1
|
Jung W, Abdelnour A, Kaplonek P, Herrero R, Shih-Lu Lee J, Barbati DR, Chicz TM, Levine KS, Fantin RC, Loria V, Porras C, Lauffenburger DA, Gail MH, Aparicio A, Hildesheim A, Alter G, McNamara RP. SARS-CoV-2 infection prior to vaccination amplifies Fc-mediated humoral profiles in an age-dependent manner. Cell Rep 2024; 43:114684. [PMID: 39213155 DOI: 10.1016/j.celrep.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Immunity acquired by vaccination following infection, termed hybrid immunity, has been shown to confer enhanced protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by enhancing the breadth and potency of immune responses. Here, we assess Fc-mediated humoral profiles in hybrid immunity and their association with age and vaccine type. Participants are divided into three groups: infection only, vaccination only, and vaccination following infection (i.e., hybrid immunity). Using systems serology, we profile humoral immune responses against spikes and subdomains of SARS-CoV-2 variants. We find that hybrid immunity is characterized by superior Fc receptor binding and natural killer (NK) cell-, neutrophil-, and complement-activating antibodies, which is higher than what can be expected from the sum of the vaccination and infection. These differences between hybrid immunity and vaccine-induced immunity are more pronounced in aged adults, especially for immunoglobulin (Ig)G1, IgG2, and Fcγ receptor-binding antibodies. Our findings suggest that vaccination strategies that aim to mimic hybrid immunity should consider age as an important modifier.
Collapse
Affiliation(s)
- Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | | | - Domenic R Barbati
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Kate S Levine
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Romain Clement Fantin
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Viviana Loria
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Amada Aparicio
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Li D, Bian L, Cui L, Zhou J, Li G, Zhao X, Xing L, Cui J, Sun B, Jiang C, Kong W, Zhang Y, Chen Y. Heterologous Prime-Boost Immunization Strategies Using Varicella-Zoster Virus gE mRNA Vaccine and Adjuvanted Protein Subunit Vaccine Triggered Superior Cell Immune Response in Middle-Aged Mice. Int J Nanomedicine 2024; 19:8029-8042. [PMID: 39130684 PMCID: PMC11316494 DOI: 10.2147/ijn.s464720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.
Collapse
Affiliation(s)
- Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Lili Cui
- Beijing Institute of Drug Metabolism, Beijing, People’s Republic of China
| | - Jingying Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Gaotian Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xiaoyan Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Liao Xing
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jiaxing Cui
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Li X, Xie Z, Wei Y, Li M, Zhang M, Luo S, Xie L. Recombinant Hemagglutinin Protein from H9N2 Avian Influenza Virus Exerts Good Immune Effects in Mice. Microorganisms 2024; 12:1552. [PMID: 39203394 PMCID: PMC11356462 DOI: 10.3390/microorganisms12081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
The H9N2 subtype of avian influenza virus (AIV) causes enormous economic losses and poses a significant threat to public health; the development of vaccines against avian influenza is ongoing. To study the immunogenicity of hemagglutinin (HA) protein, we constructed a recombinant pET-32a-HA plasmid, induced HA protein expression with isopropyl β-D-1-thiogalactopyranoside (IPTG), verified it by SDS-PAGE and Western blotting, and determined the sensitivity of the recombinant protein to acid and heat. Subsequently, mice were immunized with the purified HA protein, and the immunization effect was evaluated according to the hemagglutination inhibition (HI) titer, serum IgG antibody titer, and cytokine secretion level of the mice. The results showed that the molecular weight of the HA protein was approximately 84 kDa, and the protein existed in both soluble and insoluble forms; in addition, the HA protein exhibited good acid and thermal stability, the HI antibody titer reached 6 log2-8 log2, and the IgG-binding antibody titer was 1:1,000,000. Moreover, the levels of IL-2, IL-4, and IL-5 in the immunized mouse spleen cells were significantly increased compared with those in the control group. However, the levels of IL-1β, IL-6, IL-13, IFN-γ, IL-18, TNF-α, and GM-CSF were decreased in the immunized group. The recombinant HA protein utilized in this study exhibited good stability and exerted beneficial immune effects, providing a theoretical basis for further research on influenza vaccines.
Collapse
Affiliation(s)
- Xiaofeng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhixun Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Liji Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
4
|
Vilaboa N, Bloom DC, Canty W, Voellmy R. A Broad Influenza Vaccine Based on a Heat-Activated, Tissue-Restricted Replication-Competent Herpesvirus. Vaccines (Basel) 2024; 12:703. [PMID: 39066341 PMCID: PMC11281492 DOI: 10.3390/vaccines12070703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccination with transiently activated replication-competent controlled herpesviruses (RCCVs) expressing influenza A virus hemagglutinins broadly protects mice against lethal influenza virus challenges. The non-replicating RCCVs can be activated to transiently replicate with high efficiency. Activation involves a brief heat treatment to the epidermal administration site in the presence of a drug. The drug co-control is intended as a block to inadvertent reactivation in the nervous system and, secondarily, viremia under adverse conditions. While the broad protective effects observed raise an expectation that RCCVs may be developed as universal flu vaccines, the need for administering a co-activating drug may dampen enthusiasm for such a development. To replace the drug co-control, we isolated keratin gene promoters that were active in skin cells but inactive in nerve cells and other cells in vitro. In a mouse model of lethal central nervous system (CNS) infection, the administration of a recombinant that had the promoter of the infected cell protein 8 (ICP8) gene of a wild-type herpes simplex virus 1 (HSV-1) strain replaced by a keratin promoter did not result in any clinical signs, even at doses of 500 times wild-type virus LD50. Replication of the recombinant was undetectable in brain homogenates. Second-generation RCCVs expressing a subtype H1 hemagglutinin (HA) were generated in which the infected cell protein 4 (ICP4) genes were controlled by a heat switch and the ICP8 gene by the keratin promoter. In mice, these RCCVs replicated efficiently and in a heat-controlled fashion in the epidermal administration site. Immunization with the activated RCCVs induced robust neutralizing antibody responses against influenza viruses and protected against heterologous and cross-group influenza virus challenges.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - David C. Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (W.C.)
| | - William Canty
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (W.C.)
| | | |
Collapse
|
5
|
Bloom DC, Lilly C, Canty W, Vilaboa N, Voellmy R. Very Broadly Effective Hemagglutinin-Directed Influenza Vaccines with Anti-Herpetic Activity. Vaccines (Basel) 2024; 12:537. [PMID: 38793788 PMCID: PMC11125745 DOI: 10.3390/vaccines12050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
A universal vaccine that generally prevents influenza virus infection and/or illness remains elusive. We have been exploring a novel approach to vaccination involving replication-competent controlled herpesviruses (RCCVs) that can be deliberately activated to replicate efficiently but only transiently in an administration site in the skin of a subject. The RCCVs are derived from a virulent wild-type herpesvirus strain that has been engineered to contain a heat shock promoter-based gene switch that controls the expression of, typically, two replication-essential viral genes. Additional safety against inadvertent replication is provided by an appropriate secondary mechanism. Our first-generation RCCVs can be activated at the administration site by a mild local heat treatment in the presence of an antiprogestin. Here, we report that epidermal vaccination with such RCCVs expressing a hemagglutinin or neuraminidase of an H1N1 influenza virus strain protected mice against lethal challenges by H1N1 virus strains representing 75 years of evolution. Moreover, immunization with an RCCV expressing a subtype H1 hemagglutinin afforded full protection against a lethal challenge by an H3N2 influenza strain, and an RCCV expressing a subtype H3 hemagglutinin protected against a lethal challenge by an H1N1 strain. Vaccinated animals continued to gain weight normally after the challenge. Protective effects were even observed in a lethal influenza B virus challenge. The RCCV-based vaccines induced robust titers of in-group, cross-group and even cross-type neutralizing antibodies. Passive immunization suggested that observed vaccine effects were at least partially antibody-mediated. In summary, RCCVs expressing a hemagglutinin induce robust and very broad cross-protective immunity against influenza.
Collapse
Affiliation(s)
- David C. Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Cameron Lilly
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - William Canty
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER de Bioingenieria, Biomateriales y Nanomedicina, 28046 Madrid, Spain
| | | |
Collapse
|
6
|
He P, Gui M, Chen T, Zeng Y, Chen C, Lu Z, Xia N, Wang G, Chen Y. A Chymotrypsin-Dependent Live-Attenuated Influenza Vaccine Provides Protective Immunity against Homologous and Heterologous Viruses. Vaccines (Basel) 2024; 12:512. [PMID: 38793763 PMCID: PMC11126036 DOI: 10.3390/vaccines12050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; (P.H.); (M.G.); (T.C.); (Y.Z.); (C.C.); (Z.L.)
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; (P.H.); (M.G.); (T.C.); (Y.Z.); (C.C.); (Z.L.)
| |
Collapse
|
7
|
Saranathan R, Asare E, Leung L, de Oliveira AP, Kaugars KE, Mulholland CV, Lukose R, Berney M, Jacobs WR. Capturing Structural Variants of Herpes Simplex Virus Genome in Full Length by Oxford Nanopore Sequencing. Microbiol Spectr 2022; 10:e0228522. [PMID: 36040163 PMCID: PMC9602439 DOI: 10.1128/spectrum.02285-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 01/04/2023] Open
Abstract
Genome sequencing and assembly of viral genomes within the Herpesviridae family, particularly herpes simplex virus (HSV), have been challenging due to the large size (~154 Kb), high GC content (68%), and nucleotide variations arising during replication. Oxford Nanopore Technology (ONT) has been successful in obtaining read lengths ranging from 100 Kb up to 2.3 Mb. We have optimized DNA extraction and sequencing with ONT to capture the whole genome of HSV-1 as a single read. Although previous studies described the presence of four different genome isomers of HSV, we provided the first report on capturing all four variants' full-length genome as single reads. These isomers were found to be present in almost equal proportion in the sequenced DNA preparation. IMPORTANCE With the advent of next-generation sequencing platforms, genome sequencing of viruses can be performed in a relatively shorter time frame in even the most austere conditions. Ultralong read sequencing platforms, such as Oxford Nanopore Technology (ONT), have made it possible to capture the full-length genome of DNA viruses as a single read. By optimizing ONT for this purpose, we captured the genome (~154 Kb) of a clinical strain of herpes simplex virus 1 (HSV-1). Additionally, we captured full-length sequences of the four isomers of lab-grown HSV-1 virus and were able to determine the frequency of each within the isogenic population. This method will open new directions in studying the significance of these isomers and their clinical relevance to HSV-1 infections. It will also improve basic studies on the recombination and replication of this virus.
Collapse
Affiliation(s)
- Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Emmanuel Asare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Lawrence Leung
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Anna Paula de Oliveira
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Katherine E. Kaugars
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Claire V. Mulholland
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Regy Lukose
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York City, New York, USA
| |
Collapse
|
8
|
Immunogenicity of Novel Live Vaccine Based on an Artificial rHN20 Strain against Emerging Fowl Adenovirus 4. Viruses 2021; 13:v13112153. [PMID: 34834960 PMCID: PMC8622778 DOI: 10.3390/v13112153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, hepatitis-hydropericardium syndrome (HHS), caused by novel fowl adenovirus 4 (FAdV-4), has caused serious economic losses to the poultry industry. Vaccines are important for preventing and controlling HHS. Current FAdV-4 vaccine research and development are mainly focuses on inactivated vaccines and relatively fewer live vaccines. We previously demonstrated that the hexon gene is the key gene responsible for the high pathogenicity of FAdV-4 and constructed a non-pathogenic chimeric virus rHN20 strain based on the emerging FAdV-4. In this study, the immunogenicity of artificially rescued rHN20 was evaluated in chickens using different routes and doses as a live vaccine. The live rHN20 vaccine induced high titers of neutralizing antibodies against FAdV-4 and fully protected the immunized chickens against a lethal dose of FAdV-4. Furthermore, immunized chickens showed no clinical symptoms or histopathological changes in the FAdV-4-targeted liver, and the viral load in the tissues of immunized chickens was significantly lower than that of chickens in the challenge control group. Collectively, the live rHN20 vaccine effectively protected our sample against FAdV-4 infection and can be considered a live vaccine candidate for preventing HHS in the poultry industry.
Collapse
|