1
|
Sardarabadi P, Lee KY, Sun WL, Kojabad AA, Liu CH. Investigating T Cell Immune Dynamics and IL-6's Duality in a Microfluidic Lung Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39471283 DOI: 10.1021/acsami.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role. A flow-based microsystem was designed to investigate CD4+ T cell activation in response to different IL-6 gradients in an under-control 3D culture. The study found that cancer cells' response to varying IL-6 concentrations was dynamic and dose-sensitive, with immune cell migration rates showing sensitivity to the IL-6 gradient. A549 cell expansion increases gradually and time-dependently with 50 ng of IL-6, while Jurkat cell migration follows a time-dependent pattern. However, when a total of 100 ng IL-6 concentration is applied, A549 cells expand rapidly, potentially influencing Jurkat cell migration. Jurkat cell mobility is lower, possibly due to increased A549 cell presence and heightened cell-cell interactions. Different IL-6 concentration gradients can modulate the expression of some CD markers like CD69 and programed cell death protein 1 in CD4+ T cells, suggesting that IL-6 concentration gradients affect immune cell phenotypes. This suggests that IL-6 plays a crucial role in activating T helper cells and may be involved in the later phases of inflammation. Also, the increased levels of IFN-γ and TNF-α highlight IL-6's impact on T cell inflammatory response. This study emphasizes the intricate effects of IL-6 on T cell activation, phenotype, cytokine production, and phenotypic heterogeneity, providing valuable insights into immune response modulation in an experimental setting.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Lun Sun
- Pythia Biotech LTD., New Taipei City 23561, Taiwan, R.O.C
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
2
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
3
|
Pu W, Ma C, Wang B, Zhu W, Chen H. The "Heater" of "Cold" Tumors-Blocking IL-6. Adv Biol (Weinh) 2024; 8:e2300587. [PMID: 38773937 DOI: 10.1002/adbi.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/13/2024] [Indexed: 05/24/2024]
Abstract
The resolution of inflammation is not simply the end of the inflammatory response but rather a complex process that involves various cells, inflammatory factors, and specialized proresolving mediators following the occurrence of inflammation. Once inflammation cannot be cleared by the body, malignant tumors may be induced. Among them, IL-6, as an immunosuppressive factor, activates a variety of signal transduction pathways and induces tumorigenesis. Monitoring IL-6 can be used for the diagnosis, efficacy evaluation and prognosis of tumor patients. In terms of treatment, improving the efficacy of targeted and immunotherapy remains a major challenge. Blocking IL-6 and its mediated signaling pathways can regulate the tumor immune microenvironment and enhance immunotherapy responses by activating immune cells. Even transform "cold" tumors that are difficult to respond to immunotherapy into immunogenic "hot" tumors, acting as a "heater" for "cold" tumors, restarting the tumor immune cycle, and reducing immunotherapy-related toxic reactions and drug resistance. In clinical practice, the combined application of IL-6 inhibition with targeted therapy and immunotherapy may produce synergistic results. Nevertheless, additional clinical trials are imperative to further validate the safety and efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Weigao Pu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Weidong Zhu
- General Surgery Department of Lintao County People's Hospital in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, Gansu, 730030, China
| |
Collapse
|
4
|
Wu MH, Valenca-Pereira F, Cendali F, Giddings EL, Pham-Danis C, Yarnell MC, Novak AJ, Brunetti TM, Thompson SB, Henao-Mejia J, Flavell RA, D'Alessandro A, Kohler ME, Rincon M. Deleting the mitochondrial respiration negative regulator MCJ enhances the efficacy of CD8 + T cell adoptive therapies in pre-clinical studies. Nat Commun 2024; 15:4444. [PMID: 38789421 PMCID: PMC11126743 DOI: 10.1038/s41467-024-48653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.
Collapse
Affiliation(s)
- Meng-Han Wu
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Felipe Valenca-Pereira
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily L Giddings
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Catherine Pham-Danis
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Yarnell
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda J Novak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Tonya M Brunetti
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M Eric Kohler
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| | - Mercedes Rincon
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
5
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
6
|
Deng X, Guo X, Chen X, Zeng X, Guo J, Bai X, Zhang P, Wang Y. ACE Gene Mutations (rs577350502) in Early-Onset and Recurrent Myocardial Infarction: A Case Report and Review. Pharmgenomics Pers Med 2024; 17:163-169. [PMID: 38659693 PMCID: PMC11042475 DOI: 10.2147/pgpm.s455740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Background Acute myocardial infarction (AMI) is a severe acute coronary syndrome, demonstrating a trend toward affecting younger individuals in recent years. The association between early-onset myocardial infarction and single nucleotide polymorphism necessitates further exploration and evaluation. Case description We present a case of a patient experiencing early-onset and recurrent myocardial infarction. The patient underwent stent implantation for myocardial infarction at the age of 53 and subsequently encountered two more myocardial infarctions within a span of 16 years. Following interventional therapy, genetic testing was conducted to assess the efficacy of subsequent anti-heart failure medications, with the aim to preemptively address heart failure risks. Genetic testing revealed a mutation in the angiotensin-converting enzyme (ACE) gene (rs577350502, g.63488533C>A), characterized by an intron-deletion single nucleotide variant. Conclusion While this variant has not been previously reported to be associated with any specific disease, we hypothesize that it may contribute to the susceptibility and risk of myocardial infarction and coronary heart disease in the patient under consideration. This observation underscores the significance of investigating the insertion/deletion polymorphisms of the ACE gene in the context of AMI and emphasizes the necessity for further validation of this variant and other genetic markers associated with AMI in related diseases.
Collapse
Affiliation(s)
- Xiaoxi Deng
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Xiaofei Guo
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Xiaojie Chen
- Department of Emergency, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Xinyu Zeng
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Jiamin Guo
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Xin Bai
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yuan Wang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| |
Collapse
|
7
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Marié IJ, Lahiri T, Önder Ö, Elenitoba-Johnson KS, Levy DE. Structural determinants of mitochondrial STAT3 targeting and function. MITOCHONDRIAL COMMUNICATIONS 2024; 2:1-13. [PMID: 38500969 PMCID: PMC10947224 DOI: 10.1016/j.mitoco.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Signal transducer and activator of transcription (STAT) 3 has been found within mitochondria in addition to its canonical role of shuttling between cytoplasm and nucleus during cytokine signaling. Mitochondrial STAT3 has been implicated in modulation of cellular metabolism, largely through effects on the respiratory electron transport chain. However, the structural requirements underlying mitochondrial targeting and function have remained unclear. Here, we show that mitochondrial STAT3 partitions between mitochondrial compartments defined by differential detergent solubility, suggesting that mitochondrial STAT3 is membrane associated. The majority of STAT3 was found in an SDS soluble fraction copurifying with respiratory chain proteins, including numerous components of the complex I NADH dehydrogenase, while a minor component was found with proteins of the mitochondrial translation machinery. Mitochondrial targeting of STAT3 required the amino-terminal domain, and an internal linker domain motif also directed mitochondrial translocation. However, neither the phosphorylation of serine 727 nor the presence of mitochondrial DNA was required for the mitochondrial localization of STAT3. Two cysteine residues in the STAT3 SH2 domain, which have been previously suggested to be targets for protein palmitoylation, were also not required for mitochondrial translocation, but were required for its function as an enhancer of complex I activity. These structural determinants of STAT3 mitochondrial targeting and function provide potential therapeutic targets for disrupting the activity of mitochondrial STAT3 in diseases such as cancer.
Collapse
Affiliation(s)
- Isabelle J. Marié
- Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10128, USA
| | - Tanaya Lahiri
- Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10128, USA
| | - Özlem Önder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kojo S.J. Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David E. Levy
- Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10128, USA
| |
Collapse
|
9
|
Hou D, Zheng X, Cai D, You R, Liu J, Wang X, Liao X, Tan M, Lin L, Wang J, Zhang S, Huang H. Interleukin-6 Facilitates Acute Myeloid Leukemia Chemoresistance via Mitofusin 1-Mediated Mitochondrial Fusion. Mol Cancer Res 2023; 21:1366-1378. [PMID: 37698549 DOI: 10.1158/1541-7786.mcr-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Acute myeloid leukemia (AML), an aggressive hematopoietic malignancy, exhibits poor prognosis and a high recurrence rate largely because of primary and secondary drug resistance. Elevated serum IL6 levels have been observed in patients with AML and are associated with chemoresistance. Chemoresistant AML cells are highly dependent on oxidative phosphorylation (OXPHOS), and mitochondrial network remodeling is essential for mitochondrial function. However, IL6-mediated regulation of mitochondrial remodeling and its effectiveness as a therapeutic target remain unclear. We aimed to determine the mechanisms through which IL6 facilitates the development of chemoresistance in AML cells. IL6 upregulated mitofusin 1 (MFN1)-mediated mitochondrial fusion, promoted OXPHOS, and induced chemoresistance in AML cells. MFN1 knockdown impaired the effects of IL6 on mitochondrial function and chemoresistance in AML cells. In an MLL::AF9 fusion gene-induced AML mouse model, IL6 reduced chemosensitivity to cytarabine (Ara-C), a commonly used antileukemia drug, accompanied by increased MFN1 expression, mitochondrial fusion, and OXPHOS status. In contrast, anti-IL6 antibodies downregulated MFN1 expression, suppressed mitochondrial fusion and OXPHOS, enhanced the curative effects of Ara-C, and prolonged overall survival. In conclusion, IL6 upregulated MFN1-mediated mitochondrial fusion in AML, which facilitated mitochondrial respiration, in turn, inducing chemoresistance. Thus, targeting IL6 may have therapeutic implications in overcoming IL6-mediated chemoresistance in AML. IMPLICATIONS IL6 treatment induces MFN1-mediated mitochondrial fusion, promotes OXPHOS, and confers chemoresistance in AML cells. Targeting IL6 regulation in mitochondria is a promising therapeutic strategy to enhance the chemosensitivity of AML.
Collapse
Affiliation(s)
- Diyu Hou
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Zheng
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Danni Cai
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoting Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xinai Liao
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Maoqing Tan
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liyan Lin
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jin Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuxia Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:5662-5675. [PMID: 38053545 PMCID: PMC10694609 DOI: 10.1016/j.csbj.2023.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid β (Aβ) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
11
|
Wang C, Cheng Y, Li B, Qiu X, Hu H, Zhang X, Lu Z, Zheng F. Transcriptional characteristics and functional validation of three monocyte subsets during aging. Immun Ageing 2023; 20:50. [PMID: 37759225 PMCID: PMC10523626 DOI: 10.1186/s12979-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Age-associated changes in immunity are inextricably linked to chronic inflammation and age-related diseases, the impact of aging on monocyte subsets is poorly understood. METHODS Flow cytometry was applied to distinguish three monocyte subsets between 120 young and 103 aged individuals. We then analyzed the expression profiles of three monocyte subsets from 9 young and 9 older donors and CD14+ monocytes from 1202 individuals between 44 and 83 years old. Flow cytometry was used to measure β-galactosidase activities, ROS levels, mitochondrial contents, mitochondrial membrane potentials (MMPs) and intracellular IL-6 levels in three monocyte subsets of young and elderly individuals, and plasma IL-6 levels were detected by electrochemiluminescence immunoassay. Mitochondrial stress and glycolytic rate of CD14+ monocytes from young and aged individuals were measured by Seahorse XFe24 Analyzer. RESULTS Compared with young individuals, the percentage of classical subset in aged persons significantly decreased, while the proportion of nonclassical subset increased. Age-related differential genes were obviously enriched in cellular senescence, ROS, oxidative phosphorylation, mitochondrial respiratory chain, IL-6 and ribosome-related pathways. Compared with young individuals, the β-galactosidase activities, ROS contents, intracellular IL-6 levels of three monocyte subsets, and plasma IL-6 levels in aged individuals were significantly elevated, while the MMPs apparently declined with age and the mitochondrial contents were only increased in intermediate and nonclassical subsets. CD14+ monocytes from elderly adults had conspicuously lower basal and spare respiratory capacity and higher basal glycolysis than those from young individuals. CONCLUSIONS During aging, monocytes exhibited senescence-associated secretory phenotype, mitochondrial dysfunction, decreased oxidative phosphorylation and increased glycolysis and the nonclassical subset displayed the clearest features of aging. Our study comprehensively investigated age-related transcriptional alterations of three monocyte subsets and identified the pivotal pathways of monocyte senescence, which may have significant implications for tactics to alleviate age-related conditions.
Collapse
Affiliation(s)
- Chen Wang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yating Cheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xueping Qiu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Hu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
13
|
Schafer JB, Lucas ED, Dzieciatkowska M, Forward T, Tamburini BAJ. Programmed death ligand 1 intracellular interactions with STAT3 and focal adhesion protein Paxillin facilitate lymphatic endothelial cell remodeling. J Biol Chem 2022; 298:102694. [PMID: 36375639 PMCID: PMC9761386 DOI: 10.1016/j.jbc.2022.102694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) comprise lymphatic capillaries and vessels that guide immune cells to lymph nodes (LNs) and form the subcapsular sinus and cortical and medullary lymphatic structures of the LN. During an active immune response, the lymphatics remodel to accommodate the influx of immune cells from the tissue, but factors involved in remodeling are unclear. Here, we determined that a TSS motif within the cytoplasmic domain of programmed death ligand 1 (PD-L1), expressed by LECs in the LN, participates in lymphatic remodeling. Mutation of the TSS motif to AAA does not affect surface expression of PD-L1, but instead causes defects in LN cortical and medullary lymphatic organization following immunostimulant, Poly I:C, administration in vivo. Supporting this observation, in vitro treatment of the LEC cell line, SVEC4-10, with cytokines TNFα and IFNα significantly impeded SVEC4-10 movement in the presence of the TSS-AAA cytoplasmic mutation. The cellular movement defects coincided with reduced F-actin polymerization, consistent with differences previously found in dendritic cells. Here, in addition to loss of actin polymerization, we define STAT3 and Paxillin as important PD-L1 binding partners. STAT3 and Paxillin were previously demonstrated to be important at focal adhesions for cellular motility. We further demonstrate the PD-L1 TSS-AAA motif mutation reduced the amount of pSTAT3 and Paxillin bound to PD-L1 both before and after exposure to TNFα and IFNα. Together, these findings highlight PD-L1 as an important component of a membrane complex that is involved in cellular motility, which leads to defects in lymphatic organization.
Collapse
Affiliation(s)
- Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
14
|
Hu H, Guo L, Overholser J, Wang X. Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells 2022; 11:cells11193174. [PMID: 36231136 PMCID: PMC9562648 DOI: 10.3390/cells11193174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Hang Hu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (L.G.); (X.W.)
| | - Jay Overholser
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (L.G.); (X.W.)
| |
Collapse
|
15
|
Conway R, Rockhold JD, SantaCruz-Calvo S, Zukowski E, Pugh GH, Hasturk H, Kern PA, Nikolajczyk BS, Bharath LP. Obesity and Fatty Acids Promote Mitochondrial Translocation of STAT3 Through ROS-Dependent Mechanisms. FRONTIERS IN AGING 2022; 3:924003. [PMID: 35928250 PMCID: PMC9344057 DOI: 10.3389/fragi.2022.924003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Obesity promotes the onset and progression of metabolic and inflammatory diseases such as type 2 diabetes. The chronic low-grade inflammation that occurs during obesity triggers multiple signaling mechanisms that negatively affect organismal health. One such mechanism is the persistent activation and mitochondrial translocation of STAT3, which is implicated in inflammatory pathologies and many types of cancers. STAT3 in the mitochondria (mitoSTAT3) alters electron transport chain activity, thereby influencing nutrient metabolism and immune response. PBMCs and CD4+ T cells from obese but normal glucose-tolerant (NGT) middle-aged subjects had higher phosphorylation of STAT3 on residue serine 727 and more mitochondrial accumulation of STAT3 than cells from lean subjects. To evaluate if circulating lipid overabundance in obesity is responsible for age- and sex-matched mitoSTAT3, cells from lean subjects were challenged with physiologically relevant doses of the saturated and monounsaturated fatty acids, palmitate and oleate, respectively. Fatty acid treatment caused robust accumulation of mitoSTAT3 in all cell types, which was independent of palmitate-induced impairments in autophagy. Co-treatment of cells with fatty acid and trehalose prevented STAT3 phosphorylation and mitochondrial accumulation in an autophagy-independent but cellular peroxide-dependent mechanism. Pharmacological blockade of mitoSTAT3 either by a mitochondria-targeted STAT3 inhibitor or ROS scavenging prevented obesity and fatty acid-induced production of proinflammatory cytokines IL-17A and IL-6, thus establishing a mechanistic link between mitoSTAT3 and inflammatory cytokine production.
Collapse
Affiliation(s)
- Rachel Conway
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| | - Jack Donato Rockhold
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| | - Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Emelia Zukowski
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| | - Gabriella H. Pugh
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | | | - Philip A. Kern
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- Department of Medicine, University of Kentucky, Lexington, KY, United States
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Leena P. Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| |
Collapse
|