1
|
Durant M, Mucelli X, Huang LS. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. J Fungi (Basel) 2024; 10:132. [PMID: 38392804 PMCID: PMC10890087 DOI: 10.3390/jof10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure.
Collapse
Affiliation(s)
| | | | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; (M.D.); (X.M.)
| |
Collapse
|
2
|
Ensinck I, Maman A, Albihlal WS, Lassandro M, Salzano G, Sideri T, Howell SA, Calvani E, Patel H, Bushkin G, Ralser M, Snijders AP, Skehel M, Casañal A, Schwartz S, van Werven FJ. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. eLife 2023; 12:RP87860. [PMID: 37490041 PMCID: PMC10393049 DOI: 10.7554/elife.87860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
N6-methyladenosine (m6A), the most abundant mRNA modification, is deposited in mammals/insects/plants by m6A methyltransferase complexes (MTC) comprising a catalytic subunit and at least five additional proteins. The yeast MTC is critical for meiosis and was known to comprise three proteins, of which two were conserved. We uncover three novel MTC components (Kar4/Ygl036w-Vir1/Dyn2). All MTC subunits, except for Dyn2, are essential for m6A deposition and have corresponding mammalian MTC orthologues. Unlike the mammalian bipartite MTC, the yeast MTC is unipartite, yet multifunctional. The mRNA interacting module, comprising Ime4, Mum2, Vir1, and Kar4, exerts the MTC's m6A-independent function, while Slz1 enables the MTC catalytic function in m6A deposition. Both functions are critical for meiotic progression. Kar4 also has a mechanistically separate role from the MTC during mating. The yeast MTC constituents play distinguishable m6A-dependent, MTC-dependent, and MTC-independent functions, highlighting their complexity and paving the path towards dissecting multi-layered MTC functions in mammals.
Collapse
Affiliation(s)
| | - Alexander Maman
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | | | | | | | | | | | | | - Guy Bushkin
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Markus Ralser
- The Francis Crick InstituteLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Department of BiochemistryBerlinGermany
| | | | - Mark Skehel
- The Francis Crick InstituteLondonUnited Kingdom
| | | | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | |
Collapse
|
3
|
Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast. PLoS Genet 2022; 18:e1010462. [DOI: 10.1371/journal.pgen.1010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wild type. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities and can be rescued by conditioned medium. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.
Collapse
|
4
|
Scutenaire J, Plassard D, Matelot M, Villa T, Zumsteg J, Libri D, Séraphin B. The S. cerevisiae m6A-reader Pho92 promotes timely meiotic recombination by controlling key methylated transcripts. Nucleic Acids Res 2022; 51:517-535. [PMID: 35934316 PMCID: PMC9881176 DOI: 10.1093/nar/gkac640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
N6-Methyladenosine (m6A), one of the most abundant internal modification of eukaryotic mRNAs, participates in the post-transcriptional control of gene expression through recruitment of specific m6A readers. In Saccharomyces cerevisiae, the m6A methyltransferase Ime4 is expressed only during meiosis and its deletion impairs this process. To elucidate how m6A control gene expression, we investigated the function of the budding yeast m6A reader Pho92. We show that Pho92 is an early meiotic factor that promotes timely meiotic progression. High-throughput RNA sequencing and mapping of Pho92-binding sites following UV-crosslinking reveal that Pho92 is recruited to specific mRNAs in an m6A-dependent manner during the meiotic prophase, preceding their down-regulation. Strikingly, point mutations altering m6A sites in mRNAs targeted by Pho92 are sufficient to delay their down-regulation and, in one case, to slow down meiotic progression. Altogether, our results indicate that Pho92 facilitate the meiotic progression by accelerating the down-regulation of timely-regulated mRNAs during meiotic recombination.
Collapse
Affiliation(s)
- Jérémy Scutenaire
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France,Centre National de Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch, France,Institut National de Santé et de Recherche Médicale (INSERM) U1258, 67400 Illkirch, France,Université de Strasbourg, 67400 Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France,Centre National de Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch, France,Institut National de Santé et de Recherche Médicale (INSERM) U1258, 67400 Illkirch, France,Université de Strasbourg, 67400 Illkirch, France
| | - Mélody Matelot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France,Centre National de Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch, France,Institut National de Santé et de Recherche Médicale (INSERM) U1258, 67400 Illkirch, France,Université de Strasbourg, 67400 Illkirch, France
| | - Tommaso Villa
- Université de Paris Cité, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Domenico Libri
- Université de Paris Cité, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Bertrand Séraphin
- To whom correspondence should be addressed. Tel: +33 3 88 65 33 36; Fax: +33 3 88 65 32 01;
| |
Collapse
|
5
|
Chen Y, Wu Z, Dong L, You X, Ji Y, Liang Y. Yeast phospholipase D, Spo14, is not required for macroautophagy. Yeast 2022; 39:401-411. [PMID: 35711110 DOI: 10.1002/yea.3803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022] Open
Abstract
Autophagy-related gene (Atg) proteins are key players in autophagy. Some proteins that function in vesicle trafficking and lipid metabolism are also involved in autophagy. The SPO14 in yeast, which encodes phospholipase D (PLD), is involved in membrane trafficking and plays a vital role in sporulation during meiosis. Crosstalk has been identified between autophagy and sporulation. Although the PLD is required for macroautophagy in mammals, its role in yeast macroautophagy remains unclear. We observed that Spo14 is not required for macroautophagy in yeast and that it is dispensable for Atg8 lipidation, which plays an important role in phagophore extension. Our results also revealed that green fluorescent protein (GFP)-Atg8 degradation is not completely blocked in atg1Δ/atg1Δ cells under sporulation condition. Therefore, Spo14 is not required for macroautophagy in yeast.
Collapse
Affiliation(s)
- Yun Chen
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zulin Wu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lin Dong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xia You
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongheng Liang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Fission Yeast Autophagy Machinery. Cells 2022; 11:cells11071086. [PMID: 35406650 PMCID: PMC8997447 DOI: 10.3390/cells11071086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy is a conserved process that delivers cytoplasmic components to the vacuole/lysosome. It plays important roles in maintaining cellular homeostasis and conferring stress resistance. In the fission yeast Schizosaccharomyces pombe, autophagy is important for cell survival under nutrient depletion and ER stress conditions. Experimental analyses of fission yeast autophagy machinery in the last 10 years have unveiled both similarities and differences in autophagosome biogenesis mechanisms between fission yeast and other model eukaryotes for autophagy research, in particular, the budding yeast Saccharomyces cerevisiae. More recently, selective autophagy pathways that deliver hydrolytic enzymes, the ER, and mitochondria to the vacuole have been discovered in fission yeast, yielding novel insights into how cargo selectivity can be achieved in autophagy. Here, we review the progress made in understanding the autophagy machinery in fission yeast.
Collapse
|
7
|
Papaioannou IA, Dutreux F, Peltier FA, Maekawa H, Delhomme N, Bardhan A, Friedrich A, Schacherer J, Knop M. Sex without crossing over in the yeast Saccharomycodes ludwigii. Genome Biol 2021; 22:303. [PMID: 34732243 PMCID: PMC8567612 DOI: 10.1186/s13059-021-02521-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intermixing of genomes through meiotic reassortment and recombination of homologous chromosomes is a unifying theme of sexual reproduction in eukaryotic organisms and is considered crucial for their adaptive evolution. Previous studies of the budding yeast species Saccharomycodes ludwigii suggested that meiotic crossing over might be absent from its sexual life cycle, which is predominated by fertilization within the meiotic tetrad. RESULTS We demonstrate that recombination is extremely suppressed during meiosis in Sd. ludwigii. DNA double-strand break formation by the conserved transesterase Spo11, processing and repair involving interhomolog interactions are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers in its genome. A strong AT bias of spontaneous mutations and the absence of recombination are likely responsible for its unusually low genomic GC level. CONCLUSIONS Sd. ludwigii has followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent mating between products of the same meiotic event with the extreme suppression of meiotic recombination. This life style ensures preservation of heterozygosity throughout its genome and may enable the species to adapt to its environment and survive with only minimal levels of rare meiotic recombination. We propose Sd. ludwigii as an excellent natural forum for the study of genome evolution and recombination rates.
Collapse
Affiliation(s)
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - France A. Peltier
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Hiromi Maekawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Current affiliation: Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Amit Bardhan
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
8
|
Post-Transcriptional Control of Mating-Type Gene Expression during Gametogenesis in Saccharomyces cerevisiae. Biomolecules 2021; 11:biom11081223. [PMID: 34439889 PMCID: PMC8394074 DOI: 10.3390/biom11081223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Gametogenesis in diploid cells of the budding yeast Saccharomyces cerevisiae produces four haploid meiotic products called spores. Spores are dormant until nutrients trigger germination, when they bud asexually or mate to return to the diploid state. Each sporulating diploid produces a mix of spores of two haploid mating types, a and α. In asexually dividing haploids, the mating types result from distinct, mutually exclusive gene expression programs responsible for production of mating pheromones and the receptors to sense them, all of which are silent in diploids. It was assumed that spores only transcribe haploid- and mating-type-specific genes upon germination. We find that dormant spores of each mating type harbor transcripts representing all these genes, with the exception of Mata1, which we found to be enriched in a spores. Mata1 transcripts, from a rare yeast gene with two introns, were mostly unspliced. If the retained introns reflect tethering to the MATa locus, this could provide a mechanism for biased inheritance. Translation of pheromones and receptors were repressed at least until germination. We find antisense transcripts to many mating genes that may be responsible. These findings add to the growing number of examples of post-transcriptional regulation of gene expression during gametogenesis.
Collapse
|
9
|
Perrine-Walker F, Payne J. Rapid screening method of Saccharomyces cerevisiae mutants using calcofluor white and aniline blue. Braz J Microbiol 2021; 52:1077-1086. [PMID: 33948877 DOI: 10.1007/s42770-021-00515-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 01/20/2023] Open
Abstract
Fungal cell walls are composed of polysaccharide scaffold that changes in response to environment. The structure and biosynthesis of the wall are unique to fungi, with plant and mammalian immune systems evolved to recognize wall components. Additionally, the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. Understanding changes in the cell wall are important for fundamental understanding of cell wall dynamics and for drug development. Here we describe a screening technique to monitor the gross morphological changes of two key cell wall polysaccharides of chitin and β-1,3-glucan combined with polymerase chain reaction (PCR) genotyping. Changes in chitin and β-1,3-glucan were detected microscopically by using the dyes calcofluor white and aniline blue. Combining PCR and fluorescence microscopy, as a quick and easy screening technique, confirmed both the phenotype and genotype of the wild-type, h chitin synthase mutants (chs1Δ and chs3Δ) and one β-1,3-glucan synthase mutant fks2Δ from Saccharomyces cerevisiae knockout library. This combined screening method highlighted that the fks1Δ strain obtained commercially was in fact not FKS1 deletion strain, and instead had both wild-type genotype and phenotype. A new β-1,3-glucan synthase knockout fks1::URA3 strain was created. Fluorescence microscopy confirmed its phenotype revealing that the chitin and the new β-1,3-glucan profiles were elevated in the mother cells and in the emerging buds respectively in the fks1Δ cell walls. This combination of PCR with fluorescence microscopy is a quick and easy screening method to determine and verify morphological changes in the S. cerevisiae cell wall.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,The University of Sydney Institute of Agriculture, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 2015, Australia. .,School of Life and Environmental Sciences, The University of Sydney, Life Earth and Environmental Sciences Building (F22), Sydney, NSW, 2006, Australia.
| | - Jennifer Payne
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.,Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
10
|
Peterson PP, Liu Z. Identification and Characterization of Rapidly Accumulating sch9Δ Suppressor Mutations in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6254187. [PMID: 33901283 DOI: 10.1093/g3journal/jkab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023]
Abstract
Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.
Collapse
Affiliation(s)
- Patricia P Peterson
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
11
|
Barve G, Manjithaya R. Cross-talk between autophagy and sporulation in Saccharomyces cerevisiae. Yeast 2021; 38:401-413. [PMID: 33608896 DOI: 10.1002/yea.3556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
Unicellular organisms, like yeast, have developed mechanisms to overcome environmental stress conditions like nutrient starvation. Autophagy and sporulation are two such mechanisms employed by yeast cells. Autophagy is a well-conserved, catabolic process that degrades excess and unwanted cytoplasmic materials and provides building blocks during starvation conditions. Thus, autophagy maintains cellular homeostasis at basal conditions and acts as a survival mechanism during stress conditions. Sporulation is an essential process that, like autophagy, is triggered due to stress conditions in yeast. It involves the formation of ascospores that protect the yeast cells during extreme conditions and germinate when the conditions are favorable. Studies show that autophagy is required for the sporulation process in yeast. However, the exact mechanism of action is not clear. Furthermore, several of the core autophagy gene knockouts do not sporulate and at what stage of sporulation they are involved is not clear. Besides, many overlapping proteins function in both sporulation and autophagy and it is unclear how the pathway-specific roles of these proteins are determined. All these observations suggest that the two processes cross-talk. Individually, some key features from both the processes remain to be studied with respect to the source of membrane for autophagosomes, prospore membrane (PSM) formation, and closure of the membranes. Therefore, it becomes crucial to study the cross-talk between autophagy and sporulation. In this review, the cross-talk between the two pathways, the common protein machineries have been discussed.
Collapse
Affiliation(s)
- Gaurav Barve
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| |
Collapse
|
12
|
Das D, Sarkar H, Podder S. In silico identification of key regulators instigating the pre-meiotic phase during respiration in Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6152269. [PMID: 33640958 DOI: 10.1093/femsyr/foab006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022] Open
Abstract
Like higher eukaryotes, diploid MATa/MATα budding yeasts can undergo both mitosis and meiosis. Although the potential reason for their phase switching is elucidated by two consecutive processes, i.e. transition from fermentation (mitotic growth) to respiration in glucose-deficient media and then complete shift to meiotic phase in combined nitrogen- and glucose-starved media, the genomic interactions and regulatory cascade operating this drive remain elusive. Here, we aim to explore the regulatory cross-talk that mediates the phase transition. We have hypothesized that pre-growth in glucose-starved condition (yeast extract-peptone-acetate media) not only causes switch from fermentation to respiration but also prepares them for meiosis via a myriad of signaling events regulated by transcription factors (TFs). We have identified 23 putative TFs from integrated protein-protein interaction and gene regulatory network that were reconstructed from predicted and experimentally validated data. A total of six TFs (Xbp1p, Abf1p, Cbf1p, Ste12p, Reb1p and Gcn4p) are found to be highly connected in the network and involved in the cross-talk between respiration and cellular preparation for meiosis. We have identified Abf1p and Adr1p as the master regulators of the integrated network. This study in yeast will help to decipher the pre-meiotic initiation that occurs in higher eukaryotes.
Collapse
Affiliation(s)
- Deepyaman Das
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur 733134, West Bengal, India
| | - Hironmoy Sarkar
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur 733134, West Bengal, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur 733134, West Bengal, India
| |
Collapse
|
13
|
Runnebohm AM, Richards KA, Irelan CB, Turk SM, Vitali HE, Indovina CJ, Rubenstein EM. Overlapping function of Hrd1 and Ste24 in translocon quality control provides robust channel surveillance. J Biol Chem 2020; 295:16113-16120. [PMID: 33033070 DOI: 10.1074/jbc.ac120.016191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Translocation of proteins across biological membranes is essential for life. Proteins that clog the endoplasmic reticulum (ER) translocon prevent the movement of other proteins into the ER. Eukaryotes have multiple translocon quality control (TQC) mechanisms to detect and destroy proteins that persistently engage the translocon. TQC mechanisms have been defined using a limited panel of substrates that aberrantly occupy the channel. The extent of substrate overlap among TQC pathways is unknown. In this study, we found that two TQC enzymes, the ER-associated degradation ubiquitin ligase Hrd1 and zinc metalloprotease Ste24, promote degradation of characterized translocon-associated substrates of the other enzyme in Saccharomyces cerevisiae Although both enzymes contribute to substrate turnover, our results suggest a prominent role for Hrd1 in TQC. Yeast lacking both Hrd1 and Ste24 exhibit a profound growth defect, consistent with overlapping function. Remarkably, two mutations that mildly perturb post-translational translocation and reduce the extent of aberrant translocon engagement by a model substrate diminish cellular dependence on TQC enzymes. Our data reveal previously unappreciated mechanistic complexity in TQC substrate detection and suggest that a robust translocon surveillance infrastructure maintains functional and efficient translocation machinery.
Collapse
Affiliation(s)
| | - Kyle A Richards
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Samantha M Turk
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Halie E Vitali
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | | |
Collapse
|
14
|
Jung KW, Lee KT, Bahn YS. A Signature-Tagged Mutagenesis (STM)-based murine-infectivity assay for Cryptococcus neoformans. J Microbiol 2020; 58:823-831. [PMID: 32989639 DOI: 10.1007/s12275-020-0341-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
Signature-tagged mutagenesis (STM) is a high-throughput genetic technique that can be used to investigate the function of genes by constructing a large number of mutant strains with unique DNA identification tags, pooling them, and screening them for a particular phenotypic trait. STM was first designed for the identification of genes that contribute to the virulence or infectivity of a pathogen in its host. Recently, this method has also been applied for the identification of mutants with specific phenotypes, such as antifungal drug resistance and proliferation. In the present study, we describe an STM method for the identification of genes contributing to the infectivity of Cryptococcus neoformans using a mutant library, in which each strain was tagged with a unique DNA sequence.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup o56212, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Wang P, Xu H, Li H, Chen H, Zhou S, Tian F, Li BZ, Bo X, Wu Y, Yuan YJ. SCRaMbLEing of a Synthetic Yeast Chromosome with Clustered Essential Genes Reveals Synthetic Lethal Interactions. ACS Synth Biol 2020; 9:1181-1189. [PMID: 32268063 DOI: 10.1021/acssynbio.0c00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome-scale gene knockout is an important approach to the study of global genetic interactions. SCRaMbLEing of synthetic yeast chromosomes provides an efficient way to generate random deletion mutants. Here, we demonstrate the use of SCRaMbLE to explore synthetic lethal interactions. First, all essential genes of yeast chromosome III (chrIII) were clustered in a centromeric plasmid. We found that three types of reorganized clustered chrIII essential genes had similar transcriptional levels. Further, SCRaMbLEing of synthetic chromosome III (synIII) with supplementary clustered essential genes enables deletion of large chromosomal regions. Investigation of 141 SCRaMbLEd strains revealed varied deletion frequencies of synIII chromosomal regions. Among the no deletion detected regions, a hidden synthetic lethal interaction was revealed in the region of synIII 82-88 kb. This study shows that SCRaMbLE with clustered essential genes enhances streamlining of synthetic yeast chromosome and provides a novel strategy to uncover complex genetic interactions.
Collapse
Affiliation(s)
- Peixia Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hui Xu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hao Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Sijie Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Fangfang Tian
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yi Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Krapp A, Hamelin R, Armand F, Chiappe D, Krapp L, Cano E, Moniatte M, Simanis V. Analysis of the S. pombe Meiotic Proteome Reveals a Switch from Anabolic to Catabolic Processes and Extensive Post-transcriptional Regulation. Cell Rep 2020; 26:1044-1058.e5. [PMID: 30673600 DOI: 10.1016/j.celrep.2018.12.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
Meiotic progression in S. pombe is regulated by stage-specific gene expression and translation, changes in RNA stability, expression of anti-sense transcripts, and targeted proteolysis of regulatory proteins. We have used SILAC labeling to examine the relative levels of proteins in diploid S. pombe cells during meiosis. Among the 3,268 proteins quantified at all time points, the levels of 880 proteins changed at least 2-fold; the majority of proteins showed stepwise increases or decreases during the meiotic divisions, while some changed transiently. Overall, we observed reductions in proteins involved in anabolism and increases in proteins involved in catabolism. We also observed increases in the levels of proteins of the ESCRT-III complex and revealed a role for ESCRT-III components in chromosome segregation and spore formation. Correlation with studies of meiotic gene expression and ribosome occupancy reveals that many of the changes in steady-state protein levels are post-transcriptional.
Collapse
Affiliation(s)
- Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Romain Hamelin
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Florence Armand
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Diego Chiappe
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Lucien Krapp
- EPFL SV IBI-SV UPDALPE, AAB 1 17, Station 19, 1015 Lausanne, Switzerland
| | - Elena Cano
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Marc Moniatte
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Threonine synthase CoTHR4 is involved in infection-related morphogenesis during the pre-penetration stage in Colletotrichum orbiculare. Microb Pathog 2019; 137:103746. [DOI: 10.1016/j.micpath.2019.103746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
|
18
|
Wei Y, Bettedi L, Ting CY, Kim K, Zhang Y, Cai J, Lilly MA. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila. eLife 2019; 8:e42149. [PMID: 31650955 PMCID: PMC6834368 DOI: 10.7554/elife.42149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Lucia Bettedi
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chun-Yuan Ting
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kuikwon Kim
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yingbiao Zhang
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jiadong Cai
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary A Lilly
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
19
|
Phenotypic Nonspecificity as the Result of Limited Specificity of Transcription Factor Function. GENETICS RESEARCH INTERNATIONAL 2018; 2018:7089109. [PMID: 30510805 PMCID: PMC6230420 DOI: 10.1155/2018/7089109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022]
Abstract
Drosophila transcription factor (TF) function is phenotypically nonspecific. Phenotypic nonspecificity is defined as one phenotype being induced or rescued by multiple TFs. To explain this unexpected result, a hypothetical world of limited specificity is explored where all TFs have unique random distributions along the genome due to low information content of DNA sequence recognition and somewhat promiscuous cooperative interactions with other TFs. Transcription is an emergent property of these two conditions. From this model, explicit predictions are made. First, many more cases of TF nonspecificity are expected when examined. Second, the genetic analysis of regulatory sequences should uncover cis-element bypass and, third, genetic analysis of TF function should generally uncover differential pleiotropy. In addition, limited specificity provides evolutionary opportunity and explains the inefficiency of expression analysis in identifying genes required for biological processes.
Collapse
|
20
|
Acton E, Lee AHY, Zhao PJ, Flibotte S, Neira M, Sinha S, Chiang J, Flaherty P, Nislow C, Giaever G. Comparative functional genomic screens of three yeast deletion collections reveal unexpected effects of genotype in response to diverse stress. Open Biol 2018; 7:rsob.160330. [PMID: 28592509 PMCID: PMC5493772 DOI: 10.1098/rsob.160330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, ‘prototrophic’ versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.
Collapse
Affiliation(s)
- Erica Acton
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Genome Science and Technology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pei Jun Zhao
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephane Flibotte
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mauricio Neira
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chiang
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Lancel S, Hesselink MK, Woldt E, Rouillé Y, Dorchies E, Delhaye S, Duhem C, Thorel Q, Mayeuf-Louchart A, Pourcet B, Montel V, Schaart G, Beton N, Picquet F, Briand O, Salles JP, Duez H, Schrauwen P, Bastide B, Bailleul B, Staels B, Sebti Y. Endospanin-2 enhances skeletal muscle energy metabolism and running endurance capacity. JCI Insight 2018; 3:98081. [PMID: 29720572 DOI: 10.1172/jci.insight.98081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Metabolic stresses such as dietary energy restriction or physical activity exert beneficial metabolic effects. In the liver, endospanin-1 and endospanin-2 cooperatively modulate calorie restriction-mediated (CR-mediated) liver adaptations by controlling growth hormone sensitivity. Since we found CR to induce endospanin protein expression in skeletal muscle, we investigated their role in this tissue. In vivo and in vitro endospanin-2 triggers ERK phosphorylation in skeletal muscle through an autophagy-dependent pathway. Furthermore, endospanin-2, but not endospanin-1, overexpression decreases muscle mitochondrial ROS production, induces fast-to-slow fiber-type switch, increases skeletal muscle glycogen content, and improves glucose homeostasis, ultimately promoting running endurance capacity. In line, endospanin-2-/- mice display higher lipid peroxidation levels, increased mitochondrial ROS production under mitochondrial stress, decreased ERK phosphorylation, and reduced endurance capacity. In conclusion, our results identify endospanin-2 as a potentially novel player in skeletal muscle metabolism, plasticity, and function.
Collapse
Affiliation(s)
- Steve Lancel
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Matthijs Kc Hesselink
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Estelle Woldt
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Yves Rouillé
- Center of Infection and Immunity of Lille (CIIL), Inserm, U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, France
| | - Emilie Dorchies
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Stephane Delhaye
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Christian Duhem
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Quentin Thorel
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Alicia Mayeuf-Louchart
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Benoit Pourcet
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Valérie Montel
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Gert Schaart
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Nicolas Beton
- INSERM UMR1043 (CPTP), Université de Toulouse, Paul Sabatier, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Florence Picquet
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Olivier Briand
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean Pierre Salles
- INSERM UMR1043 (CPTP), Université de Toulouse, Paul Sabatier, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Hélène Duez
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Patrick Schrauwen
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Bruno Bastide
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Bernard Bailleul
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Bart Staels
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Yasmine Sebti
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
22
|
Hoffmann R, Grabińska K, Guan Z, Sessa WC, Neiman AM. Long-Chain Polyprenols Promote Spore Wall Formation in Saccharomyces cerevisiae. Genetics 2017; 207:1371-1386. [PMID: 28978675 PMCID: PMC5714454 DOI: 10.1534/genetics.117.300322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
Dolichols are isoprenoid lipids of varying length that act as sugar carriers in glycosylation reactions in the endoplasmic reticulum. In Saccharomyces cerevisiae, there are two cis-prenyltransferases that synthesize polyprenol-an essential precursor to dolichol. These enzymes are heterodimers composed of Nus1 and either Rer2 or Srt1. Rer2-Nus1 and Srt1-Nus1 can both generate dolichol in vegetative cells, but srt1∆ cells grow normally while rer2∆ grows very slowly, indicating that Rer2-Nus1 is the primary enzyme used in mitotically dividing cells. In contrast, SRT1 performs an important function in sporulating cells, where the haploid genomes created by meiosis are packaged into spores. The spore wall is a multilaminar structure and SRT1 is required for the generation of the outer chitosan and dityrosine layers of the spore wall. Srt1 specifically localizes to lipid droplets associated with spore walls, and, during sporulation there is an SRT1-dependent increase in long-chain polyprenols and dolichols in these lipid droplets. Synthesis of chitin by Chs3, the chitin synthase responsible for chitosan layer formation, is dependent on the cis-prenyltransferase activity of Srt1, indicating that polyprenols are necessary to coordinate assembly of the spore wall layers. This work shows that a developmentally regulated cis-prenyltransferase can produce polyprenols that function in cellular processes besides protein glycosylation.
Collapse
Affiliation(s)
- Reuben Hoffmann
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| | - Kariona Grabińska
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710
| | - William C Sessa
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| |
Collapse
|
23
|
Zhou S, Sternglanz R, Neiman AM. Developmentally regulated internal transcription initiation during meiosis in budding yeast. PLoS One 2017; 12:e0188001. [PMID: 29136644 PMCID: PMC5685637 DOI: 10.1371/journal.pone.0188001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Sporulation of budding yeast is a developmental process in which cells undergo meiosis to generate stress-resistant progeny. The dynamic nature of the budding yeast meiotic transcriptome has been well established by a number of genome-wide studies. Here we develop an analysis pipeline to systematically identify novel transcription start sites that reside internal to a gene. Application of this pipeline to data from a synchronized meiotic time course reveals over 40 genes that display specific internal initiations in mid-sporulation. Consistent with the time of induction, motif analysis on upstream sequences of these internal transcription start sites reveals a significant enrichment for the binding site of Ndt80, the transcriptional activator of middle sporulation genes. Further examination of one gene, MRK1, demonstrates the Ndt80 binding site is necessary for internal initiation and results in the expression of an N-terminally truncated protein isoform. When the MRK1 paralog RIM11 is downregulated, the MRK1 internal transcript promotes efficient sporulation, indicating functional significance of the internal initiation. Our findings suggest internal transcriptional initiation to be a dynamic, regulated process with potential functional impacts on development.
Collapse
Affiliation(s)
- Sai Zhou
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, United States of America
| | - Rolf Sternglanz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
24
|
Diament A, Tuller T. Tracking the evolution of 3D gene organization demonstrates its connection to phenotypic divergence. Nucleic Acids Res 2017; 45:4330-4343. [PMID: 28369658 PMCID: PMC5416853 DOI: 10.1093/nar/gkx205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that the organization of genes in eukaryotic genomes, and specifically in 3D, is strongly related to gene expression and function and partially conserved between organisms. However, previous studies of 3D genomic organization analyzed each organism independently from others. Here, we propose an approach for unified inter-organismal analysis of gene organization based on a network representation of Hi-C data. We define and detect four classes of spatially co-evolving orthologous modules (SCOMs), i.e. gene families that co-evolve in their 3D organization, based on patterns of divergence and conservation of distances. We demonstrate our methodology on Hi-C data from Saccharomyces cerevisiae and Schizosaccharomyces pombe, and identify, among others, modules relating to RNA splicing machinery and chromatin silencing by small RNA which are central to S. pombe's lifestyle. Our results emphasize the importance of 3D genomic organization in eukaryotes and suggest that the evolutionary mechanisms that shape gene organization affect the organism fitness and phenotypes. The proposed algorithms can be utilized in future studies of genome evolution and comparative analysis of spatial genomic organization in different tissues, conditions and single cells.
Collapse
Affiliation(s)
- Alon Diament
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
25
|
Venkataramanan S, Douglass S, Galivanche AR, Johnson TL. The chromatin remodeling complex Swi/Snf regulates splicing of meiotic transcripts in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:7708-7721. [PMID: 28637241 PMCID: PMC5570110 DOI: 10.1093/nar/gkx373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 01/28/2023] Open
Abstract
Despite its relatively streamlined genome, there are important examples of regulated RNA splicing in Saccharomyces cerevisiae, such as splicing of meiotic transcripts. Like other eukaryotes, S. cerevisiae undergoes a dramatic reprogramming of gene expression during meiosis, including regulated splicing of a number of crucial meiosis-specific RNAs. Splicing of a subset of these is dependent upon the splicing activator Mer1. Here we show a crucial role for the chromatin remodeler Swi/Snf in regulation of splicing of meiotic genes and find that the complex affects meiotic splicing in two ways. First, we show that Swi/Snf regulates nutrient-dependent downregulation of ribosomal protein encoding RNAs, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs (the ribosomal protein genes) to Mer1-regulated transcripts. We also demonstrate that Mer1 expression is dependent on Snf2, its acetylation state and histone H3 lysine 9 acetylation at the MER1 locus. Hence, Snf2 exerts systems level control of meiotic gene expression through two temporally distinct mechanisms, demonstrating that it is a key regulator of meiotic splicing in S. cerevisiae. We also reveal an evolutionarily conserved mechanism whereby the cell redirects its energy from maintaining its translational capacity to the process of meiosis.
Collapse
Affiliation(s)
- Srivats Venkataramanan
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Stephen Douglass
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Anoop R. Galivanche
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Tracy L. Johnson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Sporulation: how to survive on planet Earth (and beyond). Curr Genet 2017; 63:831-838. [PMID: 28421279 DOI: 10.1007/s00294-017-0694-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 02/07/2023]
Abstract
Sporulation is a strategy widely utilized by a wide variety of organisms to adapt to changes in their individual environmental niches and survive in time and/or space until they encounter conditions acceptable for vegetative growth. The spores produced by bacteria have been the subjects of extensive studies, and several systems such as Bacillus subtilis have provided ample opportunities to understand the molecular basis of spore biogenesis and germination. In contrast, the spores of other microbes, such as fungi, are relatively poorly understood. Studies of sporulation in model systems such as Saccharomyces cerevisiae and Aspergillus nidulans have established a basis for investigating eukaryotic spores, but very little is known at the molecular level about how spores function. This is especially true among the spores of human fungal pathogens such as the most common cause of fatal fungal disease, Cryptococcus neoformans. Recent proteomic studies are helping to determine the molecular mechanisms by which pathogenic fungal spores are formed, persist and germinate into actively growing agents of human disease.
Collapse
|
27
|
Becker E, Com E, Lavigne R, Guilleux MH, Evrard B, Pineau C, Primig M. The protein expression landscape of mitosis and meiosis in diploid budding yeast. J Proteomics 2017; 156:5-19. [DOI: 10.1016/j.jprot.2016.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
|
28
|
Wen FP, Guo YS, Hu Y, Liu WX, Wang Q, Wang YT, Yu HY, Tang CM, Yang J, Zhou T, Xie ZP, Sha JH, Guo X, Li W. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis. Autophagy 2016; 12:671-88. [PMID: 27050457 DOI: 10.1080/15548627.2016.1149659] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Meiosis is a special type of cellular renovation that involves 2 successive cell divisions and a single round of DNA replication. Two major degradation systems, the autophagy-lysosome and the ubiquitin-proteasome, are involved in meiosis, but their roles have yet to be elucidated. Here we show that autophagy mainly affects the initiation of meiosis but not the nuclear division. Autophagy works not only by serving as a dynamic recycling system but also by eliminating some negative meiotic regulators such as Ego4 (Ynr034w-a). In a quantitative proteomics study, the proteasome was found to be significantly upregulated during meiotic divisions. We found that proteasomal activity is essential to the 2 successive meiotic nuclear divisions but not for the initiation of meiosis. Our study defines the roles of autophagy and the proteasome in meiosis: Autophagy mainly affects the initiation of meiosis, whereas the proteasome mainly affects the 2 successive meiotic divisions.
Collapse
Affiliation(s)
- Fu-ping Wen
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,c University of Chinese Academy of Sciences , Beijing , China
| | - Yue-shuai Guo
- b State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development , Department of Histology and Embryology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Yang Hu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d College of Life Sciences, China West Normal University , Nanchong , China
| | - Wei-xiao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Qian Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,c University of Chinese Academy of Sciences , Beijing , China
| | - Yuan-ting Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,c University of Chinese Academy of Sciences , Beijing , China
| | - Hai-Yan Yu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,c University of Chinese Academy of Sciences , Beijing , China
| | - Chao-ming Tang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,c University of Chinese Academy of Sciences , Beijing , China
| | - Jun Yang
- d College of Life Sciences, China West Normal University , Nanchong , China
| | - Tao Zhou
- b State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development , Department of Histology and Embryology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Zhi-ping Xie
- e School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Jia-hao Sha
- b State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development , Department of Histology and Embryology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Xuejiang Guo
- b State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development , Department of Histology and Embryology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Wei Li
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
29
|
Nislow C, Wong LH, Lee AHY, Giaever G. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top080945. [PMID: 27587784 DOI: 10.1101/pdb.top080945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations.
Collapse
Affiliation(s)
- Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
30
|
Meiotic Interactors of a Mitotic Gene TAO3 Revealed by Functional Analysis of its Rare Variant. G3-GENES GENOMES GENETICS 2016; 6:2255-63. [PMID: 27317780 PMCID: PMC4978881 DOI: 10.1534/g3.116.029900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studying the molecular consequences of rare genetic variants has the potential to identify novel and hitherto uncharacterized pathways causally contributing to phenotypic variation. Here, we characterize the functional consequences of a rare coding variant of TAO3, previously reported to contribute significantly to sporulation efficiency variation in Saccharomyces cerevisiae. During mitosis, the common TAO3 allele interacts with CBK1—a conserved NDR kinase. Both TAO3 and CBK1 are components of the RAM signaling network that regulates cell separation and polarization during mitosis. We demonstrate that the role of the rare allele TAO3(4477C) in meiosis is distinct from its role in mitosis by being independent of ACE2—a RAM network target gene. By quantitatively measuring cell morphological dynamics, and expressing the TAO3(4477C) allele conditionally during sporulation, we show that TAO3 has an early role in meiosis. This early role of TAO3 coincides with entry of cells into meiotic division. Time-resolved transcriptome analyses during early sporulation identified regulators of carbon and lipid metabolic pathways as candidate mediators. We show experimentally that, during sporulation, the TAO3(4477C) allele interacts genetically with ERT1 and PIP2, regulators of the tricarboxylic acid cycle and gluconeogenesis metabolic pathways, respectively. We thus uncover a meiotic functional role for TAO3, and identify ERT1 and PIP2 as novel regulators of sporulation efficiency. Our results demonstrate that studying the causal effects of genetic variation on the underlying molecular network has the potential to provide a more extensive understanding of the pathways driving a complex trait.
Collapse
|
31
|
Naseeb S, Carter Z, Minnis D, Donaldson I, Zeef L, Delneri D. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering. Mol Biol Evol 2016; 33:1679-96. [PMID: 26929245 PMCID: PMC4915352 DOI: 10.1093/molbev/msw045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
Collapse
Affiliation(s)
- Samina Naseeb
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Zorana Carter
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Minnis
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Donaldson
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Herrero E, Thorpe PH. Synergistic Control of Kinetochore Protein Levels by Psh1 and Ubr2. PLoS Genet 2016; 12:e1005855. [PMID: 26891228 PMCID: PMC4758618 DOI: 10.1371/journal.pgen.1005855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/19/2016] [Indexed: 12/02/2022] Open
Abstract
The accurate segregation of chromosomes during cell division is achieved by attachment of chromosomes to the mitotic spindle via the kinetochore, a large multi-protein complex that assembles on centromeres. The budding yeast kinetochore comprises more than 60 different proteins. Although the structure and function of many of these proteins has been investigated, we have little understanding of the steady state regulation of kinetochores. The primary model of kinetochore homeostasis suggests that kinetochores assemble hierarchically from the centromeric DNA via the inclusion of a centromere-specific histone into chromatin. We tested this model by trying to perturb kinetochore protein levels by overexpressing an outer kinetochore gene, MTW1. This increase in protein failed to change protein recruitment, consistent with the hierarchical assembly model. However, we find that deletion of Psh1, a key ubiquitin ligase that is known to restrict inner kinetochore protein loading, does not increase levels of outer kinetochore proteins, thus breaking the normal kinetochore stoichiometry. This perturbation leads to chromosome segregation defects, which can be partially suppressed by mutation of Ubr2, a second ubiquitin ligase that normally restricts protein levels at the outer kinetochore. Together these data show that Psh1 and Ubr2 synergistically control the amount of proteins at the kinetochore.
Collapse
Affiliation(s)
- Eva Herrero
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Peter H. Thorpe
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
33
|
Heasley LR, McMurray MA. Roles of septins in prospore membrane morphogenesis and spore wall assembly in Saccharomyces cerevisiae. Mol Biol Cell 2015; 27:442-50. [PMID: 26680739 PMCID: PMC4751596 DOI: 10.1091/mbc.e15-10-0721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022] Open
Abstract
In mitotically dividing cells, septin proteins form cytoskeletal filaments that function in cell morphogenesis and division. Gametogenesis in yeast couples meiosis with a fundamentally different form of cytokinesis involving de novo membrane synthesis. Budding yeast septins are critical for spore membrane extension and wall assembly. The highly conserved family of septin proteins has important functions in cytokinesis in mitotically proliferating cells. A different form of cytokinesis occurs during gametogenesis in Saccharomyces cerevisiae, in which four haploid meiotic products become encased by prospore membrane (PSMs) and specialized, stress-resistant spore walls. Septins are known to localize in a series of structures near the growing PSM, but previous studies noted only mild sporulation defects upon septin mutation. We report that directed PSM extension fails in many septin-mutant cells, and, for those that do succeed, walls are abnormal, leading to increased susceptibility to heating, freezing, and digestion by the Drosophila gut. Septin mutants mislocalize the leading-edge protein (LEP) complex required for normal PSM and wall biogenesis, and ectopic expression of the LEP protein Ssp1 perturbs mitotic septin localization and function, suggesting a functional interaction. Strikingly, extra copies of septin CDC10 rescue sporulation and LEP localization in cells lacking Sma1, a phospholipase D–associated protein dispensable for initiation of PSM assembly and PSM curvature but required for PSM extension. These findings point to key septin functions in directing efficient membrane and cell wall synthesis during budding yeast gametogenesis.
Collapse
Affiliation(s)
- Lydia R Heasley
- University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | | |
Collapse
|
34
|
Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus. PLoS Genet 2015; 11:e1005490. [PMID: 26313153 PMCID: PMC4551743 DOI: 10.1371/journal.pgen.1005490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.
Collapse
|
35
|
Yeast model identifies ENTPD6 as a potential non-obstructive azoospermia pathogenic gene. Sci Rep 2015; 5:11762. [PMID: 26152596 PMCID: PMC4495445 DOI: 10.1038/srep11762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/02/2015] [Indexed: 01/03/2023] Open
Abstract
Approximately ten percent of male infertility is caused by non-obstructive azoospermia (NOA), but the etiologies of many NOA remain elusive. Recently, a genome-wide association study (GWAS) of NOA in Han Chinese men was conducted, and only a few genetic variants associated with NOA were found, which might have resulted from genetic heterogeneity. However, those variants that lack genome-wide significance might still be essential for fertility. Functional analysis of genes surrounding these variants inDrosophilaidentified some spermatogenesis-essential genes. As a complementary method ofDrosophilascreening, SK1 backgroundSaccharomvces cerevisiaewas used as a model to screen meiosis-related genes from the NOA GWAS data in this study. After functional screening,GDA1(orthologous to humanENTPD6) was found to be a novel meiosis-related gene. The deletion ofGDA1resulted in the failure of yeast sporulation. Further investigations showed that Gda1p was important for pre-meiotic S phase entry. Interestingly, the meiotic role of Gda1p was dependent on its guanosine diphosphatase activity, but not it’s cytoplasmic, transmembrane or stem domains. These yeast data suggest thatENTPD6may be a novel meiosis-associated NOA-related gene, and the yeast model provides a good approach to analyze GWAS results of NOA.
Collapse
|
36
|
Gupta R, Sadhale PP, Vijayraghavan U. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae. PLoS One 2015; 10:e0132350. [PMID: 26147804 PMCID: PMC4492983 DOI: 10.1371/journal.pone.0132350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/14/2015] [Indexed: 01/29/2023] Open
Abstract
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Parag P. Sadhale
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
- * E-mail:
| |
Collapse
|
37
|
Gupta S, Radhakrishnan A, Raharja-Liu P, Lin G, Steinmetz LM, Gagneur J, Sinha H. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype. PLoS Genet 2015; 11:e1005195. [PMID: 26039065 PMCID: PMC4454590 DOI: 10.1371/journal.pgen.1005195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/02/2015] [Indexed: 01/04/2023] Open
Abstract
Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants’ effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression. The causal path from a genetic variant to a complex phenotype such as disease progression is often not known. Studying gene expression variation is one approach to identify the mediating genes, however, it is difficult to distinguish causative from correlative genes. This becomes a challenge especially when studying developmental and physiological traits, since they involve dynamic processes contributing to the variation and only single static expression profiling is performed. As a proof of concept, we addressed this challenge here in yeast, by studying genome-wide gene expression in the presence of the causative polymorphism of MKT1 as the sole genetic variant, during the time phase when it contributes to sporulation efficiency variation. Our analysis during early sporulation identified mitochondrial retrograde signaling and nitrogen starvation as novel regulators, acting additively to regulate sporulation efficiency. Furthermore, we showed that PUF3, a known interactor of MKT1 had an independent role in sporulation. Our results highlight the role of differential mitochondrial signaling for efficient meiosis, providing insights into the factors regulating infertility. In addition, our study has implications for characterizing the molecular effects of causal genetic variants on dynamic biological processes during development and disease progression.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Aparna Radhakrishnan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Gen Lin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lars M. Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Julien Gagneur
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Himanshu Sinha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- * E-mail:
| |
Collapse
|
38
|
Liu Y, Stuparevic I, Xie B, Becker E, Law MJ, Primig M. The conserved histone deacetylase Rpd3 and the DNA binding regulator Ume6 repressBOI1's meiotic transcript isoform during vegetative growth inSaccharomyces cerevisiae. Mol Microbiol 2015; 96:861-74. [DOI: 10.1111/mmi.12976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Yuchen Liu
- Inserm U1085 IRSET; Inserm; 35042 Rennes France
| | | | | | - Emmanuelle Becker
- Inserm U1085 IRSET; Inserm; 35042 Rennes France
- Departement des sciences de la vie et de l'environnement; Université de Rennes 1; 35042 Rennes France
| | - Michael J. Law
- School of Osteopathic Medicine; Rowan University; Stratford NJ 08084 USA
| | | |
Collapse
|
39
|
The histone deacetylase Rpd3/Sin3/Ume6 complex represses an acetate-inducible isoform of VTH2 in fermenting budding yeast cells. FEBS Lett 2015; 589:924-32. [PMID: 25728275 DOI: 10.1016/j.febslet.2015.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
Abstract
The tripartite Rpd3/Sin3/Ume6 complex represses meiotic isoforms during mitosis. We asked if it also controls starvation-induced isoforms. We report that VTH1/VTH2 encode acetate-inducible isoforms with extended 5'-regions overlapping antisense long non-coding RNAs. Rpd3 and Ume6 repress the long isoform of VTH2 during fermentation. Cells metabolising glucose contain Vth2, while the protein is undetectable in acetate and during sporulation. VTH2 is a useful model locus to study mechanisms implicating promoter directionality, lncRNA transcription and post-transcriptional control of gene expression via 5'-UTRs. Since mammalian genes encode transcript isoforms and Rpd3 is conserved, our findings are relevant for gene expression in higher eukaryotes.
Collapse
|
40
|
Petit FG, Kervarrec C, Jamin SP, Smagulova F, Hao C, Becker E, Jégou B, Chalmel F, Primig M. Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biol Reprod 2015; 92:71. [PMID: 25609838 DOI: 10.1095/biolreprod.114.126250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genome-wide RNA profiling studies have identified hundreds of transcripts that are highly expressed in mammalian male germ cells, including many that are undetectable in somatic control tissues. Among them, genes important for spermatogenesis are significantly enriched. Information about mRNAs and their cognate proteins facilitates the identification of novel conserved target genes for functional studies in the mouse. By inspecting genome-wide RNA profiling data, we manually selected 81 genes for which RNA is detected almost exclusively in the human male germline and, in most cases, in rodent testicular germ cells. We observed corresponding mRNA/protein patterns in 43 cases using immunohistochemical data from the Human Protein Atlas and large-scale human protein profiling data obtained via mass spectroscopy. Protein network information enabled us to establish an interaction map of 38 proteins that points to potentially important testicular roles for some of them. We further characterized six candidate genes at the protein level in the mouse. We conclude that conserved genes induced in testis tend to show similar mRNA/protein expression patterns across species. Specifically, our results suggest roles during embryogenesis and adult spermatogenesis for Foxr1 and Sox30 and during spermiogenesis and fertility for Fam71b, 1700019N19Rik, Hmgb4, and Zfp597.
Collapse
Affiliation(s)
| | | | - Soazik P Jamin
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Chunxiang Hao
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Bernard Jégou
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| | | | - Michael Primig
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| |
Collapse
|
41
|
TORC1 regulators Iml1/GATOR1 and GATOR2 control meiotic entry and oocyte development in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E5670-7. [PMID: 25512509 DOI: 10.1073/pnas.1419156112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans. Here we define opposing functions for the TORC1 regulatory complexes Iml1/GATOR1 and GATOR2 during Drosophila oogenesis. We demonstrate that, as is observed in yeast, the Iml1/GATOR1 complex inhibits TORC1 activity to slow cellular metabolism and drive the mitotic/meiotic transition in developing ovarian cysts. In iml1 germline depletions, ovarian cysts undergo an extra mitotic division before meiotic entry. The TORC1 inhibitor rapamycin can suppress this extra mitotic division. Thus, high TORC1 activity delays the mitotic/meiotic transition. Conversely, mutations in Tor, which encodes the catalytic subunit of the TORC1 complex, result in premature meiotic entry. Later in oogenesis, the GATOR2 components Mio and Seh1 are required to oppose Iml1/GATOR1 activity to prevent the constitutive inhibition of TORC1 and a block to oocyte growth and development. To our knowledge, these studies represent the first examination of the regulatory relationship between the Iml1/GATOR1 and GATOR2 complexes within the context of a multicellular organism. Our data imply that the central role of the Iml1/GATOR1 complex in the regulation of TORC1 activity in the early meiotic cycle has been conserved from single cell to multicellular organisms.
Collapse
|
42
|
Fine-tuning of histone H3 Lys4 methylation during pseudohyphal differentiation by the CDK submodule of RNA polymerase II. Genetics 2014; 199:435-53. [PMID: 25467068 DOI: 10.1534/genetics.114.172841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcriptional regulation is dependent upon the interactions between the RNA pol II holoenzyme complex and chromatin. RNA pol II is part of a highly conserved multiprotein complex that includes the core mediator and CDK8 subcomplex. In Saccharomyces cerevisiae, the CDK8 subcomplex, composed of Ssn2p, Ssn3p, Ssn8p, and Srb8p, is thought to play important roles in mediating transcriptional control of stress-responsive genes. Also central to transcriptional control are histone post-translational modifications. Lysine methylation, dynamically balanced by lysine methyltransferases and demethylases, has been intensively studied, uncovering significant functions in transcriptional control. A key question remains in understanding how these enzymes are targeted during stress response. To determine the relationship between lysine methylation, the CDK8 complex, and transcriptional control, we performed phenotype analyses of yeast lacking known lysine methyltransferases or demethylases in isolation or in tandem with SSN8 deletions. We show that the RNA pol II CDK8 submodule components SSN8/SSN3 and the histone demethylase JHD2 are required to inhibit pseudohyphal growth-a differentiation pathway induced during nutrient limitation-under rich conditions. Yeast lacking both SSN8 and JHD2 constitutively express FLO11, a major regulator of pseudohyphal growth. Interestingly, deleting known FLO11 activators including FLO8, MSS11, MFG1, TEC1, SNF1, KSS1, and GCN4 results in a range of phenotypic suppression. Using chromatin immunoprecipitation, we found that SSN8 inhibits H3 Lys4 trimethylation independently of JHD2 at the FLO11 locus, suggesting that H3 Lys4 hypermethylation is locking FLO11 into a transcriptionally active state. These studies implicate the CDK8 subcomplex in fine-tuning H3 Lys4 methylation levels during pseudohyphal differentiation.
Collapse
|
43
|
Walther T, Létisse F, Peyriga L, Alkim C, Liu Y, Lardenois A, Martin-Yken H, Portais JC, Primig M, François J. Developmental stage dependent metabolic regulation during meiotic differentiation in budding yeast. BMC Biol 2014; 12:60. [PMID: 25178389 PMCID: PMC4176597 DOI: 10.1186/s12915-014-0060-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background The meiotic developmental pathway in yeast enables both differentiation of vegetative cells into haploid spores that ensure long-term survival, and recombination of the parental DNA to create genetic diversity. Despite the importance of proper metabolic regulation for the supply of building blocks and energy, little is known about the reprogramming of central metabolic pathways in meiotically differentiating cells during passage through successive developmental stages. Results Metabolic regulation during meiotic differentiation in budding yeast was analyzed by integrating information on genome-wide transcriptional activity, 26 enzymatic activities in the central metabolism, the dynamics of 67 metabolites, and a metabolic flux analysis at mid-stage meiosis. Analyses of mutants arresting sporulation at defined stages demonstrated that metabolic reprogramming is tightly controlled by the progression through the developmental pathway. The correlation between transcript levels and enzymatic activities in the central metabolism varies significantly in a developmental stage-dependent manner. The complete loss of phosphofructokinase activity at mid-stage meiosis enables a unique setup of the glycolytic pathway which facilitates carbon flux repartitioning into synthesis of spore wall precursors during the co-assimilation of glycogen and acetate. The need for correct homeostasis of purine nucleotides during the meiotic differentiation was demonstrated by the sporulation defect of the AMP deaminase mutant amd1, which exhibited hyper-accumulation of ATP accompanied by depletion of guanosine nucleotides. Conclusions Our systems-level analysis shows that reprogramming of the central metabolism during the meiotic differentiation is controlled at different hierarchical levels to meet the metabolic and energetic needs at successive developmental stages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0060-x) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Burke MK, Liti G, Long AD. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol Biol Evol 2014; 31:3228-39. [PMID: 25172959 DOI: 10.1093/molbev/msu256] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In "evolve-and-resequence" (E&R) experiments, whole-genome sequence data from laboratory-evolved populations can potentially uncover mechanisms of adaptive change. E&R experiments with initially isogenic, asexually reproducing microbes have repeatedly shown that beneficial de novo mutations drive adaptation, and these mutations are not shared among independently evolving replicate populations. Recent E&R experiments with higher eukaryotes that maintain genetic variation via sexual reproduction implicate largely different mechanisms; adaptation may act primarily on pre-existing genetic variation and occur in parallel among independent populations. But this is currently a debated topic, and generalizing these conclusions is problematic because E&R experiments with sexual species are difficult to implement and important elements of experimental design suffer for practical reasons. We circumvent potentially confounding limitations with a yeast model capable of shuffling genotypes via sexual recombination. Our starting population consisted of a highly intercrossed diploid Saccharomyces cerevisiae initiated from four wild haplotypes. We imposed a laboratory domestication treatment on 12 independent replicate populations for 18 weeks, where each week included 2 days as diploids in liquid culture and a forced recombination/mating event. We then sequenced pooled population samples at weeks 0, 6, 12, and 18. We show that adaptation is highly parallel among replicate populations, and can be localized to a modest number of genomic regions. We also demonstrate that despite hundreds of generations of evolution and large effective population sizes, de novo beneficial mutations do not play a large role in this adaptation. Further, we have high power to detect the signal of change in these populations but show how this power is dramatically reduced when fewer timepoints are sampled, or fewer replicate populations are analyzed. As ours is the most highly replicated and sampled E&R study in a sexual species to date, this evokes important considerations for past and future experiments.
Collapse
Affiliation(s)
- Molly K Burke
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Gianni Liti
- Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U1081, Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|
45
|
Hurtado S, Kim Guisbert KS, Sontheimer EJ. SPO24 is a transcriptionally dynamic, small ORF-encoding locus required for efficient sporulation in Saccharomyces cerevisiae. PLoS One 2014; 9:e105058. [PMID: 25127041 PMCID: PMC4134269 DOI: 10.1371/journal.pone.0105058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 07/20/2014] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, meiosis and sporulation are highly regulated responses that are driven in part by changes in RNA expression. Alternative mRNA forms with extended 5′ UTRs are atypical in S. cerevisiae, and 5′ extensions with upstream open reading frames (uORFs) are even more unusual. Here we characterize the gene YPR036W-A, now renamed SPO24, which encodes a very small (67-amino-acid) protein. This gene gives rise to two mRNA forms: a shorter form throughout meiosis and a longer, 5′-extended form in mid-late meiosis. The latter form includes a uORF for a 14-amino-acid peptide (Spo24u14). Deletion of the downstream ORF (dORF) leads to sporulation defects and the appearance of pseudohyphae-like projections. Experiments with luciferase reporters indicate that the uORF does not downregulate dORF translation. The protein encoded by the dORF (Spo24d67) localizes to the prospore membrane and is differentially phosphorylated during meiosis. Transcription of the 5′-extended mRNA in mid-meiosis depends upon the presence of two middle sporulation elements (MSEs). Removal of the MSEs severely inhibits the mid-meiotic appearance of the 5′-extended mRNA and limits the ability of plasmid-borne SPO24 to rescue the sporulation defect of a spo24Δ mutant, suggesting that the 5′-extended mRNA is functionally important. These results reveal Spo24d67 as a sporulation-related factor that is encoded by a transcriptionally dynamic, uORF-containing locus.
Collapse
Affiliation(s)
- Sara Hurtado
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Karen S. Kim Guisbert
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik J. Sontheimer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
46
|
Shi L, Li Z, Tachikawa H, Gao XD, Nakanishi H. Use of yeast spores for microencapsulation of enzymes. Appl Environ Microbiol 2014; 80:4502-10. [PMID: 24837390 PMCID: PMC4148785 DOI: 10.1128/aem.00153-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/31/2014] [Indexed: 11/20/2022] Open
Abstract
Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.
Collapse
Affiliation(s)
- Libing Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
47
|
Abstract
The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general.
Collapse
|
48
|
A genome-wide screen for sporulation-defective mutants in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1173-82. [PMID: 24727291 PMCID: PMC4065261 DOI: 10.1534/g3.114.011049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Yeast sporulation is a highly regulated developmental program by which diploid cells generate haploid gametes, termed spores. To better define the genetic pathways regulating sporulation, a systematic screen of the set of ~3300 nonessential Schizosaccharomyces pombe gene deletion mutants was performed to identify genes required for spore formation. A high-throughput genetic method was used to introduce each mutant into an h(90) background, and iodine staining was used to identify sporulation-defective mutants. The screen identified 34 genes whose deletion reduces sporulation, including 15 that are defective in forespore membrane morphogenesis. In S. pombe, the total number of sporulation-defective mutants is a significantly smaller fraction of coding genes than in S. cerevisiae, which reflects the different evolutionary histories and biology of the two yeasts.
Collapse
|
49
|
Montefusco DJ, Matmati N, Hannun YA. The yeast sphingolipid signaling landscape. Chem Phys Lipids 2014; 177:26-40. [PMID: 24220500 PMCID: PMC4211598 DOI: 10.1016/j.chemphyslip.2013.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022]
Abstract
Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field.
Collapse
Affiliation(s)
- David J Montefusco
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
50
|
Dai Z, Aryal UK, Shukla A, Qian WJ, Smith RD, Magnuson JK, Adney WS, Beckham GT, Brunecky R, Himmel ME, Decker SR, Ju X, Zhang X, Baker SE. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genet Biol 2013; 61:120-32. [DOI: 10.1016/j.fgb.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/05/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
|