1
|
Gäding J, Della Balda V, Lan J, Konrad J, Iannuzzi M, Meißner RH, Tocci G. The role of the water contact layer on hydration and transport at solid/liquid interfaces. Proc Natl Acad Sci U S A 2024; 121:e2407877121. [PMID: 39259594 PMCID: PMC11420213 DOI: 10.1073/pnas.2407877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024] Open
Abstract
Understanding the structure in the nanoscopic region of water that is in direct contact with solid surfaces, so-called contact layer, is key to quantifying macroscopic properties that are of interest to e.g. catalysis, ice nucleation, nanofluidics, gas adsorption, and sensing. We explore the structure of the water contact layer on various technologically relevant solid surfaces, namely graphene, MoS[Formula: see text], Au(111), Au(100), Pt(111), and Pt(100), which have been previously hampered by time and length scale limitations of ab initio approaches or force field inaccuracies, by means of molecular dynamics simulations based on ab initio machine learning potentials built using an active learning scheme. Our results reveal that the in-plane intermolecular correlations of the water contact layer vary greatly among different systems: Whereas the contact layer on graphene and on Au(111) is predominantly homogeneous and isotropic, it is inhomogeneous and anisotropic on MoS[Formula: see text], on Au(100), and on the Pt surfaces, where it additionally forms two distinct sublayers. We apply hydrodynamics and the theory of the hydrophobic effect, to relate the energy corrugation and the characteristic length-scales of the contact layer with wetting, slippage, the hydration of small hydrophobic solutes and diffusio-osmotic transport. Thus, this work provides a microscopic picture of the water contact layer and links it to macroscopic properties of liquid/solid interfaces that are measured experimentally and that are relevant to wetting, hydrophobic solvation, nanofluidics, and osmotic transport.
Collapse
Affiliation(s)
- J Gäding
- Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
- Institute of Surface Science, Department of Atomistic Corrosion Informatics, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - V Della Balda
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - J Lan
- Department of Chemistry, New York University, New York, NY 10003
- Department of Chemistry, Simons Center for Computational Physical Chemistry at New York University, New York, NY 10003
| | - J Konrad
- Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
| | - M Iannuzzi
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - R H Meißner
- Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
- Institute of Surface Science, Department of Atomistic Corrosion Informatics, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - G Tocci
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
2
|
Bilichenko M, Iannuzzi M, Tocci G. Slip Opacity and Fast Osmotic Transport of Hydrophobes at Aqueous Interfaces with Two-Dimensional Materials. ACS NANO 2024; 18:24118-24127. [PMID: 39172927 DOI: 10.1021/acsnano.4c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We investigate the interfacial transport of water and hydrophobic solutes on van der Waals bilayers and heterostructures formed by stacking graphene, hBN, and MoS2 using extensive ab initio molecular dynamics simulations. We compute water slippage and the diffusio-osmotic transport coefficient of hydrophobic particles at the interface by combining hydrodynamics and the theory of the hydrophobic effect. We find that slippage is dominated by the layer that is in direct contact with water and only marginally altered by the second layer, leading to a so-called "slip opacity". The screening of the lateral forces, where the liquid does not feel the forces coming from the second nearest layer, is one of the factors leading to the "slip opacity" in our systems. The diffusio-osmotic transport of small hydrophobes (with a radius below 2.5 Å) is also affected by the slip opacity, being dramatically enhanced by slippage. Furthermore, the direction of diffusio-osmotic flow is controlled by the solute size, with the flow in the opposite direction of the concentration gradient for smaller hydrophobes, and vice versa for larger ones. We connect our findings to the wetting properties of two-dimensional materials, and we propose that slippage and wetting can be controlled separately: whereas the slippage is mostly determined by the layer in closer proximity to water, wetting can be finely tuned by stacking different two-dimensional materials. Our study advances the computational design of two-dimensional materials and van der Waals heterostructures, enabling precise control over wetting and slippage properties for applications in coatings and water purification membranes.
Collapse
Affiliation(s)
- Maria Bilichenko
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
3
|
Tang B, Fang Y, Zhu S, Bai Q, Li X, Wei L, Li Z, Zhu C. Tuning hydrogen bond network connectivity in the electric double layer with cations. Chem Sci 2024; 15:7111-7120. [PMID: 38756806 PMCID: PMC11095383 DOI: 10.1039/d3sc06904d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hydrogen bond (H-bond) network connectivity in electric double layers (EDLs) is of paramount importance for interfacial HER/HOR electrocatalytic processes. However, it remains unclear whether the cation-specific effect on H-bond network connectivity in EDLs exists. Herein, we report simulation evidence from ab initio molecular dynamics that cations at Pt(111)/water interfaces can tune the structure and the connectivity of H-bond networks in EDLs. As the surface charge density σ becomes more negative, we show that the connectivity of the H-bond networks in EDLs of the Na+ and Ca2+ systems decreases markedly; in stark contrast, the connectivity of the H-bond networks in EDLs of the Mg2+ system increases slightly. Further analysis revealed that the interplay between the hydration of cations and the interfacial water structure plays a key role in the connectivity of H-bond networks in EDLs. These findings highlight the key roles of cations in EDLs and electrocatalysis.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yeguang Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shuang Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Bai
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Xiaojiao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Laiyang Wei
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
4
|
Murke S, Chen W, Pezzotti S, Havenith M. Tuning Acid-Base Chemistry at an Electrified Gold/Water Interface. J Am Chem Soc 2024; 146:12423-12430. [PMID: 38599583 PMCID: PMC11082902 DOI: 10.1021/jacs.3c13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Acid-base reactions are ubiquitous in solution chemistry, as well as in electrochemistry. However, macroscopic concepts derived in solutions, such as pKa and pH, differ significantly at electrified metal-aqueous interfaces due to specific solvation and applied voltage. Here, we measure the pKa values of an amino acid, glycine, at a gold/water interface under a varying applied voltage by means of spectroscopic titration. With the help of simulations, we propose a general model to understand potential-dependent shifts in pKa values in terms of local hydrophobicity and electric fields. These parameters can be tuned by adjusting the metal surface and applied voltage, respectively, offering promising, but still unexplored, paths to regulate reactivity. Our results change the focus with respect to common interpretations based on, for example, apparent local pH effects and open interesting perspectives for electrochemical reaction steering.
Collapse
Affiliation(s)
| | | | | | - Martina Havenith
- Department of Physical Chemistry
II, Ruhr University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
5
|
Serva A, Pezzotti S. S.O.S: Shape, orientation, and size tune solvation in electrocatalysis. J Chem Phys 2024; 160:094707. [PMID: 38426524 DOI: 10.1063/5.0186925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Current models to understand the reactivity of metal/aqueous interfaces in electrochemistry, e.g., volcano plots, are based on the adsorption free energies of reactants and products, which are often small hydrophobic molecules (such as in CO2 and N2 reduction). Calculations played a major role in the quantification and comprehension of these free energies in terms of the interactions that the reactive species form with the surface. However, solvation free energies also come into play in two ways: (i) by modulating the adsorption free energy together with solute-surface interactions, as the solute has to penetrate the water adlayer in contact with the surface and get partially desolvated (which costs free energy); (ii) by regulating transport across the interface, i.e., the free energy profile from the bulk to the interface, which is strongly non-monotonic due to the unique nature of metal/aqueous interfaces. Here, we use constant potential molecular dynamics to study the solvation contributions, and we uncover huge effects of the shape and orientation (on top of the already known size effect) of small hydrophobic and amphiphilic solutes on their adsorption free energy. We propose a minimal theoretical model, the S.O.S. model, that accounts for size, orientation, and shape effects. These novel aspects are rationalized by recasting the concepts at the base of the Lum-Chandler-Weeks theory of hydrophobic solvation (for small solutes in the so-called volume-dominated regime) into a layer-by-layer form, where the properties of each interfacial region close to the metal are explicitly taken into account.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Xie W, Ren Y, Jiang F, Huang XY, Yu B, Liu J, Li J, Chen K, Zou Y, Hu B, Deng Y. Solvent-pair surfactants enabled assembly of clusters and copolymers towards programmed mesoporous metal oxides. Nat Commun 2023; 14:8493. [PMID: 38129402 PMCID: PMC10739937 DOI: 10.1038/s41467-023-44193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Organic-inorganic molecular assembly has led to numerous nano/mesostructured materials with fantastic properties, but it is dependent on and limited to the direct interaction between host organic structure-directing molecules and guest inorganic species. Here, we report a "solvent-pair surfactants" enabled assembly (SPEA) method to achieve a general synthesis of mesostructured materials requiring no direct host-guest interaction. Taking the synthesis of mesoporous metal oxides as an example, the dimethylformamide/water solvent pairs behave as surfactants and induce the formation of mesostructured polyoxometalates/copolymers nanocomposites, which can be converted into metal oxides. This SPEA method enables the synthesis of functional ordered mesoporous metal oxides with different pore sizes, structures, compositions and tailored pore-wall microenvironments that are difficult to access via conventional direct organic-inorganic assembly. Typically, nitrogen-doped mesoporous ε-WO3 with high specific surface area, uniform mesopores and stable framework is obtained and exhibits great application potentials such as gas sensing.
Collapse
Affiliation(s)
- Wenhe Xie
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuan Ren
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Fengluan Jiang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Xin-Yu Huang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Bingjie Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Jianhong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Jichun Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Keyu Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Material (iChEM), Fudan University, Shanghai, 200433, China.
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
7
|
Eggert T, Hörmann NG, Reuter K. Cavity formation at metal-water interfaces. J Chem Phys 2023; 159:194702. [PMID: 37966001 DOI: 10.1063/5.0167406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
The free energy cost of forming a cavity in a solvent is a fundamental concept in rationalizing the solvation of molecules and ions. A detailed understanding of the factors governing cavity formation in bulk solutions has inter alia enabled the formulation of models that account for this contribution in coarse-grained implicit solvation methods. Here, we employ classical molecular dynamics simulations and multistate Bennett acceptance ratio free energy sampling to systematically study cavity formation at a wide range of metal-water interfaces. We demonstrate that the obtained size- and position-dependence of cavitation energies can be fully rationalized by a geometric Gibbs model, which considers that the creation of the metal-cavity interface necessarily involves the removal of interfacial solvent. This so-called competitive adsorption effect introduces a substrate dependence to the interfacial cavity formation energy that is missed in existing bulk cavitation models. Using expressions from scaled particle theory, this substrate dependence is quantitatively reproduced by the Gibbs model through simple linear relations with the adsorption energy of a single water molecule. Besides providing a better general understanding of interfacial solvation, this paves the way for the derivation and efficient parametrization of more accurate interface-aware implicit solvation models needed for reliable high-throughput calculations toward improved electrocatalysts.
Collapse
Affiliation(s)
- Thorben Eggert
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Chair of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
8
|
Chen W, Sanders SE, Özdamar B, Louaas D, Brigiano FS, Pezzotti S, Petersen PB, Gaigeot MP. On the Trail of Molecular Hydrophilicity and Hydrophobicity at Aqueous Interfaces. J Phys Chem Lett 2023; 14:1301-1309. [PMID: 36724059 DOI: 10.1021/acs.jpclett.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncovering microscopic hydrophilicity and hydrophobicity at heterogeneous aqueous interfaces is essential as it dictates physico/chemical properties such as wetting, the electrical double layer, and reactivity. Several molecular and spectroscopic descriptors were proposed, but a major limitation is the lack of connections between them. Here, we combine density functional theory-based MD simulations (DFT-MD) and SFG spectroscopy to explore how interfacial water responds in contact with self-assembled monolayers (SAM) of tunable hydrophilicity. We introduce a microscopic metric to track the transition from hydrophobic to hydrophilic interfaces. This metric combines the H/V descriptor, a structural descriptor based on the preferential orientation within the water network in the topmost binding interfacial layer (BIL) and spectroscopic fingerprints of H-bonded and dangling OH groups of water carried by BIL-resolved SFG spectra. This metric builds a bridge between molecular descriptors of hydrophilicity/hydrophobicity and spectroscopically measured quantities and provides a recipe to quantitatively or qualitatively interpret experimental SFG signals.
Collapse
Affiliation(s)
- Wanlin Chen
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Stephanie E Sanders
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Burak Özdamar
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Dorian Louaas
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Flavio Siro Brigiano
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4 Place Jussieu, 75005Paris, France
| | - Simone Pezzotti
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801Bochum, Germany
| | - Poul B Petersen
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| |
Collapse
|
9
|
Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat Catal 2022. [DOI: 10.1038/s41929-022-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Jami L, Zemb T, Casas J, Dufrêche JF. Individual adsorption of low volatility pheromones: Amphiphilic molecules on a clean water-air interface. J Chem Phys 2022; 157:094708. [PMID: 36075737 DOI: 10.1063/5.0110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Environmental conditions can alter olfactory scent and chemical communication among biological species. In particular, odorant molecules interact with aerosols. Thermodynamics variables governing the adsorption from air to water surface of bombykol, the most studied pheromone, and of three derivative molecules, bombykal, bombykoic acid, and bombykyle acetate, are computed by steered and un-biased molecular dynamics in order to compare the role of their polar head group on adsorption on aqueous aerosols. When adsorbed, the molecule center of mass stands at about 1.2 Å from the interface and oscillates on the same length scale, trapped in an energy well. Gibbs energy of adsorption and desorption time of bombykol are found to be 9.2 kBT and 59 µs, respectively. The following ordering between the molecules is observed, reading from the more to the least adsorbed: bombykoic acid > bombykol > bombykoic acetate > bombykal. It originates from a complex interplay of entropy and enthalpy. The entropy and enthalpy of adsorption are discussed in the light of structural arrangement, H-bonding, and hydrophilic tail positioning of the molecules at the interface. Our results show that, when dispersed in the air, pheromones adsorb on aqueous aerosols. However, the individual residence time is quite short on pure water surfaces. Aerosols can, therefore, only have a decisive influence on chemical communication through collective effects or through their chemical composition that is generally more complex than that of a pure water surface.
Collapse
Affiliation(s)
- L Jami
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - T Zemb
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France
| | - J Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - J-F Dufrêche
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France
| |
Collapse
|
11
|
Pezzotti S, Sebastiani F, van Dam EP, Ramos S, Conti Nibali V, Schwaab G, Havenith M. Spectroscopic Fingerprints of Cavity Formation and Solute Insertion as a Measure of Hydration Entropic Loss and Enthalpic Gain. Angew Chem Int Ed Engl 2022; 61:e202203893. [PMID: 35500074 PMCID: PMC9401576 DOI: 10.1002/anie.202203893] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Hydration free energies are dictated by a subtle balance of hydrophobic and hydrophilic interactions. We present here a spectroscopic approach, which gives direct access to the two main contributions: Using THz-spectroscopy to probe the frequency range of the intermolecular stretch (150-200 cm-1 ) and the hindered rotations (450-600 cm-1 ), the local contributions due to cavity formation and hydrophilic interactions can be traced back. We show that via THz calorimetry these fingerprints can be correlated 1 : 1 with the group specific solvation entropy and enthalpy. This allows to deduce separately the hydrophobic (i.e. cavity formation) and hydrophilic contributions to thermodynamics, as shown for hydrated alcohols as a case study. Accompanying molecular dynamics simulations quantitatively support our experimental results. In the future our approach will allow to dissect hydration contributions in inhomogeneous mixtures and under non-equilibrium conditions.
Collapse
Affiliation(s)
- Simone Pezzotti
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Federico Sebastiani
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
- Current affiliation: Department of Chemistry “U. Schiff”University of FlorenceI-50019Sesto FiorentinoFIItaly
| | - Eliane P. van Dam
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Sashary Ramos
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Valeria Conti Nibali
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
- Current affiliation: Dipartimento di Scienze Matematiche e InformaticheScienze Fisiche e Scienze della Terra (MIFT)Università di Messina98166MessinaItaly
| | - Gerhard Schwaab
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Martina Havenith
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
- Department of PhysicsTechnische Universität Dortmund44227DortmundGermany
| |
Collapse
|
12
|
Pezzotti S, Sebastiani F, Dam EP, Ramos S, Conti Nibali V, Schwaab G, Havenith M. Spectroscopic Fingerprints of Cavity Formation and Solute Insertion as a Measure of Hydration Entropic Loss and Enthalpic Gain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simone Pezzotti
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Federico Sebastiani
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
- Current affiliation: Department of Chemistry “U. Schiff” University of Florence I-50019 Sesto Fiorentino FI Italy
| | - Eliane P. Dam
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Sashary Ramos
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Valeria Conti Nibali
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
- Current affiliation: Dipartimento di Scienze Matematiche e Informatiche Scienze Fisiche e Scienze della Terra (MIFT) Università di Messina 98166 Messina Italy
| | - Gerhard Schwaab
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Martina Havenith
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
- Department of Physics Technische Universität Dortmund 44227 Dortmund Germany
| |
Collapse
|
13
|
Liang D, Liu J, Heinz H, Mason SE, Hamers RJ, Cui Q. Binding of polar and hydrophobic molecules at the LiCoO 2 (001)-water interface: force field development and molecular dynamics simulations. NANOSCALE 2022; 14:7003-7014. [PMID: 35470836 DOI: 10.1039/d2nr00672c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A classical model in the framework of the INTERFACE force field has been developed for treating the LiCoO2 (LCO) (001)/water interface. In comparison to ab initio molecular dynamics (MD) simulations based on density functional theory, MD simulations using the classical model lead to generally reliable descriptions of interfacial properties, such as the density distribution of water molecules. Water molecules in close contact with the LCO surface form a strongly adsorbed layer, which leads to a free energy barrier for the adsorption of polar or charged molecules to the LCO surface. Moreover, due to the strong hydrogen bonding interactions with the LCO surface, the first water layer forms an interface that exhibits hydrophobic characters, leading to favorable adsorption of non-polar molecules to the interface. Therefore, despite its highly polar nature, the LCO (001) surface binds not only polar/charged but also non-polar solutes. As an application, the model is used to analyze the adsorption of reduced nicotinamide adenine dinucleotide (NADH) and its molecular components to the LCO (001) surface in water. The results suggest that recently observed redox activity of NADH at the LCO/water interface was due to the co-operativity between the ribose component, which drives binding to the LCO surface, and the nicotinamide moiety, which undergoes oxidation.
Collapse
Affiliation(s)
- Dongyue Liang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Juan Liu
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO 80303-0596, USA
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO 80303-0596, USA
| | - Sara E Mason
- Department of Chemistry, University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, USA
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue Boston, MA 02215, USA.
| |
Collapse
|
14
|
Brigiano FS, Gierada M, Tielens F, Pietrucci F. Mechanism and Free-Energy Landscape of Peptide Bond Formation at the Silica–Water Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Flavio Siro Brigiano
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Maciej Gierada
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Frederik Tielens
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Fabio Pietrucci
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| |
Collapse
|
15
|
Azimzadeh Sani M, Pavlopoulos NG, Pezzotti S, Serva A, Cignoni P, Linnemann J, Salanne M, Gaigeot M, Tschulik K. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular‐Level Insights into the Electrical Double Layer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahnaz Azimzadeh Sani
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| | | | - Simone Pezzotti
- Physical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44780 Bochum Germany
| | - Alessandra Serva
- Sorbonne Université CNRS Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX 75005 Paris France
| | - Paolo Cignoni
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| | - Julia Linnemann
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| | - Mathieu Salanne
- Sorbonne Université CNRS Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX 75005 Paris France
- Institut Universitaire de France (IUF) 75231 Paris Cedex 05 France
| | | | - Kristina Tschulik
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| |
Collapse
|
16
|
Azimzadeh Sani M, Pavlopoulos NG, Pezzotti S, Serva A, Cignoni P, Linnemann J, Salanne M, Gaigeot M, Tschulik K. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular-Level Insights into the Electrical Double Layer. Angew Chem Int Ed Engl 2022; 61:e202112679. [PMID: 34796598 PMCID: PMC9300121 DOI: 10.1002/anie.202112679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/29/2022]
Abstract
The electrical double-layer plays a key role in important interfacial electrochemical processes from catalysis to energy storage and corrosion. Therefore, understanding its structure is crucial for the progress of sustainable technologies. We extract new physico-chemical information on the capacitance and structure of the electrical double-layer of platinum and gold nanoparticles at the molecular level, employing single nanoparticle electrochemistry. The charge storage ability of the solid/liquid interface is larger by one order-of-magnitude than predicted by the traditional mean-field models of the double-layer such as the Gouy-Chapman-Stern model. Performing molecular dynamics simulations, we investigate the possible relationship between the measured high capacitance and adsorption strength of the water adlayer formed at the metal surface. These insights may launch the active tuning of solid-solvent and solvent-solvent interactions as an innovative design strategy to transform energy technologies towards superior performance and sustainability.
Collapse
Affiliation(s)
- Mahnaz Azimzadeh Sani
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | | | - Simone Pezzotti
- Physical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44780BochumGermany
| | - Alessandra Serva
- Sorbonne UniversitéCNRSPhysico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX75005ParisFrance
| | - Paolo Cignoni
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Julia Linnemann
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Mathieu Salanne
- Sorbonne UniversitéCNRSPhysico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX75005ParisFrance
- Institut Universitaire de France (IUF)75231Paris Cedex 05France
| | | | - Kristina Tschulik
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| |
Collapse
|
17
|
Hande V, Chakrabarty S. Size-Dependent Order-Disorder Crossover in Hydrophobic Hydration: Comparison between Spherical Solutes and Linear Alcohols. ACS OMEGA 2022; 7:2671-2678. [PMID: 35097265 PMCID: PMC8793046 DOI: 10.1021/acsomega.1c05064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/31/2021] [Indexed: 05/03/2023]
Abstract
Theory and computer simulation studies have predicted that water molecules around hydrophobic molecules should undergo an order-disorder transition with increasing solute size around a 1 nm length scale. Some theories predict the formation of a clathrate-like ordered structure around smaller hydrophobic solutes (<1 nm) and the formation of disordered vapor-liquid interfaces around larger solutes (>1 nm) and surfaces. Experimental validation of these predictions has often been elusive and contradictory. High-resolution Raman spectroscopy has detected that water around small hydrophobic solutes shows a signature similar to that of bulk water at lower temperature (increased ordering and a stronger hydrogen-bonded network). Similarly, water around larger solutes shows an increasing population of dangling OH bonds very similar to higher temperature bulk water. Thus, the solute size dependence of the structure and dynamics of water around hydrophobic molecules seems to have an analogy with the temperature dependence in bulk water. In this work, using atomistic classical molecular dynamics (MD) simulations, we have systematically investigated this aspect and characterized this interesting analogy. Structural order parameters including the tetrahedral order parameter (Q), hydrogen bond distribution, and vibrational power spectrum highlight this similarity. However, in contrast to the experimental observations, we do not observe any length-dependent crossover for linear hydrophobic alcohols (n-alkanols) using classical MD simulations. This is in agreement with earlier findings that linear alkane chains do not demonstrate the length-dependent order-disorder transition due to the presence of a sub-nanometer length scale along the cross section of the chain. Moreover, the collapsed state of linear hydrocarbon chains is not significantly populated for smaller chains (number of carbons below 20). In the context of our computational results, we raise several pertinent questions related to the sensitivity of various structural and dynamical parameters toward capturing these complex phenomena of hydrophobic hydration.
Collapse
Affiliation(s)
- Vrushali Hande
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune, Maharashtra 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Chakrabarty
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| |
Collapse
|
18
|
Moon H, Collanton RP, Monroe JI, Casey TM, Shell MS, Han S, Scott SL. Evidence for Entropically Controlled Interfacial Hydration in Mesoporous Organosilicas. J Am Chem Soc 2022; 144:1766-1777. [PMID: 35041412 DOI: 10.1021/jacs.1c11342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
At aqueous interfaces, the distribution and dynamics of adsorbates are modulated by the behavior of interfacial water. Hydration of a hydrophobic surface can store entropy via the ordering of interfacial water, which contributes to the Gibbs energy of solute binding. However, there is little experimental evidence for the existence of such entropic reservoirs, and virtually no precedent for their rational design in systems involving extended interfaces. In this study, two series of mesoporous silicas were modified in distinct ways: (1) progressively deeper thermal dehydroxylation, via condensation of surface silanols, and (2) increasing incorporation of nonpolar organic linkers into the silica framework. Both approaches result in decreasing average surface polarity, manifested in a blue-shift in the fluorescence of an adsorbed dye. For the inorganic silicas, hydrogen-bonding of water becomes less extensive as the number of surface silanols decreases. Overhauser dynamic nuclear polarization (ODNP) relaxometry indicates enhanced surface water diffusivity, reflecting a loss of enthalpic hydration. In contrast, organosilicas show a monotonic decrease in surface water diffusivity with decreasing polarity, reflecting enhanced hydrophobic hydration. Molecular dynamics simulations predict increased tetrahedrality of interfacial water for the organosilicas, implying increased ordering near the nm-size organic domains (relative to inorganic silicas, which necessarily lack such domains). These findings validate the prediction that hydrophobic hydration at interfaces is controlled by the microscopic length scale of the hydrophobic regions. They further suggest that the hydration thermodynamics of structurally heterogeneous silica surfaces can be tuned to promote adsorption, which in turn tunes the selectivity in catalytic reactions.
Collapse
Affiliation(s)
- Hyunjin Moon
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Ryan P Collanton
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Jacob I Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Thomas M Casey
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States.,Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Susannah L Scott
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States.,Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
19
|
Serva A, Havenith M, Pezzotti S. The role of hydrophobic hydration in the free energy of chemical reactions at the gold/water interface: Size and position effects. J Chem Phys 2021; 155:204706. [PMID: 34852496 DOI: 10.1063/5.0069498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal/water interfaces catalyze a large variety of chemical reactions, which often involve small hydrophobic molecules. In the present theoretical study, we show that hydrophobic hydration at the Au(100)/water interface actively contributes to the reaction free energy by up to several hundreds of meV. This occurs either in adsorption/desorption reaction steps, where the vertical distance from the surface changes in going from reactants to products, or in addition and elimination reaction steps, where two small reactants merge into a larger product and vice versa. We find that size and position effects cannot be captured by treating them as independent variables. Instead, their simultaneous evaluation allows us to map the important contributions, and we provide examples of their combinations for which interfacial reactions can be either favored or disfavored. By taking a N2 and a CO2 reduction pathway as test cases, we show that explicitly considering hydrophobic effects is important for the selectivity and rate of these relevant interfacial processes.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - Simone Pezzotti
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
20
|
Pireddu G, Scalfi L, Rotenberg B. A molecular perspective on induced charges on a metallic surface. J Chem Phys 2021; 155:204705. [PMID: 34852473 DOI: 10.1063/5.0076127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the response of the surface of metallic solids to external electric field sources is crucial to characterize electrode-electrolyte interfaces. Continuum electrostatics offer a simple description of the induced charge density at the electrode surface. However, such a simple description does not take into account features related to the atomic structure of the solid and to the molecular nature of the solvent and of the dissolved ions. In order to illustrate such effects and assess the ability of continuum electrostatics to describe the induced charge distribution, we investigate the behavior of a gold electrode interacting with sodium or chloride ions fixed at various positions, in a vacuum or in water, using all-atom constant-potential classical molecular dynamics simulations. Our analysis highlights important similarities between the two approaches, especially under vacuum conditions and when the ion is sufficiently far from the surface, as well as some limitations of the continuum description, namely, neglecting the charges induced by the adsorbed solvent molecules and the screening effect of the solvent when the ion is close to the surface. While the detailed features of the charge distribution are system-specific, we expect some of our generic conclusions on the induced charge density to hold for other ions, solvents, and electrode surfaces. Beyond this particular case, the present study also illustrates the relevance of such molecular simulations to serve as a reference for the design of improved implicit solvent models of electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
21
|
Stripping away ion hydration shells in electrical double-layer formation: Water networks matter. Proc Natl Acad Sci U S A 2021; 118:2108568118. [PMID: 34782461 PMCID: PMC8617503 DOI: 10.1073/pnas.2108568118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
For centuries the double layer at the solid/electrolyte interface has been a central concept in electrochemistry. Today, it is still crucial for virtually all renewable energy storage and conversion technologies. Here, the double-layer formation is probed by THz spectroscopy with ultrabright synchrotron light as a source. Our results capture the molecular details of double-layer formation at positively/negatively charged Au electrodes for an NaCl electrolyte. We reveal a contrasting response applying positive versus negative bias, which is dictated by the interfacial water network and rationalized by accompanying molecular dynamics simulations and electronic-structure calculations. While Na+ is directly attracted toward the negatively charged electrode, stripping of the Cl− hydration shell is observed only at larger potential values. The double layer at the solid/electrolyte interface is a key concept in electrochemistry. Here, we present an experimental study combined with simulations, which provides a molecular picture of the double-layer formation under applied voltage. By THz spectroscopy we are able to follow the stripping away of the cation/anion hydration shells for an NaCl electrolyte at the Au surface when decreasing/increasing the bias potential. While Na+ is attracted toward the electrode at the smallest applied negative potentials, stripping of the Cl− hydration shell is observed only at higher potential values. These phenomena are directly measured by THz spectroscopy with ultrabright synchrotron light as a source and rationalized by accompanying molecular dynamics simulations and electronic-structure calculations.
Collapse
|
22
|
Ma CY, Pezzotti S, Schwaab G, Gebala M, Herschlag D, Havenith M. Cation enrichment in the ion atmosphere is promoted by local hydration of DNA. Phys Chem Chem Phys 2021; 23:23203-23213. [PMID: 34622888 PMCID: PMC8797164 DOI: 10.1039/d1cp01963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic interactions are central to the structure and function of nucleic acids, including their folding, condensation, and interaction with proteins and other charged molecules. These interactions are profoundly affected by ions surrounding nucleic acids, the constituents of the so-called ion atmosphere. Here, we report precise Fourier Transform-Terahertz/Far-Infrared (FT-THz/FIR) measurements in the frequency range 30-500 cm-1 for a 24-bp DNA solvated in a series of alkali halide (NaCl, NaF, KCl, CsCl, and CsF) electrolyte solutions which are sensitive to changes in the ion atmosphere. Cation excess in the ion atmosphere is detected experimentally by observation of cation modes of Na+, K+, and Cs+ in the frequency range between 70-90 cm-1. Based on MD simulations, we propose that the magnitude of cation excess (which is salt specific) depends on the ability of the electrolyte to perturb the water network at the DNA interface: In the NaF atmosphere, the ions reduce the strength of interactions between water and the DNA more than in case of a NaCl electrolyte. Here, we explicitly take into account the solvent contribution to the chemical potential in the ion atmosphere: A decrease in the number of bound water molecules in the hydration layer of DNA is correlated with enhanced density fluctuations, which decrease the free energy cost of ion-hydration, thus promoting further ion accumulation within the DNA atmosphere. We propose that taking into account the local solvation is crucial for understanding the ion atmosphere.
Collapse
Affiliation(s)
- Chun Yu Ma
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Simone Pezzotti
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Gerhard Schwaab
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Magdalena Gebala
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
23
|
Serva A, Scalfi L, Rotenberg B, Salanne M. Effect of the metallicity on the capacitance of gold-aqueous sodium chloride interfaces. J Chem Phys 2021; 155:044703. [PMID: 34340400 DOI: 10.1063/5.0060316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrochemistry experiments have established that the capacitance of electrode-electrolyte interfaces is much larger for good metals, such as gold and platinum, than for carbon-based materials. Despite the development of elaborate electrode interaction potentials, to date molecular dynamics simulations are not able to capture this effect. Here, we show that changing the width of the Gaussian charge distribution used to represent the atomic charges in gold is an effective way to tune its metallicity. Larger Gaussian widths lead to a capacitance of aqueous solutions (pure water and 1 M NaCl) in good agreement with recent ab initio molecular dynamics results. For pure water, the increase in the capacitance is not accompanied by structural changes, while in the presence of salt, the Na+ cations tend to adsorb significantly on the surface. For a strongly metallic gold electrode, these ions can even form inner sphere complexes on hollow sites of the surface.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|