1
|
Prakash P, Verma S, Gupta S. Influence of microbiome in intraprostatic inflammation and prostate cancer. Prostate 2024; 84:1179-1188. [PMID: 38899408 DOI: 10.1002/pros.24756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Chronic infection and inflammation have been linked to the development of prostate cancer. Dysbiosis of the oral and gut microbiomes and subsequent microbial translocation can lead to pathogenic prostate infections. Microbial-produced metabolites have also been associated with signaling pathways that promote prostate cancer development. A comprehensive discussion on the mechanisms of microbiome infection and the prostate microenvironment is essential to understand prostate carcinogenesis. METHODS Published studies were used from the National Center for Biotechnology Information (NCBI) database to conduct a narrative review. No restrictions were applied in the selection of articles. RESULTS Microbiome-derived short-chain fatty acids (SCFAs) have been found to upregulate multiple signaling pathways, including MAPK and PI3K, through IGF-1 signaling and M2 macrophage polarization. SCFAs can also upregulate Toll-like receptors, leading to chronic inflammation and the creation of a pro-prostate cancer environment. Dysbiosis of oral microbiota has been correlated with prostate infection and inflammation. Additionally, pathogenic microbiomes associated with urinary tract infections have shown a link to prostate cancer, with vesicoureteral reflux potentially contributing to prostate infection. CONCLUSIONS This review offers a comprehensive understanding of the impact of microbial infections linked to intraprostatic inflammation as a causative factor for prostate cancer. Further studies involving the manipulation of the microbiome and its produced metabolites may provide a more complete understanding of the microenvironmental mechanisms that promote prostate carcinogenesis.
Collapse
Affiliation(s)
- Pranav Prakash
- College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Graham MK, Wang R, Chikarmane R, Abel B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Rubenstein M, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. Nat Commun 2024; 15:7414. [PMID: 39198404 PMCID: PMC11358296 DOI: 10.1038/s41467-024-51450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
How prostate cancer cells and their precursors mediate changes in the tumor microenvironment (TME) to drive prostate cancer progression is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we perform extensive single-cell RNA-sequencing (scRNA-seq) and molecular pathology of the comparative biology between human prostate cancer and key stages in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues reveal that cancer cell-intrinsic activation of MYC signaling is a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Cell communication network and pathway analyses in GEMMs show that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogram the TME during carcinogenesis, leading to a convergence of cell state alterations in neighboring epithelial, immune, and fibroblast cell types that parallel key findings in human prostate cancer.
Collapse
Affiliation(s)
- Mindy K Graham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rulin Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Roshan Chikarmane
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bulouere Abel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jessica Hicks
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xin Pan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jianyong Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jennifer Meyers
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alyza Skaist
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yan Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - Kornel Schuebel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Theodore L DeWeese
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- inHealth Precision Medicine Program, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Feng W, Ladewig E, Salsabeel N, Zhao H, Lee YS, Gopalan A, Lange M, Luo H, Kang W, Fan N, Rosiek E, de Stanchina E, Chen Y, Carver BS, Leslie CS, Sawyers CL. ERG activates a stem-like proliferation-differentiation program in prostate epithelial cells with mixed basal-luminal identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540839. [PMID: 38585869 PMCID: PMC10996491 DOI: 10.1101/2023.05.15.540839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
To gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes Tmprss2 and Nkx3.1 (called BasalLum) but not in the larger population of classical Krt8+ luminal cells. Upon ERG activation, BasalLum cells give rise to the highly proliferative intermediate state, which subsequently transitions to the larger population of Krt8+ luminal cells characteristic of ERG-positive human cancers. Furthermore, this proliferative population is characterized by an ERG-specific chromatin state enriched for NFkB, AP-1, STAT and NFAT binding, with implications for TF cooperativity. The fact that the proliferative potential of ERG is enriched in a small stem-like population implicates the chromatin context of these cells as a critical variable for unmasking its oncogenic activity.
Collapse
Affiliation(s)
- Weiran Feng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Erik Ladewig
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Nazifa Salsabeel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Young Sun Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Matthew Lange
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Brett S. Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Division of Urology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christina S. Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| |
Collapse
|
4
|
Caramella-Pereira F, Zheng Q, Hicks JL, Roy S, Jones T, Pomper M, Antony L, Meeker AK, Yegnasubramanian S, De Marzo AM, Brennen WN. Overexpression of Fibroblast Activation Protein (FAP) in stroma of proliferative inflammatory atrophy (PIA) and primary adenocarcinoma of the prostate. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.04.24305338. [PMID: 38633791 PMCID: PMC11023661 DOI: 10.1101/2024.04.04.24305338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Fibroblast activation protein (FAP) is a serine protease upregulated at sites of tissue remodeling and cancer that represents a promising therapeutic and molecular imaging target. In prostate cancer, studies of FAP expression using tissue microarrays are conflicting, such that its clinical potential is unclear. Furthermore, little is known regarding FAP expression in benign prostatic tissues. Here we demonstrated, using a novel iterative multiplex IHC assay in standard tissue sections, that FAP was nearly absent in normal regions, but was increased consistently in regions of proliferative inflammatory atrophy (PIA). In carcinoma, FAP was expressed in all cases, but was highly heterogeneous. High FAP levels were associated with increased pathological stage and cribriform morphology. We verified that FAP levels in cancer correlated with CD163+ M2 macrophage density. In this first report to quantify FAP protein in benign prostate and primary tumors, using standard large tissue sections, we clarify that FAP is present in all primary prostatic carcinomas, supporting its potential clinical relevance. The finding of high levels of FAP within PIA supports the injury/regeneration model for its pathogenesis and suggests that it harbors a protumorigenic stroma. Yet, high levels of FAP in benign regions could lead to false positive FAP-based molecular imaging results in clinically localized prostate cancer.
Collapse
|
5
|
Stangis MM, Chen Z, Min J, Glass SE, Jackson JO, Radyk MD, Hoi XP, Brennen WN, Yu M, Dinh HQ, Coffey RJ, Shrubsole MJ, Chan KS, Grady WM, Yegnasubramanian S, Lyssiotis CA, Maitra A, Halberg RB, Dey N, Lau KS. The Hallmarks of Precancer. Cancer Discov 2024; 14:683-689. [PMID: 38571435 PMCID: PMC11170686 DOI: 10.1158/2159-8290.cd-23-1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Research on precancers, as defined as at-risk tissues and early lesions, is of high significance given the effectiveness of early intervention. We discuss the need for risk stratification to prevent overtreatment, an emphasis on the role of genetic and epigenetic aging when considering risk, and the importance of integrating macroenvironmental risk factors with molecules and cells in lesions and at-risk normal tissues for developing effective intervention and health policy strategies.
Collapse
Affiliation(s)
- Mary M. Stangis
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Zhengyi Chen
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
| | - Jimin Min
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Sarah E. Glass
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
| | - Jordan O. Jackson
- Department of Laboratory Medicine and Pathology, University of Washington
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
| | - Megan D. Radyk
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
| | - Xen Ping Hoi
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - W. Nathaniel Brennen
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medicine
- Department of Urology, Johns Hopkins Medicine
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Huy Q. Dinh
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Department of Medicine – Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Medicine – Division of Epidemiology, Vanderbilt University Medical Center
| | - Keith S. Chan
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Srinivasan Yegnasubramanian
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Radiation Oncology and Molecular Radiation Sciences – Molecular Radiation Science Division, Johns Hopkins Medicine
- Department of Pathology – Kidney-Urologic Pathology Division, Johns Hopkins Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
- Internal Medicine – Division of Gastroenterology, University of Michigan Medical School
- Rogel Cancer Center, University of Michigan Medical School
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Richard B. Halberg
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
| | - Ken S. Lau
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Surgery, Vanderbilt University Medical Center
| |
Collapse
|
6
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
7
|
Pernigoni N, Guo C, Gallagher L, Yuan W, Colucci M, Troiani M, Liu L, Maraccani L, Guccini I, Migliorini D, de Bono J, Alimonti A. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat Rev Urol 2023; 20:706-718. [PMID: 37491512 DOI: 10.1038/s41585-023-00795-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
The human body hosts a complex and dynamic population of trillions of microorganisms - the microbiota - which influences the body in homeostasis and disease, including cancer. Several epidemiological studies have associated specific urinary and gut microbial species with increased risk of prostate cancer; however, causal mechanistic data remain elusive. Studies have associated bacterial generation of genotoxins with the occurrence of TMPRSS2-ERG gene fusions, a common, early oncogenic event during prostate carcinogenesis. A subsequent study demonstrated the role of the gut microbiota in prostate cancer endocrine resistance, which occurs, at least partially, through the generation of androgenic steroids fuelling oncogenic signalling via the androgen receptor. These studies present mechanistic evidence of how the host microbiota might be implicated in prostate carcinogenesis and tumour progression. Importantly, these findings also reveal potential avenues for the detection and treatment of prostate cancer through the profiling and modulation of the host microbiota. The latter could involve approaches such as the use of faecal microbiota transplantation, prebiotics, probiotics, postbiotics or antibiotics, which can be used independently or combined with existing treatments to reverse therapeutic resistance and improve clinical outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Nicolò Pernigoni
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Christina Guo
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | | | - Wei Yuan
- Institute of Cancer Research, London, UK
| | - Manuel Colucci
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martina Troiani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lei Liu
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Luisa Maraccani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ilaria Guccini
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Denis Migliorini
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Lausanne and Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Johann de Bono
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.
- Department of Medicine, University of Padova, Padova, Italy.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Bernard MJ, Smith CM, Goldstein AS. Prostatic proliferative inflammatory atrophy: welcome to the club †. J Pathol 2023; 261:375-377. [PMID: 37775958 PMCID: PMC10840725 DOI: 10.1002/path.6213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Single-cell RNA sequencing studies in the human prostate have defined a population of epithelial cells with transcriptional similarities to club cells in the lung. However, the localization of club-like cells in the human prostate, and their relationship to prostate cancer, is poorly understood. In a new article in The Journal of Pathology, RNA in situ hybridization was used to demonstrate that club cell markers are expressed in luminal cells adjacent to inflammation in the peripheral zone of the human prostate, where prostate cancer tends to arise. These club-like cells are commonly found in proliferative inflammatory atrophy (PIA) lesions and express markers consistent with an intermediate epithelial cell-type. Future studies will be needed to understand the functional role of club-like cells in human prostate inflammation, regeneration, and disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Matthew J. Bernard
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chad M. Smith
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew S. Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, US
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Graham MK, Wang R, Chikarmane R, Wodu B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.553268. [PMID: 37905029 PMCID: PMC10614732 DOI: 10.1101/2023.09.07.553268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The tissue microenvironment in prostate cancer is profoundly altered. While such alterations have been implicated in driving prostate cancer initiation and progression to aggressive disease, how prostate cancer cells and their precursors mediate those changes is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we performed extensive single-cell RNA-sequencing (scRNA-seq) and rigorous molecular pathology of the comparative biology between human prostate cancer and key time points in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues, with validation in a large external data set, revealed that cancer cell-intrinsic activation of MYC signaling was the top up-regulated pathway in human cancers, representing a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Likewise, numerous non-malignant cell states in the tumor microenvironment (TME), including non-cancerous epithelial, immune, and fibroblast cell compartments, were conserved across individuals, raising the possibility that these cell types may be a sequelae of the convergent MYC activation in the cancer cells. To test this hypothesis, we employed a GEMM of prostate epithelial cell-specific MYC activation in two mouse strains. Cell communication network and pathway analyses suggested that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogrammed the TME during carcinogenesis, leading to the emergence of cascading cell state alterations in neighboring epithelial, immune, and fibroblast cell types that paralleled key findings in human prostate cancer. Importantly, among these changes, the progression from a precursor-enriched to invasive-cancer-enriched state was accompanied by a cell-intrinsic switch from pro-immunogenic to immunosuppressive transcriptional programs with coinciding enrichment of immunosuppressive myeloid and Treg cells in the immune microenvironment. These findings implicate activation of MYC signaling in reshaping convergent aspects of the TME of prostate cancer as a common denominator across the otherwise well-documented molecular heterogeneity of human prostate cancer.
Collapse
|
10
|
Huang FW, Song H, Weinstein HN, Xie J, Cooperberg MR, Hicks J, Mummert L, De Marzo AM, Sfanos KS. Club-like cells in proliferative inflammatory atrophy of the prostate. J Pathol 2023; 261:85-95. [PMID: 37550827 PMCID: PMC10527202 DOI: 10.1002/path.6149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 08/09/2023]
Abstract
Club cells are a type of bronchiolar epithelial cell that serve a protective role in the lung and regenerate damaged lung epithelium. Single-cell RNA sequencing (scRNA-seq) of young adult human prostate and urethra identified cell populations in the prostatic urethra and collecting ducts similar in morphology and transcriptomic profile to lung club cells. We further identified club cell-like epithelial cells by scRNA-seq of prostate peripheral zone tissues. Here, we aimed to identify and spatially localize club cells in situ in the prostate, including in the peripheral zone. We performed chromogenic RNA in situ hybridization for five club cell markers (CP, LTF, MMP7, PIGR, SCGB1A1) in a series of (1) nondiseased organ donor prostate and (2) radical prostatectomy specimens from individuals with prostate cancer. We report that expression of club cell genes in the peripheral zone is associated with inflammation and limited to luminal epithelial cells classified as intermediate cells in proliferative inflammatory atrophy (PIA). Club-like cells were enriched in radical prostatectomy specimens compared to nondiseased prostates and associated with high-grade prostate cancer. We previously reported that luminal epithelial cells in PIA can rarely harbor oncogenic TMPRSS2:ERG (ERG+) gene fusions, and we now demonstrate that club cells are present in association with ERG+ PIA that is transitioning to early adenocarcinoma. Finally, prostate epithelial organoids derived from prostatectomy specimens demonstrate that club-like epithelial cells can be established in organoids and are sensitive to anti-androgen-directed treatment in vitro in terms of decreased androgen signaling gene expression signatures compared to basal or hillock cells. Overall, our study identifies a population of club-like cells in PIA and proposes that these cells play an analogous role to that of club cells in bronchiolar epithelium. Our results further suggest that inflammation drives lineage plasticity in the human prostate and that club cells in PIA may be prone to oncogenic transformation. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Franklin W. Huang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hannah N.W. Weinstein
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jamie Xie
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew R. Cooperberg
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jessica Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Luke Mummert
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Departments of Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Departments of Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
11
|
Gupta H, Inoue H, Nakai Y, Nakayama M, Jones T, Hicks JL, Kumar B, Gurel M, Nelson WG, Marzo AMD, Yegnasubramanian S. Progressive Spreading of DNA Methylation in the GSTP1 Promoter CpG Island across Transitions from Precursors to Invasive Prostate Cancer. Cancer Prev Res (Phila) 2023; 16:449-460. [PMID: 37347938 PMCID: PMC10529302 DOI: 10.1158/1940-6207.capr-22-0485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Glutathione S-transferase pi 1 (GSTP1) is lowly expressed in normal prostate luminal cells and becomes induced in most proliferative inflammatory atrophy (PIA) lesions. GSTP1 becomes silenced in prostatic intraepithelial neoplasia (PIN) and prostate adenocarcinoma (CaP) via cytosine-phospho-guanine (CpG) island promoter hypermethylation. However, GSTP1 methylation patterns in PIA and PIN, and their relationship to patterns in CaP are poorly understood. We used bisulfite genomic sequencing to examine patterns of GSTP1 promoter CpG island methylation in laser capture microdissected benign, PIA, PIN, and CaP regions from 32 subjects that underwent radical prostatectomy. We analyzed 908 sequence clones across 24 normal epithelium, 37 PIA, 18 PIN, and 23 CaP regions, allowing assessment of 34,863 CpG sites with allelic phasing. Normal and PIA lesions were mostly unmethylated with 0.52 and 1.3% of total CpG sites methylated, respectively. PIN and CaP lesions had greater methylation with 24% and 51% of total CpG sites methylated, respectively. The degree of GSTP1 methylation showed progression from PIA << PIN < CaP. PIN lesions showed more partial methylation compared with CaP lesions. Partially methylated lesions were enriched for methylation changes at AP1 and SP1 transcription factor binding sites. These results demonstrate that methylation density in the GSTP1 CpG island in PIN was intermediate relative to that in normal prostate epithelium/PIA and CaP lesions. These results are consistent with gradual spreading of DNA methylation centered at the SP1/AP1 transcription factor binding sites in precursor lesions, with subsequent spreading of methylation across the entire CpG island in transition to CaP. PREVENTION RELEVANCE DNA hypermethylation at the GSTP1 promoter progressively spreads from being unmethylated in normal prostate to intermediate levels in precursor lesions to extensive methylation in cancer. This molecular progression of GSTP1 promoter methylation patterns in early prostate carcinogenesis could be useful for identification and interception of prostate cancer precursors.
Collapse
Affiliation(s)
| | - Hitoshi Inoue
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Ikeda Municipal Hospital, Japan
| | - Yasutomo Nakai
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Osaka International Cancer Institute, Japan
| | - Masashi Nakayama
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Osaka International Cancer Institute, Japan
| | - Tracy Jones
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L. Hicks
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Meltem Gurel
- Sidney Kimmel Comprehensive Cancer Center
- Department of Urology, Ikeda Municipal Hospital, Japan
- BenevolentAI, London, UK
| | - William G. Nelson
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Fox JJ, Hashimoto T, Navarro HI, Garcia AJ, Shou BL, Goldstein AS. Highly multiplexed immune profiling throughout adulthood reveals kinetics of lymphocyte infiltration in the aging mouse prostate. Aging (Albany NY) 2023; 15:3356-3380. [PMID: 37179121 PMCID: PMC10449296 DOI: 10.18632/aging.204708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Aging is a significant risk factor for disease in several tissues, including the prostate. Defining the kinetics of age-related changes in these tissues is critical for identifying regulators of aging and evaluating interventions to slow the aging process and reduce disease risk. An altered immune microenvironment is characteristic of prostatic aging in mice, but whether features of aging in the prostate emerge predominantly in old age or earlier in adulthood has not previously been established. Using highly multiplexed immune profiling and time-course analysis, we tracked the abundance of 29 immune cell clusters in the aging mouse prostate. Early in adulthood, myeloid cells comprise the vast majority of immune cells in the 3-month-old mouse prostate. Between 6 and 12 months of age, there is a profound shift towards a T and B lymphocyte-dominant mouse prostate immune microenvironment. Comparing the prostate to other urogenital tissues, we found similar features of age-related inflammation in the mouse bladder but not the kidney. In summary, our study offers new insight into the kinetics of prostatic inflammaging and the window when interventions to slow down age-related changes may be most effective.
Collapse
Affiliation(s)
- Jonathan J. Fox
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Current Address: Keck School of Medicine, University of Southern California, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Héctor I. Navarro
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Alejandro J. Garcia
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Benjamin L. Shou
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S. Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Alfahed A, Ebili HO, Almoammar NE, Alasiri G, AlKhamees OA, Aldali JA, Al Othaim A, Hakami ZH, Abdulwahed AM, Waggiallah HA. Prognostic Values of Gene Copy Number Alterations in Prostate Cancer. Genes (Basel) 2023; 14:genes14050956. [PMID: 37239316 DOI: 10.3390/genes14050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Whilst risk prediction for individual prostate cancer (PCa) cases is of a high priority, the current risk stratification indices for PCa management have severe limitations. This study aimed to identify gene copy number alterations (CNAs) with prognostic values and to determine if any combination of gene CNAs could have risk stratification potentials. Clinical and genomic data of 500 PCa cases from the Cancer Genome Atlas stable were retrieved from the Genomic Data Commons and cBioPortal databases. The CNA statuses of a total of 52 genetic markers, including 21 novel markers and 31 previously identified potential prognostic markers, were tested for prognostic significance. The CNA statuses of a total of 51/52 genetic markers were significantly associated with advanced disease at an odds ratio threshold of ≥1.5 or ≤0.667. Moreover, a Kaplan-Meier test identified 27/52 marker CNAs which correlated with disease progression. A Cox Regression analysis showed that the amplification of MIR602 and deletions of MIR602, ZNF267, MROH1, PARP8, and HCN1 correlated with a progression-free survival independent of the disease stage and Gleason prognostic group grade. Furthermore, a binary logistic regression analysis identified twenty-two panels of markers with risk stratification potentials. The best model of 7/52 genetic CNAs, which included the SPOP alteration, SPP1 alteration, CCND1 amplification, PTEN deletion, CDKN1B deletion, PARP8 deletion, and NKX3.1 deletion, stratified the PCa cases into a localised and advanced disease with an accuracy of 70.0%, sensitivity of 85.4%, specificity of 44.9%, positive predictive value of 71.67%, and negative predictive value of 65.35%. This study validated prognostic gene level CNAs identified in previous studies, as well as identified new genetic markers with CNAs that could potentially impact risk stratification in PCa.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Ago-Iwoye P.M.B. 2002, Nigeria
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud University, Riyadh 13317, Saudi Arabia
| | - Osama A AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulhadi M Abdulwahed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
14
|
Bonhomme S, Contreras-Martel C, Dessen A, Macheboeuf P. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin. Structure 2023:S0969-2126(23)00095-3. [PMID: 37059096 DOI: 10.1016/j.str.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.
Collapse
Affiliation(s)
- Sarah Bonhomme
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Carlos Contreras-Martel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Andréa Dessen
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Pauline Macheboeuf
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France.
| |
Collapse
|
15
|
Malhotra R, Javle V, Tanwar N, Gowda P, Varghese L, K A, Madhusudhan N, Jaiswal N, K. S. B, Chatterjee M, Prabhash K, Sreekanthreddy P, Rishi KD, Goswami HM, Veldore VH. An absolute approach to using whole exome DNA and RNA workflow for cancer biomarker testing. Front Oncol 2023; 13:1002792. [PMID: 36994199 PMCID: PMC10040847 DOI: 10.3389/fonc.2023.1002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionThe concept of personalized medicine in cancer has emerged rapidly with the advancement of genome sequencing and the identification of clinically relevant variants that contribute to disease prognosis and facilitates targeted therapy options. In this study, we propose to validate a whole exome-based tumor molecular profiling for DNA and RNA from formalin-fixed paraffin-embedded (FFPE) tumor tissue.MethodsThe study included 166 patients across 17 different cancer types. The scope of this study includes the identification of single-nucleotide variants (SNVs), insertions/deletions (INDELS), copy number alterations (CNAs), gene fusions, tumor mutational burden (TMB), and microsatellite instability (MSI). The assay yielded a mean read depth of 200×, with >80% of on-target reads and a mean uniformity of >90%. Clinical maturation of whole exome sequencing (WES) (DNA and RNA)- based assay was achieved by analytical and clinical validations for all the types of genomic alterations in multiple cancers. We here demonstrate a limit of detection (LOD) of 5% for SNVs and 10% for INDELS with 97.5% specificity, 100% sensitivity, and 100% reproducibility.ResultsThe results were >98% concordant with other orthogonal techniques and appeared to be more robust and comprehensive in detecting all the clinically relevant alterations. Our study demonstrates the clinical utility of the exome-based approach of comprehensive genomic profiling (CGP) for cancer patients at diagnosis and disease progression.DiscussionThe assay provides a consolidated picture of tumor heterogeneity and prognostic and predictive biomarkers, thus helping in precision oncology practice. The primary intended use of WES (DNA+RNA) assay would be for patients with rare cancers as well as for patients with unknown primary tumors, and this category constitutes nearly 20–30% of all cancers. The WES approach may also help us understand the clonal evolution during disease progression to precisely plan the treatment in advanced stage disease.
Collapse
Affiliation(s)
| | - Vyomesh Javle
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Pooja Gowda
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Linu Varghese
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Anju K
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Nupur Jaiswal
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | | | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | | - Vidya H. Veldore
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
- *Correspondence: Vidya H. Veldore,
| |
Collapse
|
16
|
Lee J, Wickes BL, Fu J, Brockman NE, Garg H, Jobin C, Johson-Pais T, Leach R, Lai Z, Liss MA. Prevalence of genotoxic bacteria in men undergoing biopsy for prostate cancer. Prostate 2023; 83:663-669. [PMID: 36842100 PMCID: PMC10364089 DOI: 10.1002/pros.24500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND New evidence suggests that bacteria-produced DNA toxins may have a role in the development or progression of prostate cancer. To determine the prevalence of these genes in a noninfection (i.e., colonized) state, we screened urine specimens in men before undergoing a biopsy for prostate cancer detection. METHODS We developed a multiplex polymerase chain reaction using three of the most described bacterial genotoxin gene primers: Colibactin (polyketone synthase [pks] gene island: clbN and clbB), cytotoxic necrotizing factor (cnf1) toxin, and cytolethal distending toxin B (cdtB) represented gene islands. After calibration on Escherichia coli samples of known genotypes, we used a training and validation cohort. We performed multiplex testing on a training cohort of previously collected urine from 45 men undergoing prostate biopsy. For the validation cohort, we utilized baseline urine samples from a previous randomized clinical trial (n = 263) with known prostate cancer outcomes. RESULTS The prevalence of four common bacterial genotoxin genes detected in the urine before prostate biopsy for prostate cancer is 8% (25/311). The prevalence of pks island (clbN and clbB), cnf1, and cdt toxin genes are 6.1%, 2.4%, and 1.7%, respectively. We found no association between urinary genotoxins and prostate cancer (p = 0.83). We did identify a higher proportion of low-grade cancer (92% vs. 44%) in those men positive for urinary genotoxin and higher-grade cancer in those genotoxin negative (8% vs. 56%, p = 0.001). CONCLUSIONS The prevalence of urinary genotoxins is low and does not correspond to a prostate cancer diagnosis. The urine was taken at one point in time and does not rule out the possibility of previous exposure.
Collapse
Affiliation(s)
- John Lee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Brian L Wickes
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jianmin Fu
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Nohelli E Brockman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Harshit Garg
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christian Jobin
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Teresa Johson-Pais
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Robin Leach
- Department of Cell and Systems Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
17
|
The pks island: a bacterial Swiss army knife? Colibactin: beyond DNA damage and cancer. Trends Microbiol 2022; 30:1146-1159. [PMID: 35672224 DOI: 10.1016/j.tim.2022.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/13/2023]
Abstract
The structure and mode of action of colibactin with its potential involvement in cancer have been extensively studied but little is known about the intrinsic function of the biosynthetic gene cluster, coding for colibactin, as a bacterial genotoxin. Paradoxically, this pathogenicity island is also found in commensal and probiotic strains of Escherichia coli and in bacterial species colonizing olive trees and the digestive tract of bees. In this review, we summarize the available literature to address the following key questions. What does this genomic island really encode? What explains the extensive dissemination of this genetically mobile element? What do we really know about the biosynthetic and secretory pathways of colibactin? What is its inherent target/function?
Collapse
|
18
|
Li Z, Wang M, Peng D, Liu J, Xie Y, Dai Z, Zou X. Identification of Chemical-Disease Associations Through Integration of Molecular Fingerprint, Gene Ontology and Pathway Information. Interdiscip Sci 2022; 14:683-696. [PMID: 35391615 DOI: 10.1007/s12539-022-00511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The identification of chemical-disease association types is helpful not only to discovery lead compounds and study drug repositioning, but also to treat disease and decipher pathomechanism. It is very urgent to develop computational method for identifying potential chemical-disease association types, since wet methods are usually expensive, laborious and time-consuming. In this study, molecular fingerprint, gene ontology and pathway are utilized to characterize chemicals and diseases. A novel predictor is proposed to recognize potential chemical-disease associations at the first layer, and further distinguish whether their relationships belong to biomarker or therapeutic relations at the second layer. The prediction performance of current method is assessed using the benchmark dataset based on ten-fold cross-validation. The practical prediction accuracies of the first layer and the second layer are 78.47% and 72.07%, respectively. The recognition ability for lead compounds, new drug indications, potential and true chemical-disease association pairs has also been investigated and confirmed by constructing a variety of datasets and performing a series of experiments. It is anticipated that the current method can be considered as a powerful high-throughput virtual screening tool for drug researches and developments.
Collapse
Affiliation(s)
- Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Mengru Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Dongdong Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yun Xie
- HuiZhou University, Huizhou, 516007, People's Republic of China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
19
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
20
|
Inflammation and Prostate Cancer: A Multidisciplinary Approach to Identifying Opportunities for Treatment and Prevention. Cancers (Basel) 2022; 14:cancers14061367. [PMID: 35326519 PMCID: PMC8946208 DOI: 10.3390/cancers14061367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major cause of disease for men globally. Inflammation, an established hallmark of cancer, is frequently observed in the prostate, though its contribution to prostate cancer risks and outcomes is not fully understood. Prostate cancer is biologically and clinically heterogeneous, and there is now evidence that inflammation and immunological characteristics vary by the genomic and mutational landscape of the tumor. Moreover, it is now recognized that risk factor profiles vary between tumor subgroups, as defined by histopathological and molecular features. Here, we provide a review centered around the relationship between inflammation and prostate cancer, with a consideration of molecular tumor features and a particular focus on the advanced and lethal stages of disease. We summarize findings from epidemiological studies of the etiology and role of inflammation in prostate cancer. We discuss the pathology of prostate inflammation, and consider approaches for assessing the tumor immune microenvironment in epidemiological studies. We review emerging clinical therapies targeting immune biology within the context of prostate cancer. Finally, we consider potentially modifiable risk factors and corresponding lifestyle interventions that may affect prostate inflammation, impacting outcomes. These emerging insights will provide some hints for the development of treatment and prevention strategies for advanced and lethal prostate cancer.
Collapse
|
21
|
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, Lotan TL, De Marzo AM. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 2022; 132:e155031. [PMID: 35104804 PMCID: PMC8803327 DOI: 10.1172/jci155031] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.
Collapse
|
22
|
Qian C, Li D, Chen Y. ETS factors in prostate cancer. Cancer Lett 2022; 530:181-189. [PMID: 35033589 PMCID: PMC8832285 DOI: 10.1016/j.canlet.2022.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which play critical roles in both normal tissue development and homeostasis and have been implicated in development and progression of a variety of cancers. In prostate cancer, gene fusion and overexpression of ETS factors ERG, FLI1, ETV1, ETV4 and ETV5 have been found in half of prostate cancer patients in Caucasian men and define the largest genetic subtype of prostate cancer. This review summarizes the data on the discovery, modeling, molecular taxonomy, lineage plasticity and therapeutic targeting of ETS family members in prostate cancer.
Collapse
Affiliation(s)
- Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, NY, 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|