1
|
Nishikawa H, Okada D, Kwaria D, Nihonyanagi A, Kuwayama M, Hoshino M, Araoka F. Emergent Ferroelectric Nematic and Heliconical Ferroelectric Nematic States in an Achiral "Straight" Polar Rod Mesogen. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405718. [PMID: 39099380 DOI: 10.1002/advs.202405718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Ferroelectric nematic liquid crystals (NFLCs) are distinguished by their remarkable polarization characteristics and diverse physical phenomena, sparking significant interest and excitement within the scientific community. To date, over 150 NFLC molecules are developed; however, there are no reports regarding straight linear polar molecules with a parallel alignment of the permanent dipole moment and the molecular axis. The straight polar mesogen nBOE exhibits an enantiotropic NF phase with a wide temperature window (up to 100 K) despite having a longer alkyl chain (up to n = 6) than the critical alkyl chain length of conventional models. Interestingly, nBOE with a medium-length alkyl chain displays an exotic phase sequence of NF-HCNF-SmXF during the elimination of positional displacement among adjacent molecules. Furthermore, the reflective color modulation of the HCNFLC over the entire VIS-NIR spectral regime by ultralow E-field (up to 0.14 V µm-1) is demonstrated.
Collapse
Affiliation(s)
- Hiroya Nishikawa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daichi Okada
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Dennis Kwaria
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsuko Nihonyanagi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Motonobu Kuwayama
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Manabu Hoshino
- Graduate School of Medicine, and General Medical Education and Research Center, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Okada D, Nishikawa H, Araoka F. Tunable Intracavity Coherent Up-Conversion with Giant Nonlinearity in a Polar Fluidic Medium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405227. [PMID: 39039816 PMCID: PMC11423090 DOI: 10.1002/advs.202405227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Indexed: 07/24/2024]
Abstract
The study has demonstrated a novel microcavity-based flexible photon up-conversion system using second harmonic generation (SHG) from a polar nematic fluidic medium doped with a laser dye. The idea is based on coherent light generation via stimulated emission (lasing) and simultaneous frequency doubling inside a microcavity. The polar nematic fluid equips very high even-order optical nonlinearity due to its polar symmetry and large dipole moment along the molecular long axis. At the same time, its inherent fluidic nature allows to easily functionalize the media just by doping, in the present case, with an emissive laser dye. The demonstrated system exhibits a giant nonlinear optical response to input light, while enabling spectral narrowing and multiple-signal output of up-converted light, which is not attainable through the simple SH-conversion of input light. Furthermore, the susceptibility of the liquid crystal offers dynamic modulation capabilities by an external stimulus, such as signal switching by the application of electric field or wavelength tuning through temperature variation. Such a brand-new type of simple coherent flexible up-conversion system must be promising as a new principle for easily accessible and down-scalable wavelength conversion devices.
Collapse
Affiliation(s)
- Daichi Okada
- Center for Emergent Matter Science (CEMS)RIKEN2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Hiroya Nishikawa
- Center for Emergent Matter Science (CEMS)RIKEN2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Fumito Araoka
- Center for Emergent Matter Science (CEMS)RIKEN2‐1 HirosawaWakoSaitama351‐0198Japan
| |
Collapse
|
3
|
Hassan F, Yang D, Saadaoui L, Wang Y, Drevensek-Olenik I, Qiu Z, Shao J, Zhang Y, Gao S, Li Y, Zhang X, Xu J. Bulk photovoltaic effect in ferroelectric nematic liquid crystals. OPTICS LETTERS 2024; 49:4662-4665. [PMID: 39146129 DOI: 10.1364/ol.527568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
The bulk photovoltaic (BPV) effect in ferroelectric liquid crystals is of increasing scientific interest owing to its great potential for light-energy conversion. The ferroelectric nematic phase exhibits a huge spontaneous polarization that can be aligned to a preferred direction. In this Letter, we investigate the tensorial properties of the BPV effect in the planarly aligned ferroelectric nematic phase of the liquid crystalline material RM734. A steady-state short-circuit photocurrent of ~160 pA and an open-circuit photovoltage of ~50 mV were observed in a cell with a thickness of 5.5 µm under the illumination of ultraviolet light without any bias voltage. Based on the photocurrent measurements in different electrode configurations, the non-zero elements of the BPV tensor were obtained. The BPV effect is attributed to the combination of the spontaneous polarization and the asymmetric distribution of photoinduced charge carriers. This study not only provides an understanding of the bulk PV mechanism in soft ferroelectrics but also promises a wide range of unprecedented, to the best of our knowledge, benefits for light harvesting to engineer marketable photovoltaic devices.
Collapse
|
4
|
Gibb CJ, Hobbs J, Nikolova DI, Raistrick T, Berrow SR, Mertelj A, Osterman N, Sebastián N, Gleeson HF, Mandle RJ. Spontaneous symmetry breaking in polar fluids. Nat Commun 2024; 15:5845. [PMID: 38992039 PMCID: PMC11239904 DOI: 10.1038/s41467-024-50230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the Sm C P H and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and Sm C P H phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter.
Collapse
Affiliation(s)
- Calum J Gibb
- School of Chemistry, University of Leeds, Leeds, UK
| | - Jordan Hobbs
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | | | | | - Stuart R Berrow
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | | | - Natan Osterman
- Jožef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | | | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Richard J Mandle
- School of Chemistry, University of Leeds, Leeds, UK.
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
| |
Collapse
|
5
|
Nacke P, Tuffin R, Klasen-Memmer M, Rudquist P, Giesselmann F. Revealing the antipolar order in the antiferroelectric SmZ A phase by means of circular alignment. Sci Rep 2024; 14:15018. [PMID: 38951542 PMCID: PMC11217385 DOI: 10.1038/s41598-024-65275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Many ferroelectric nematic liquid crystals, like one of the archetype materials, DIO, do not have a direct paraelectric N to ferroelectric NF phase transition, but exhibit yet another phase between N and NF. This phase has recently been proposed to be antiferroelectric, with a layered structure of alternating polarization normal to the average director and is sometimes referred to as Smectic ZA (SmZA). We have examined the SmZA phase in circularly rubbed (CR) cells, known to discriminate between the polar NF and the non-polar N phase from the configuration of disclination lines formed. We find that the ground state of SmZA has the same disclination configuration as the non-polar N phase, demonstrating that the SmZA phase is also non-polar, i.e., it has no net ferroelectric polarization. At the same time, the SmZA texture generally has a grainy appearance, which we suggest is partly a result of the frustration related to layered order combined with the imposed twist in CR cells. We discuss possible orientations of the smectic layers, depending on the alignment conditions. While a horizontal SmZA layer structure is always compatible with surface-induced twist, a vertical layer structure would tend to break up in a twisted bookshelf structure to match non-parallel alignment directions at the two surfaces.
Collapse
Affiliation(s)
- Pierre Nacke
- Institute of Physical Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Rachel Tuffin
- Display Solutions, Merck Electronics KGaA, 64293, Darmstadt, Germany
| | | | - Per Rudquist
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| | - Frank Giesselmann
- Institute of Physical Chemistry, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
6
|
Sultanov V, Kavčič A, Kokkinakis E, Sebastián N, Chekhova MV, Humar M. Tunable entangled photon-pair generation in a liquid crystal. Nature 2024; 631:294-299. [PMID: 38867054 PMCID: PMC11236711 DOI: 10.1038/s41586-024-07543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Liquid crystals, with their ability to self-assemble, strong response to an electric field and integrability into complex systems, are key materials in light-beam manipulation1. The recently discovered ferroelectric nematic liquid crystals2,3 also have considerable second-order optical nonlinearity, making them a potential material for nonlinear optics4,5. Their use as sources of quantum light could considerably extend the boundaries of photonic quantum technologies6. However, spontaneous parametric down-conversion, the basic source of entangled photons7, heralded single photons8 and squeezed light9, has so far not been observed in liquid crystals-or in any liquids or organic materials. Here we implement spontaneous parametric down-conversion in a ferroelectric nematic liquid crystal and demonstrate electric-field tunable broadband generation of entangled photons, with an efficiency comparable to that of the best nonlinear crystals. The emission rate and polarization state of photon pairs is markedly varied by applying a few volts or twisting the molecular orientation along the sample. A liquid-crystal source enables a special type of quasi-phase matching10, which is based on the molecular twist structure and is therefore reconfigurable for the desired spectral and polarization properties of photon pairs. Such sources promise to outperform standard nonlinear optical materials in terms of functionality, brightness and the tunability of the generated quantum state. The concepts developed here can be extended to complex topological structures, macroscopic devices and multi-pixel tunable quantum light sources.
Collapse
Affiliation(s)
- Vitaliy Sultanov
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Aljaž Kavčič
- Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Maria V Chekhova
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
- Max-Planck Institute for the Science of Light, Erlangen, Germany.
| | - Matjaž Humar
- Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- CENN Nanocenter, Ljubljana, Slovenia
| |
Collapse
|
7
|
Marni S, Caimi F, Barboza R, Clark N, Bellini T, Lucchetti L. Fluid jets and polar domains, on the relationship between electromechanical instability and topology in ferroelectric nematic liquid crystal droplets. SOFT MATTER 2024; 20:4878-4885. [PMID: 38819946 DOI: 10.1039/d4sm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ferroelectric nematic liquid crystals are a class of recently discovered fluid materials formed by highly polar molecules that spontaneously align along a common direction, giving rise to a macroscopic polarization P. Since the polarization vector is locally collinear to the optical axis n, the study of the spatial patterns of n enables deducing the structure of P. We have carried on such topological study on ferroelectric nematic droplets confined between two solid ferroelectric substrates both when the droplet is in equilibrium and during a jet-emission phase that takes place when the solid surfaces become sufficiently charged. We find that in equilibrium the droplet splits in striped domains in which P has alternating directions. When these domains extend close to the droplets' perimeter, P adopts a π-twisted structure to minimize accumulation of polarization charges. As the substrate surface charge is increased above threshold, fluid jets are emitted with a quasi-periodic pattern, a behaviour suggesting that their location is governed by an electrofluidic instability on the droplets' rim, in turn indicating the absence of specific trigger points. Soon after their emission, the jet periodicity is lost; some jets retract while other markedly grow. In this second regime, jets that grow are those that more easily connect to polar domains with P along the jet axis. Occasionally, ejection of isolated spikes also occurs, revealing locations where polarization charges have accumulated because of topological patterns extending on length scales smaller than the typical domain size.
Collapse
Affiliation(s)
- Stefano Marni
- Dipartimento SIMAU, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy.
| | - Federico Caimi
- Medical Biotechnology and Translational Medicine Dept., University of Milano, Segrate 20054, Italy.
| | - Raouf Barboza
- Dipartimento SIMAU, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy.
| | - Noel Clark
- Department of Physics, Soft Materials Research Center, University of Colorado, Boulder, CO, 80305, USA
| | - Tommaso Bellini
- Medical Biotechnology and Translational Medicine Dept., University of Milano, Segrate 20054, Italy.
| | - Liana Lucchetti
- Dipartimento SIMAU, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy.
| |
Collapse
|
8
|
Cruickshank E. The Emergence of a Polar Nematic Phase: A Chemist's Insight into the Ferroelectric Nematic Phase. Chempluschem 2024; 89:e202300726. [PMID: 38452282 DOI: 10.1002/cplu.202300726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The discovery of a new polar nematic phase; the ferroelectric nematic, has generated a great deal of excitement in the field of liquid crystals. To date there have been around 150 materials reported exhibiting the ferroelectric nematic phase, in general, following three key archetypal structures with these compounds known as RM734, DIO and UUQU-4N. In this review, the relationship between the molecular structure and the stability of the ferroelectric nematic, NF, phase will be described from a chemist's perspective. This will look to highlight the wide variety of functionalities which have been incorporated into these archetypal structures and how these changes influence the transition temperatures of the mesophases present. The NF phase appears to be stabilised particularly by reducing the length of terminal alkyl chains present and adding fluorines laterally along the length of the molecular backbone. This review will look to introduce the background of the ferroelectric nematic phase before then showing the molecular structures of a range of materials which exhibit the phase, describing their structure-property relationships and therefore giving an up-to-date account of the literature for this fascinating new mesophase.
Collapse
Affiliation(s)
- Ewan Cruickshank
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| |
Collapse
|
9
|
Thapa K, Iadlovska OS, Basnet B, Wang H, Paul A, Gleeson JT, Lavrentovich OD. Confinement and magnetic-field effect on chiral ferroelectric nematic liquid crystals in Grandjean-Cano wedge cells. Phys Rev E 2024; 109:054702. [PMID: 38907387 DOI: 10.1103/physreve.109.054702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/28/2024] [Indexed: 06/24/2024]
Abstract
We explore the structure and magnetic-field response of edge dislocations in Grandjean-Cano wedge cells filled with chiral mixtures of the ferroelectric nematic mesogen DIO. Upon cooling, the ordering changes from paraelectric in the cholesteric phase N^{*} to antiferroelectric in the smectic SmZ_{A}^{*} and to ferroelectric in the cholesteric N_{F}^{*}. Dislocations of the Burgers vector b equal to the helicoidal pitch P are stable in all three phases, while dislocations with b=P/2 exist only in the N^{*} and SmZ_{A}^{*}. The b=P/2 dislocations split into pairs of τ^{-1/2}λ^{+1/2} disclinations, while the thick dislocations b=P are pairs of nonsingular λ^{-1/2}λ^{+1/2} disclinations. The polar order makes the τ^{-1/2} disclinations unstable in the N_{F}^{*} phase, as they should be connected to singular walls in the polarization field. We propose a model of transformation of the composite τ^{-1/2} line-wall defect into a nonsingular λ^{-1/2} disclination, which is paired up with a λ^{+1/2} line to form a b=P dislocation. The SmZ_{A}^{*} behavior in the in-plane magnetic field is different from that of the N_{F}^{*} and N^{*}: the dislocations show no zigzag instability, and the pitch remains unchanged in the magnetic fields up to 1 T. The behavior is associated with the finite compressibility of smectic layers.
Collapse
Affiliation(s)
- Kamal Thapa
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Olena S Iadlovska
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Bijaya Basnet
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, USA
| | - Hao Wang
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, USA
| | - Ayusha Paul
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - James T Gleeson
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
10
|
Zou Y, Yang J, Zhang X, Huang M, Aya S. Topology of ferroelectric nematic droplets: the case driven by flexoelectricity or depolarization field. SOFT MATTER 2024; 20:3392-3400. [PMID: 38619075 DOI: 10.1039/d3sm01042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The recent discovery of ferroelectric nematics provides new opportunities for exploring polar topology in liquid matter. Here, we report numerous potential polarization topological states (e.g., polar vortex-like and line disclination mediated structures) in confined ferroelectric nematics with similar free-energy levels. In the experiment, they appear according to the confinement size and surface anchoring conditions. Based on a minimal analytical approach, we reveal that the topological transformation is balanced among the nematic elasticity, the polarization gradient, the flexoelectric and the depolarization interactions.
Collapse
Affiliation(s)
- Yu Zou
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Jidan Yang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Xinxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
11
|
Kumari P, Basnet B, Lavrentovich MO, Lavrentovich OD. Chiral ground states of ferroelectric liquid crystals. Science 2024; 383:1364-1368. [PMID: 38513040 DOI: 10.1126/science.adl0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Ferroelectric nematic liquid crystals are formed by achiral molecules with large dipole moments. Their three-dimensional orientational order is described as unidirectionally polar. We demonstrate that the ground state of a flat slab of a ferroelectric nematic unconstrained by externally imposed alignment directions is chiral, with left- and right-handed twists of polarization. Although the helicoidal deformations and defect walls that separate domains of opposite handedness increase the elastic energy, the twists reduce the electrostatic energy and become weaker when the material is doped with ions. This work shows that the polar orientational order of molecules could trigger chirality in soft matter with no chemically induced chiral centers.
Collapse
Affiliation(s)
- Priyanka Kumari
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Bijaya Basnet
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Maxim O Lavrentovich
- Department of Earth, Environment, and Physics, Worcester State University, Worcester, MA 01602, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
| | - Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
12
|
Marchenko AA, Kapitanchuk OL, Lopatina YY, Nazarenko KG, Senenko AI, Katsonis N, Nazarenko VG, Lavrentovich OD. Polar Self-Organization of Ferroelectric Nematic-Liquid-Crystal Molecules on Atomically Flat Au(111) Surface. PHYSICAL REVIEW LETTERS 2024; 132:098101. [PMID: 38489655 DOI: 10.1103/physrevlett.132.098101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 03/17/2024]
Abstract
Understanding nanoscale mechanisms responsible for the recently discovered ferroelectric nematics can be helped by direct visualization of self-assembly of strongly polar molecules. Here, we report on scanning tunneling microscopy studies of monomolecular layers of a ferroelectric nematic liquid crystal on a reconstructed Au(111) surface. The monolayers are obtained by deposition from a solution at ambient conditions. The adsorbed ferroelectric nematic molecules self-assemble into regular rows with tilted orientation, resembling a layered structure of a smectic C. Remarkably, each molecular dipole in this architecture is oriented along the same direction giving rise to polar ferroelectric ordering.
Collapse
Affiliation(s)
- Alexandr A Marchenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki Avenue, Kyiv 03028, Ukraine
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Oleksiy L Kapitanchuk
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-B Metrologichna Street, Kyiv 03143, Ukraine
| | - Yaroslava Yu Lopatina
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki Avenue, Kyiv 03028, Ukraine
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Kostiantyn G Nazarenko
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, 5 Academician Kukhar St., Kyiv 02660, Ukraine
- Ukraine Enamine Ltd., 78 Winston Churchill St., Kyiv 02094, Ukraine
| | - Anton I Senenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki Avenue, Kyiv 03028, Ukraine
| | - Nathalie Katsonis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Vassili G Nazarenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki Avenue, Kyiv 03028, Ukraine
- Institute of Physical Chemistry, PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
13
|
Nacke P, Manabe A, Klasen-Memmer M, Chen X, Martinez V, Freychet G, Zhernenkov M, Maclennan JE, Clark NA, Bremer M, Giesselmann F. New examples of ferroelectric nematic materials showing evidence for the antiferroelectric smectic-Z phase. Sci Rep 2024; 14:4473. [PMID: 38396051 PMCID: PMC11319781 DOI: 10.1038/s41598-024-54832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
We present a new ferroelectric nematic material, 4-((4'-((trans)-5-ethyloxan-2-yl)-2',3,5,6'-tetrafluoro-[1,1'-biphenyl]-4-yl)difluoromethoxy)-2,6-difluorobenzonitrile (AUUQU-2-N) and its higher homologues, the molecular structures of which include fluorinated building blocks, an oxane ring, and a terminal cyano group, all contributing to a large molecular dipole moment of about 12.5 D. We observed that AUUQU-2-N has three distinct liquid crystal phases, two of which were found to be polar phases with a spontaneous electric polarization Ps of up to 6 µC cm-2. The highest temperature phase is a common enantiotropic nematic (N) exhibiting only field-induced polarization. The lowest-temperature, monotropic phase proved to be a new example of the ferroelectric nematic phase (NF), evidenced by a single-peak polarization reversal current response, a giant imaginary dielectric permittivity on the order of 103, and the absence of any smectic layer X-ray diffraction peaks. The ordinary nematic phase N and the ferroelectric nematic phase NF are separated by an antiferroelectric liquid crystal phase which has low permittivity and a polarization reversal current exhibiting a characteristic double-peak response. In the polarizing light microscope, this antiferroelectric phase shows characteristic zig-zag defects, evidence of a layered structure. These observations suggest that this is another example of the recently discovered smectic ZA (SmZA) phase, having smectic layers with the molecular director parallel to the layer planes. The diffraction peaks from the smectic layering have not been observed to date but detailed 2D X-ray studies indicate the presence of additional short-range structures including smectic C-type correlations in all three phases-N, SmZA and NF-which may shed new light on the understanding of polar and antipolar order in these phases.
Collapse
Affiliation(s)
- Pierre Nacke
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Atsutaka Manabe
- Display Solutions, Merck Electronics KGaA, 64293, Darmstadt, Germany
- Individual researcher (Since 01.01.22), 64625, Bensheim, Germany
| | | | - Xi Chen
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA
| | - Vikina Martinez
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA
| | - Guillaume Freychet
- Brookhaven National Laboratory, National Synchrotron Light Source-II, Upton, NY, 11973, USA
| | - Mikhail Zhernenkov
- Brookhaven National Laboratory, National Synchrotron Light Source-II, Upton, NY, 11973, USA
| | - Joseph E Maclennan
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA
| | - Noel A Clark
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA
| | - Matthias Bremer
- Display Solutions, Merck Electronics KGaA, 64293, Darmstadt, Germany
| | - Frank Giesselmann
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| |
Collapse
|
14
|
Hsiao YT, Nys I, Neyts K. Lateral electric field switching in thin ferroelectric nematic liquid crystal cells. SOFT MATTER 2023; 19:8617-8624. [PMID: 37916445 DOI: 10.1039/d3sm00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This study shows that, in cells with small thicknesses, the permanent polarization in the ferroelectric nematic phase of RM734 is aligned in the direction opposite to the rubbing direction. The electrode configuration induces an in-plane field near one substrate and a normal field near the other substrate. At low voltages, the permanent polarization rotates parallel to the substrate plane when its original orientation is at an angle with the electric field. The rotation occurs over a distance of more than 100 μm, where the applied electric field is very small. At higher voltages, the polarization aligns perpendicularly to the substrates under the influence of the transverse electric field. After removing the voltage, sometimes a slow reorientation of the polarization can be observed, which is ascribed to the slow release of ionic species. The results provide insight into the complex mechanisms that are involved in the switching of ferroelectric nematic liquid crystals.
Collapse
Affiliation(s)
- Yu-Tung Hsiao
- LCP Group, Department of Electronics and Information Systems, Ghent University, Technologiepark 126, Ghent, Belgium.
| | - Inge Nys
- LCP Group, Department of Electronics and Information Systems, Ghent University, Technologiepark 126, Ghent, Belgium.
| | - Kristiaan Neyts
- LCP Group, Department of Electronics and Information Systems, Ghent University, Technologiepark 126, Ghent, Belgium.
| |
Collapse
|
15
|
Ortega J, Folcia CL, Etxebarria J. Second harmonic generation in anisotropic stratified media: a generalization of the Berreman method and its application to photonic materials. OPTICS EXPRESS 2023; 31:36966-36980. [PMID: 38017835 DOI: 10.1364/oe.497447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
We have developed a numerical method for calculating the second-harmonic generation (SHG) generated by an anisotropic material whose optical properties present an arbitrary modulation in one dimension. The method is based on the Berreman 4 × 4 matrix formalism, which is generalized to include nonlinear optical phenomena. It can be used under oblique incidences of the input beam, and is valid even when the SHG frequency is close to photonic bands, where the usual slowly-varying-amplitude approximation breaks down. As an example of application, we have studied the SHG performance of ferroelectric and helielectric fluids. The obtained results indicate that the present procedure may contribute to improving the structural design and enlarging the variety of nonlinear optical materials for application in optical devices.
Collapse
|
16
|
Sebastián N, Lovšin M, Berteloot B, Osterman N, Petelin A, Mandle RJ, Aya S, Huang M, Drevenšek-Olenik I, Neyts K, Mertelj A. Polarization patterning in ferroelectric nematic liquids via flexoelectric coupling. Nat Commun 2023; 14:3029. [PMID: 37230977 DOI: 10.1038/s41467-023-38749-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The recently discovered ferroelectric nematic liquids incorporate to the functional combination of fluidity, processability and anisotropic optical properties of nematic liquids, an astonishing range of physical properties derived from the phase polarity. Among them, the remarkably large values of second order optical susceptibility encourage to exploit these new materials for non-linear photonic applications. Here we show that photopatterning of the alignment layer can be used to structure polarization patterns. To do so, we take advantage of the flexoelectric effect and design splay structures that geometrically define the polarization direction. We demonstrate the creation of periodic polarization structures and the possibility of guiding polarization by embedding splay structures in uniform backgrounds. The demonstrated capabilities of polarization patterning, open a promising new route for the design of ferroelectric nematic based photonic structures and their exploitation.
Collapse
Affiliation(s)
| | - Matija Lovšin
- Jožef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | - Brecht Berteloot
- Liquid Crystals and Photonics Group, ELIS Department, Ghent University, Ghent, Belgium
| | - Natan Osterman
- Jožef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | - Andrej Petelin
- Jožef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | - Richard J Mandle
- School of Physics and Astronomy, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Irena Drevenšek-Olenik
- Jožef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | - Kristiaan Neyts
- Liquid Crystals and Photonics Group, ELIS Department, Ghent University, Ghent, Belgium
| | | |
Collapse
|
17
|
Mrukiewicz M, Perkowski P, Karcz J, Kula P. Ferroelectricity in a nematic liquid crystal under a direct current electric field. Phys Chem Chem Phys 2023; 25:13061-13071. [PMID: 37114748 DOI: 10.1039/d3cp00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We investigated the electrical properties of the liquid crystal compound 4-(4-nitrophenoxycarbonyl)phenyl 2,4-dimethoxybenzoate, known as RM734, exhibiting a ferroelectric nematic phase. The influence of alternating (AC) and direct (DC) current electric fields on the switching process of the polarization vector and dielectric constant of planarly aligned ferronematic and nematic phases were examined. The decrease of the real part of electric permittivity in the ferronematic phase and the creation of a ferroelectric order in the nematic phase under a DC field were demonstrated. The analysis of the results reveals the latching of the ferroelectric state. The applied DC field created a ferroelectric mode in the nematic phase. A new model of collective and molecular relaxations considering the domain structure of the ferronematic phase was proposed. The temperature and DC field dependence of dielectric properties was shown. Spontaneous polarization was measured using the field reversal technique. The spontaneous polarization value reaches the maximum at a fixed temperature.
Collapse
Affiliation(s)
- Mateusz Mrukiewicz
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego, 00-908 Warsaw, Poland.
| | - Paweł Perkowski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego, 00-908 Warsaw, Poland.
| | - Jakub Karcz
- Institute of Chemistry, Military University of Technology, 2 Kaliskiego, 00-908 Warsaw, Poland
| | - Przemysław Kula
- Institute of Chemistry, Military University of Technology, 2 Kaliskiego, 00-908 Warsaw, Poland
| |
Collapse
|
18
|
Máthé MT, Farkas B, Péter L, Buka Á, Jákli A, Salamon P. Electric field-induced interfacial instability in a ferroelectric nematic liquid crystal. Sci Rep 2023; 13:6981. [PMID: 37117269 PMCID: PMC10147939 DOI: 10.1038/s41598-023-34067-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Studies of sessile droplets and fluid bridges of a ferroelectric nematic liquid crystal in externally applied electric fields are presented. It is found that above a threshold, the interface of the fluid with air undergoes a fingering instability or ramification, resembling to Rayleigh-type instability observed in charged droplets in electric fields or circular drop-type instabilities observed in ferromagnetic liquids in magnetic field. The frequency dependence of the threshold voltage was determined in various geometries. The nematic director and ferroelectric polarization direction was found to point along the tip of the fingers that appear to repel each other, indicating that the ferroelectric polarization is essentially parallel to the director. The results are interpreted in connection to the Rayleigh and circular drop-type instabilities.
Collapse
Affiliation(s)
- Marcell Tibor Máthé
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest, 1525, Hungary
- Eötvös Loránd University, P.O. Box 32, 1518, Budapest, Hungary
| | - Bendegúz Farkas
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest, 1525, Hungary
- Eötvös Loránd University, P.O. Box 32, 1518, Budapest, Hungary
| | - László Péter
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest, 1525, Hungary
| | - Ágnes Buka
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest, 1525, Hungary
| | - Antal Jákli
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest, 1525, Hungary.
- Materials Sciences Graduate Program and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.
- Department of Physics, Kent State University, Kent, OH, 44242, USA.
| | - Péter Salamon
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest, 1525, Hungary.
| |
Collapse
|
19
|
Yadav N, Panarin YP, Jiang W, Mehl GH, Vij JK. Spontaneous mirror symmetry breaking and chiral segregation in the achiral ferronematic compound DIO. Phys Chem Chem Phys 2023; 25:9083-9091. [PMID: 36919840 DOI: 10.1039/d3cp00357d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
An achiral compound, DIO, known to exhibit three nematic phases namely N, NX and NF, is studied by polarizing microscopy and electro-optics for different surface conditions in confinement. The high temperature N phase assigned initially as a conventional nematic phase, shows two additional unusual features: the optical activity and the linear electro-optic response related to the polar nature of this phase. An appearance of chiral domains is explained by the spontaneous symmetry breaking arising from the saddle-splay elasticity and followed by the formation of helical domains of the opposite chirality. This is the first example of helical segregation observed in calamitic non-chiral molecules in the nematic phase. As reported previously, the ferronematic NF shows strong polar azimuthal surface interaction energy which stabilizes a homogeneous structure in planar aligned LC cells rubbed parallel and exhibits a twisted structure in cells with antiparallel buffing. The transmission spectra are simulated using Berreman's 4 × 4 matrix method. The observed agreement between the experimental and the simulated spectra quantitatively confirms the presence of twisted structures in antiparallel rubbed cells.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Electronic and Electrical Engineering, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Yuri P Panarin
- Department of Electrical and Electronic Engineering, TU Dublin, Dublin 7, Ireland
| | - Wanhe Jiang
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Georg H Mehl
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Jagdish K Vij
- Department of Electronic and Electrical Engineering, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
20
|
Chen X, Martinez V, Korblova E, Freychet G, Zhernenkov M, Glaser MA, Wang C, Zhu C, Radzihovsky L, Maclennan JE, Walba DM, Clark NA. The smectic Z A phase: Antiferroelectric smectic order as a prelude to the ferroelectric nematic. Proc Natl Acad Sci U S A 2023; 120:e2217150120. [PMID: 36791101 PMCID: PMC9974471 DOI: 10.1073/pnas.2217150120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 02/16/2023] Open
Abstract
We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the "smectic ZA," is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole-dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic-SmZA-ferroelectric nematic phase sequence.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| | - Vikina Martinez
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| | - Eva Korblova
- Department of Chemistry and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| | - Guillaume Freychet
- Brookhaven National Laboratory, National Synchrotron Light Source-II, Upton, NY11973
| | - Mikhail Zhernenkov
- Brookhaven National Laboratory, National Synchrotron Light Source-II, Upton, NY11973
| | - Matthew A. Glaser
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Leo Radzihovsky
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| | - Joseph E. Maclennan
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| | - David M. Walba
- Department of Chemistry and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| | - Noel A. Clark
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO80309
| |
Collapse
|
21
|
Kumari P, Basnet B, Wang H, Lavrentovich OD. Ferroelectric nematic liquids with conics. Nat Commun 2023; 14:748. [PMID: 36765061 PMCID: PMC9918734 DOI: 10.1038/s41467-023-36326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Spontaneous electric polarization of solid ferroelectrics follows aligning directions of crystallographic axes. Domains of differently oriented polarization are separated by domain walls (DWs), which are predominantly flat and run along directions dictated by the bulk translational order and the sample surfaces. Here we explore DWs in a ferroelectric nematic (NF) liquid crystal, which is a fluid with polar long-range orientational order but no crystallographic axes nor facets. We demonstrate that DWs in the absence of bulk and surface aligning axes are shaped as conic sections. The conics bisect the angle between two neighboring polarization fields to avoid electric charges. The remarkable bisecting properties of conic sections, known for millennia, play a central role as intrinsic features of liquid ferroelectrics. The findings could be helpful in designing patterns of electric polarization and space charge.
Collapse
Affiliation(s)
- Priyanka Kumari
- grid.258518.30000 0001 0656 9343Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242 USA ,grid.258518.30000 0001 0656 9343Materials Science Graduate Program, Kent State University, Kent, OH 44242 USA
| | - Bijaya Basnet
- grid.258518.30000 0001 0656 9343Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242 USA ,grid.258518.30000 0001 0656 9343Materials Science Graduate Program, Kent State University, Kent, OH 44242 USA
| | - Hao Wang
- grid.258518.30000 0001 0656 9343Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242 USA
| | - Oleg D. Lavrentovich
- grid.258518.30000 0001 0656 9343Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242 USA ,grid.258518.30000 0001 0656 9343Materials Science Graduate Program, Kent State University, Kent, OH 44242 USA ,grid.258518.30000 0001 0656 9343Department of Physics, Kent State University, Kent, OH 44242 USA
| |
Collapse
|
22
|
Phase Equilibria and Critical Behavior in Nematogenic MBBA-Isooctane Monotectic-Type Mixtures. Int J Mol Sci 2023; 24:ijms24032065. [PMID: 36768388 PMCID: PMC9916662 DOI: 10.3390/ijms24032065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The transition from the isotropic (I) liquid to the nematic-type (N) uniaxial phase appearing as the consequence of the elongated geometry of elements seems to be a universal phenomenon for many types of suspensions, from solid nano-rods to biological particles based colloids. Rod-like thermotropic nematogenic liquid crystalline (LC) compounds and their mixtures with a molecular solvent (Sol) can be a significant reference for this category, enabling insights into universal features. The report presents studies in 4'-methoxybenzylidene-4-n-butylaniline (MBBA) and isooctane (Sol) mixtures, for which the monotectic-type phase diagram was found. There are two biphasic regions (i) for the low (TP1, isotropic liquid-nematic coexistence), and (ii) high (TP2, liquid-liquid coexistence) concentrations of isooctane. For both domains, biphasic coexistence curves' have been discussed and parameterized. For TP2 it is related to the order parameter and diameter tests. Notable is the anomalous mean-field type behavior near the critical consolute temperature. Regarding the isotropic liquid phase, critical opalescence has been detected above both biphasic regions. For TP2 it starts ca. 20 K above the critical consolute temperature. The nature of pretransitional fluctuations in the isotropic liquid phase was tested via nonlinear dielectric effect (NDE) measurements. It is classic (mean-field) above TP1 and non-classic above the TP2 domain. The long-standing problem regarding the non-critical background effect was solved to reach this result.
Collapse
|
23
|
Thoen J, Cordoyiannis G, Jiang W, Mehl GH, Glorieux C. Phase transitions study of the liquid crystal DIO with a ferroelectric nematic, a nematic, and an intermediate phase and of mixtures with the ferroelectric nematic compound RM734 by adiabatic scanning calorimetry. Phys Rev E 2023; 107:014701. [PMID: 36797863 DOI: 10.1103/physreve.107.014701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
High-resolution calorimetry has played a significant role in providing detailed information on phase transitions in liquid crystals. In particular, adiabatic scanning calorimetry (ASC), capable of providing simultaneous information on the temperature dependence of the specific enthalpy h(T) and on the specific heat capacity c_{p}(T), has proven to be an important tool to determine the order of transitions and render high-resolution information on pretransitional thermal behavior. Here we report on ASC results on the compound 2,3',4',5'-tetrafluoro[1,1'-biphenyl]-4-yl 2,6-difluoro-4-(5-propyl-1,3-dioxan-2-yl) benzoate (DIO) and on mixtures with 4-[(4-nitrophenoxy)carbonyl]phenyl 2,4-dimethoxybenzoate (RM734). Both compounds exhibit a low-temperature ferroelectric nematic phase (N_{F}) and a high-temperature paraelectric nematic phase (N). However, in DIO these two phases are separated by an intermediate phase (N_{x}). From the detailed data of h(T) and c_{p}(T), we found that the intermediate phase was present in all the mixtures over the complete composition range, albeit with strongly decreasing temperature width for that phase with decreasing mole fraction of DIO (x_{DIO}). The x_{DIO} dependence on the transition temperatures for both transitions could be well described by a quadratic function. Both these transitions were weakly first order. The true latent heat of the N_{x}-N transition of DIO was as low as L=0.0075±0.0005J/g and L=0.23±0.03J/g for the N_{F}-N_{x} transition, which is about twice the previously reported value of 0.115 J/g for the N_{F}-N transition in RM734. In the mixtures both transition latent heats decrease gradually with decreasing x_{DIO}. At all the N_{x}-N transitions pretransition fluctuation effects are absent and these transitions are purely but very weakly first order. As in RM734 the transition from the N_{F} to the higher-temperature phase exhibits substantial pretransitional behavior, in particular, in the high-temperature phase. Power-law analysis of c_{p}(T) resulted in an effective critical exponent α=0.88±0.1 for DIO and this value decreased in the mixtures with decreasing x_{DIO} toward α=0.50±0.05 reported for RM734. Ideal mixture analysis of the phase diagram was consistent with ideal mixture behavior provided the total transition enthalpy change was used in the analysis.
Collapse
Affiliation(s)
- J Thoen
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - G Cordoyiannis
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - W Jiang
- Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - G H Mehl
- Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - C Glorieux
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Yang J, Zou Y, Tang W, Li J, Huang M, Aya S. Spontaneous electric-polarization topology in confined ferroelectric nematics. Nat Commun 2022; 13:7806. [PMID: 36528675 PMCID: PMC9759571 DOI: 10.1038/s41467-022-35443-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Topological textures have fascinated people in different areas of physics and technologies. However, the observations are limited in magnetic and solid-state ferroelectric systems. Ferroelectric nematic is the first liquid-state ferroelectric that would carry many possibilities of spatially-distributed polarization fields. Contrary to traditional magnetic or crystalline systems, anisotropic liquid crystal interactions can compete with the polarization counterparts, thereby setting a challenge in understating their interplays and the resultant topologies. Here, we discover chiral polarization meron-like structures, which appear during the emergence and growth of quasi-2D ferroelectric nematic domains. The chirality can emerge spontaneously in polar textures and can be additionally biased by introducing chiral dopants. Such micrometre-scale polarization textures are the modified electric variants of the magnetic merons. Both experimental and an extended mean-field modelling reveal that the polarization strength plays a dedicated role in determining polarization topology, providing a guide for exploring diverse polar textures in strongly-polarized liquid crystals.
Collapse
Affiliation(s)
- Jidan Yang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yu Zou
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Wentao Tang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Jinxing Li
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
25
|
Kikuchi H, Matsukizono H, Iwamatsu K, Endo S, Anan S, Okumura Y. Fluid Layered Ferroelectrics with Global C ∞v Symmetry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202048. [PMID: 35869031 PMCID: PMC9475520 DOI: 10.1002/advs.202202048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Ferroelectricity in fluid materials, which allows free rotation of molecules, is an unusual phenomenon raising cutting-edge questions in science. Conventional ferroelectric liquid crystals have been found in phases with low symmetry that permit the presence of spontaneous polarization. Recently, the discovery of ferroelectricity with high symmetry in the nematic phase has attracted considerable attention. However, the physical mechanism and molecular origin of ferroelectricity are poorly understood and a large domain of macroscopically oriented spontaneous polarization is difficult to fabricate in the ferroelectric nematic phase. This study reports new fluid layered ferroelectrics with the C∞v symmetry in which nearly complete orientation of the spontaneous polarization remains stable under zero electric field without any orientation treatment. These ferroelectrics are obtained by simplifying the molecular structure of a compound with a known ferroelectric nematic phase, although the simplification reduced the dipole moment. The results provide useful insights into the mechanism of ferroelectricity due to dipole-dipole interactions in molecular assemblies. The new ferroelectric materials are promising for a wide range of applications as soft ferroelectrics.
Collapse
Affiliation(s)
- Hirotsugu Kikuchi
- Kyushu UniversityInstitute for Materials Chemistry and Engineering6‐1 Kasuga‐KoenKasugaFukuoka816‐8580Japan
| | - Hiroyuki Matsukizono
- Kyushu UniversityInstitute for Materials Chemistry and Engineering6‐1 Kasuga‐KoenKasugaFukuoka816‐8580Japan
| | - Koki Iwamatsu
- Kyushu UniversityInterdisciplinary Graduate School of Engineering Sciences6‐1 Kasuga‐KoenKasugaFukuoka816‐8580Japan
| | - Sota Endo
- Kyushu UniversityInterdisciplinary Graduate School of Engineering Sciences6‐1 Kasuga‐KoenKasugaFukuoka816‐8580Japan
| | - Shizuka Anan
- Kyushu UniversityInstitute for Materials Chemistry and Engineering6‐1 Kasuga‐KoenKasugaFukuoka816‐8580Japan
| | - Yasushi Okumura
- Kyushu UniversityInstitute for Materials Chemistry and Engineering6‐1 Kasuga‐KoenKasugaFukuoka816‐8580Japan
| |
Collapse
|
26
|
Sebastián N, Čopič M, Mertelj A. Ferroelectric nematic liquid-crystalline phases. Phys Rev E 2022; 106:021001. [PMID: 36109969 DOI: 10.1103/physreve.106.021001] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Recent experimental realization of ferroelectric nematic liquid crystalline phases stimulated material development and numerous experimental studies of these phases, guided by their fundamental and applicative interest. In this Perspective, we give an overview of this emerging field by linking history and theoretical predictions to a general outlook of the development and properties of the materials exhibiting ferroelectric nematic phases. We will highlight the most relevant observations to date, e.g., giant dielectric permittivity values, polarization values an order of magnitude larger than in classical ferroelectric liquid crystals, and nonlinear optical coefficients comparable with several ferroelectric solid materials. Key observations of anchoring and electro-optic behavior will also be examined. The collected contributions lead to a final discussion on open challenges in materials development, theoretical description, experimental explorations, and possible applications of the ferroelectric phases.
Collapse
Affiliation(s)
| | - Martin Čopič
- J. Stefan Institute, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | | |
Collapse
|
27
|
Mandle RJ. A new order of liquids: polar order in nematic liquid crystals. SOFT MATTER 2022; 18:5014-5020. [PMID: 35776092 DOI: 10.1039/d2sm00543c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Given the widespread adoption of display technology based on nematic liquid crystals, the discovery of new nematic phases at thermodynamic equilibrium, although extremely rare, generates much excitement. The remarkable discovery polar order and giant ferroelectric polarisation in a nematic fluid is a watershed moment in soft matter research, and is one of the most important discoveries in the 150 year history of liquid crystals. After a brief introduction to this emerging field, we present the current state-of-the art in terms of understanding the molecular origins of this phase, before exploring how molecular structure underpins the incidence of this phase, as well as exploring future directions.
Collapse
Affiliation(s)
- Richard J Mandle
- School of Physics and Astronomy, University of Leeds, UK, LS2 9JT
- School of Chemistry, University of Leeds, UK, LS2 9HT.
| |
Collapse
|
28
|
Basnet B, Rajabi M, Wang H, Kumari P, Thapa K, Paul S, Lavrentovich MO, Lavrentovich OD. Soliton walls paired by polar surface interactions in a ferroelectric nematic liquid crystal. Nat Commun 2022; 13:3932. [PMID: 35798735 PMCID: PMC9262936 DOI: 10.1038/s41467-022-31593-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Surface interactions are responsible for many properties of condensed matter, ranging from crystal faceting to the kinetics of phase transitions. Usually, these interactions are polar along the normal to the interface and apolar within the interface. Here we demonstrate that polar in-plane surface interactions of a ferroelectric nematic NF produce polar monodomains in micron-thin planar cells and stripes of an alternating electric polarization, separated by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${180}^{{{{{{\rm{o}}}}}}}$$\end{document}180o domain walls, in thicker slabs. The surface polarity binds together pairs of these walls, yielding a total polarization rotation by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${360}^{{{{{{\rm{o}}}}}}}$$\end{document}360o. The polar contribution to the total surface anchoring strength is on the order of 10%. The domain walls involve splay, bend, and twist of the polarization. The structure suggests that the splay elastic constant is larger than the bend modulus. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${360}^{{{{{{\rm{o}}}}}}}$$\end{document}360o pairs resemble domain walls in cosmology models with biased vacuums and ferromagnets in an external magnetic field. Surface interactions are usually polar along the normal to the interface and apolar within the interface. Here, the authors find that polar in-plane surface interactions produce domain structures in the bulk of a ferroelectric nematic liquid crystal.
Collapse
Affiliation(s)
- Bijaya Basnet
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Mojtaba Rajabi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Hao Wang
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Priyanka Kumari
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Kamal Thapa
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Sanjoy Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Maxim O Lavrentovich
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA. .,Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA. .,Department of Physics, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
29
|
Song Y, Li J, Xia R, Xu H, Zhang X, Lei H, Peng W, Dai S, Aya S, Huang M. Development of emergent ferroelectric nematic liquid crystals with highly fluorinated and rigid mesogens. Phys Chem Chem Phys 2022; 24:11536-11543. [PMID: 35506891 DOI: 10.1039/d2cp01110g] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emerging ferroelectric nematic liquid crystals have been attracting broader interests in new liquid crystal physics and their unique material properties. One big challenge for the ferroelectric nematic research is to enrich the material choice, which is now limited to RM734 and DIO families as representatives, in sharp contrast to the enormously diverse variety of the traditional apolar nematic liquid crystals. Here, we report a design of novel ferroelectric nematic materials with highly fluorinated and rigid mesogens. Noteworthily, they show distinct chemical structural features compared with previous aromatic ester-based molecules. The ferroelectric nematic phase was identified and confirmed through rigorous experiments. The bulk polarization was found to become purely along the long axis director, creating giant dielectric anisotropy. This work demonstrates a great potential for expanding ferroelectric nematic material diversity and will accelerate the corresponding application research and technology innovation.
Collapse
Affiliation(s)
- Yaohao Song
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Jinxing Li
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Runli Xia
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Hao Xu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Xinxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Weifeng Peng
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Shuqi Dai
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China. .,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China. .,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Rudquist P. Revealing the polar nature of a ferroelectric nematic by means of circular alignment. Sci Rep 2021; 11:24411. [PMID: 34949781 PMCID: PMC8702550 DOI: 10.1038/s41598-021-04028-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
The recent discovery of spontaneously polar nematic liquid crystals-so-called ferroelectric nematics-more than a century after the first discussions about their possible existence-has attracted large interest, both from fundamental scientific and applicational points of view. However, the experimental demonstration of such a phase has, so-far, been non-trivial. Here I present a direct method for the experimental verification of a ferroelectric nematic liquid crystal phase. The method utilizes a single sample cell where the two substrates are linearly and circularly rubbed, respectively, and the ferroelectric nematic phase (NF) is revealed by the orientation of the resulting disclination lines in the cell.
Collapse
Affiliation(s)
- Per Rudquist
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
31
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
32
|
Li J, Xia R, Xu H, Yang J, Zhang X, Kougo J, Lei H, Dai S, Huang H, Zhang G, Cen F, Jiang Y, Aya S, Huang M. How Far Can We Push the Rigid Oligomers/Polymers toward Ferroelectric Nematic Liquid Crystals? J Am Chem Soc 2021; 143:17857-17861. [PMID: 34657433 DOI: 10.1021/jacs.1c09594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emerging ferroelectric nematic (NF) liquid crystal is a novel 3D-ordered liquid exhibiting macroscopic electric polarization. The combination of the ultrahigh dielectric constant, strong nonlinear optical signal, and high sensitivity to the electric field makes NF materials promising for the development of advanced liquid crystal electroopic devices. Previously, all studies focused on the rod-shaped small molecules with limited length (l) range and dipole moment (μ) values. Here, through the precision synthesis, we extend the aromatic rod-shaped mesogen to oligomer/polymer (repeat unit up to 12 with monodisperse molecular-weight dispersion) and increase the μ value over 30 Debye (D). The NF phase has a widespread existence far beyond our expectation and could be observed in all the oligomer/polymer length range. Notably, the NF phase experiences a nontrivial evolution pathway with the traditional apolar nematic phase completely suppressed, i.e., the NF phase nucleates directly from the isotropic liquid phase. The discovery of thte ferroelectric packing of oligomer/polymer rods not only offers the concept of extending the NF state to oligomers/polymers but also provides some previously overlooked insights in oxybenzoate-based liquid crystal polymer materials.
Collapse
Affiliation(s)
- Jinxing Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Runli Xia
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jidan Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junichi Kougo
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuqi Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Houbing Huang
- School of Materials Science & Engineering, and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangzu Zhang
- School of Optical and Electronic Information, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fangjie Cen
- School of Optical and Electronic Information, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuanbin Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
33
|
Spontaneous helielectric nematic liquid crystals: Electric analog to helimagnets. Proc Natl Acad Sci U S A 2021; 118:2111101118. [PMID: 34642251 DOI: 10.1073/pnas.2111101118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
Recently, a type of ferroelectric nematic fluid has been discovered in liquid crystals in which the molecular polar nature at molecule level is amplified to macroscopic scales through a ferroelectric packing of rod-shaped molecules. Here, we report on the experimental proof of a polar chiral liquid matter state, dubbed helielectric nematic, stabilized by the local polar ordering coupled to the chiral helicity. This helielectric structure carries the polar vector rotating helically, analogous to the magnetic counterpart of helimagnet. The helielectric state can be retained down to room temperature and demonstrates gigantic dielectric and nonlinear optical responses. This matter state opens a new chapter for developing the diverse polar liquid crystal devices.
Collapse
|