In all domains of life, transmembrane proteins from the ATP-binding cassette (ABC) transporter family drive the translocation of diverse substances across lipid bilayers. In pathogenic fungi, the ABC transporters of the pleiotropic drug resistance (PDR) subfamily confer antibiotic resistance and so are of interest as therapeutic targets. They also drive the quest for understanding how ABC transporters can generally accommodate such a wide range of substrates. The Pdr5 transporter from baker's yeast is representative of the PDR group and, ever since its discovery more than 30 years ago, has been the subject of extensive functional analyses. A new perspective of these studies has been recently provided in the framework of the first electron cryo-microscopy structures of Pdr5, as well as emergent applications of machine learning in the field. Taken together, the old and the new developments have been used to propose a mechanism for the transport process in PDR proteins. This mechanism involves a "flippase" step that moves the substrates from one leaflet of the bilayer to the other, as a central element of cellular efflux.
Collapse
Affiliation(s)
- Stefanie L Raschka
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Andrzej Harris
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
12
|
Abstract
Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and N-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alvin C Y Kuk
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA; .,Current affiliation: Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Aili Hao
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA;
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
13
|
MsbA: an ABC transporter paradigm. Biochem Soc Trans 2021; 49:2917-2927. [PMID: 34821931 DOI: 10.1042/bst20211030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022]
Abstract
ATP-binding cassette (ABC) transporters play an important role in various cellular processes. They display a similar architecture and share a mechanism which couples ATP hydrolysis to substrate transport. However, in the light of current data and recent experimental progress, this protein superfamily appears as multifaceted as their broad substrate range. Among the prokaryotic ABC transporters, MsbA can serve as a paradigm for research in this field. It is located in the inner membrane of Gram-negative bacteria and functions as a floppase for the lipopolysaccharide (LPS) precursor core-LPS, which is involved in the biogenesis of the bacterial outer membrane. While MsbA shows high similarity to eukaryotic ABC transporters, its expression in Gram-negative bacteria makes it conveniently accessible for many experimental approaches from spectroscopy to 3D structure determination. As an essential protein for bacterial membrane integrity, MsbA has also become an attractive target for the development of novel antibiotics. Furthermore, it serves as a model for multidrug efflux pumps. Here we provide an overview of recent findings and their relevance to the field, highlight the potential of methods such as solid-state NMR and EPR spectroscopy and provide a perspective for future work.
Collapse
|
14
|
Sande C, Whitfield C. Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. EcoSal Plus 2021; 9:eESP00332020. [PMID: 34910576 PMCID: PMC11163842 DOI: 10.1128/ecosalplus.esp-0033-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|