1
|
Ruff SE, de Angelis IH, Mullis M, Payet JP, Magnabosco C, Lloyd KG, Sheik CS, Steen AD, Shipunova A, Morozov A, Reese BK, Bradley JA, Lemonnier C, Schrenk MO, Joye SB, Huber JA, Probst AJ, Morrison HG, Sogin ML, Ladau J, Colwell F. A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide. SCIENCE ADVANCES 2024; 10:eadq0645. [PMID: 39693444 DOI: 10.1126/sciadv.adq0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Subsurface environments are among Earth's largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth's subsurface and surface environments.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Cody S Sheik
- Large Lakes Observatory and Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | | | | | | | - Brandi Kiel Reese
- University of South Alabama, Mobile, AL, USA
- Dauphin Island Sea Laboratory, Dauphin Island, AL, USA
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille, France
- Queen Mary University of London, London, UK
| | - Clarisse Lemonnier
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI. USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | | | - Joshua Ladau
- Department of Computational Precision Health, University of California, San Francisco, CA, USA
- Arva Intelligence, Houston, TX, USA
| | - Frederick Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Basili M, Rogers TJ, Nakagawa M, Yücel M, de Moor JM, Barry PH, Schrenk MO, Jessen GL, Sánchez-Murillo R, Zahirovic S, Bekaert DV, Ramirez CJ, Bastoni D, Cordone A, Lloyd KG, Giovannelli D. Subsurface microbial community structure shifts along the geological features of the Central American Volcanic Arc. PLoS One 2024; 19:e0308756. [PMID: 39536057 PMCID: PMC11560019 DOI: 10.1371/journal.pone.0308756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024] Open
Abstract
Subduction of the Cocos and Nazca oceanic plates beneath the Caribbean plate drives the upward movement of deep fluids enriched in carbon, nitrogen, sulfur, and iron along the Central American Volcanic Arc (CAVA). These compounds fuel diverse subsurface microbial communities that in turn alter the distribution, redox state, and isotopic composition of these compounds. Microbial community structure and functions vary according to deep fluid delivery across the arc, but less is known about how microbial communities differ along the axis of a convergent margin as geological features (e.g., extent of volcanism and subduction geometry) shift. Here, we investigate changes in bacterial 16S rRNA gene amplicons and geochemical analysis of deeply-sourced seeps along the southern CAVA, where subduction of the Cocos Ridge alters the geological setting. We find shifts in community composition along the convergent margin, with communities in similar geological settings clustering together independently of the proximity of sample sites. Microbial community composition correlates with geological variables such as host rock type, maturity of hydrothermal fluid and slab depth along different segments of the CAVA. This reveals tight coupling between deep Earth processes and subsurface microbial activity, controlling community distribution, structure and composition along a convergent margin.
Collapse
Affiliation(s)
- Marco Basili
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Timothy J. Rogers
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Mustafa Yücel
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - J. Maarten de Moor
- OVSICORI, Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Peter H. Barry
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, United States of America
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Ricardo Sánchez-Murillo
- Department of Earth and Environmental Sciences, Tracer Hydrology Group, University of Texas, Arlington, TX, United States of America
| | - Sabin Zahirovic
- School of Geosciences, The University of Sydney, Darlington, Australia
| | - David V. Bekaert
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- CRPG, Vandœuvre-lès-Nancy, France
| | | | - Deborah Bastoni
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- Earth Science Department, University of Southern California, Los Angeles, CA, United States of America
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States of America
| |
Collapse
|
3
|
Hornby A, Gazel E, Bush C, Dayton K, Mahowald N. Phases in fine volcanic ash. Sci Rep 2023; 13:15728. [PMID: 37735194 PMCID: PMC10514198 DOI: 10.1038/s41598-023-41412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Volcanic ash emissions impact atmospheric processes, depositional ecosystems, human health, and global climate. These effects are sensitive to the size and composition of the ash; however, datasets describing the constituent phases over size ranges relevant for atmospheric transport and widely distributed impacts are practically nonexistent. Here, we present results of X-ray diffraction measurements on size-separated fractions of 40 ash samples from VEI 2-6 eruptions. We characterize changes in phase fractions with grainsize, tectonic setting, and whole-rock SiO2. For grainsizes < 45 μm, average fractions of crystalline silica and surface salts increased while glass and iron oxides decreased with respect to the bulk sample. Samples from arc and intraplate settings are distinguished by feldspar and clinopyroxene fractions (determined by different crystallization sequences) which, together with glass, comprise 80-100% of most samples. We provide a dataset to approximate glass-free proportions of major crystalline phases; however, glass fractions are highly variable. To tackle this, we describe regressions between glass and major crystal phase fractions that help constrain the major phase proportions in volcanic ash with limited a priori information. Using our dataset, we find that pore-free ash density is well-estimated as a function of the clinopyroxene + Fe-oxide fraction, with median values of 2.67 ± 0.01 and 2.85 ± 0.03 g/cm3 for intraplate and arc samples, respectively. Finally, we discuss effects including atmospheric transport and alteration on modal composition and contextualize our proximal airfall ash samples with volcanic ash cloud properties. Our study helps constrain the atmospheric and environmental budget of the phases in fine volcanic ash and their effect on ash density, integral to refine our understanding of the impact of explosive volcanism on the Earth system from single eruptions to global modeling.
Collapse
Affiliation(s)
- Adrian Hornby
- Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA.
| | - Esteban Gazel
- Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA.
| | - Claire Bush
- Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Kyle Dayton
- Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Natalie Mahowald
- Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Paul R, Rogers TJ, Fullerton KM, Selci M, Cascone M, Stokes MH, Steen AD, de Moor JM, Chiodi A, Stefánsson A, Halldórsson SA, Ramirez CJ, Jessen GL, Barry PH, Cordone A, Giovannelli D, Lloyd KG. Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems. PLoS One 2023; 18:e0281277. [PMID: 37594978 PMCID: PMC10437873 DOI: 10.1371/journal.pone.0281277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023] Open
Abstract
Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.
Collapse
Affiliation(s)
- Raegan Paul
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| | - Timothy J. Rogers
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| | - Kate M. Fullerton
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| | - Matteo Selci
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Martina Cascone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Murray H. Stokes
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| | - Andrew D. Steen
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| | - J. Maarten de Moor
- Observatorio Volcanológico y Sismológico de Costa Rica (OVSICORI) Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States of America
| | - Agostina Chiodi
- Instituto de Bio y Geociencias del NOA (IBIGEO, UNSa-CONICET), Salta, Argentina
| | - Andri Stefánsson
- NordVulk, Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Peter H. Barry
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- National Research Council–Institute of Marine Biological Resources and Biotechnologies—CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States of America
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Karen G. Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
5
|
Naif S, Miller NC, Shillington DJ, Bécel A, Lizarralde D, Bassett D, Hemming SR. Episodic intraplate magmatism fed by a long-lived melt channel of distal plume origin. SCIENCE ADVANCES 2023; 9:eadd3761. [PMID: 37294766 DOI: 10.1126/sciadv.add3761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/09/2023] [Indexed: 06/11/2023]
Abstract
In the past decade, marine geophysical observations have led to the discovery of thin channels at the base of oceanic plates with anomalous physical properties that indicate the presence of low-degree partial melts. However, mantle melts are buoyant and should migrate toward the surface. We show abundant observations of widespread intraplate magmatism on the Cocos Plate where a thin partial melt channel was imaged at the lithosphere-asthenosphere boundary. We combine existing geophysical, geochemical, and seafloor drilling results with seismic reflection data and radiometric dating of drill cores to constrain the origin, distribution, and timing of this magmatism. Our synthesis indicates that the sublithospheric channel is a regionally extensive (>100,000 km2) and long-lived feature that originated from the Galápagos Plume more than 20 Ma ago, supplying melt for multiple magmatic events and persisting today. Plume-fed melt channels may be widespread and long-lived sources for intraplate magmatism and mantle metasomatism.
Collapse
Affiliation(s)
- Samer Naif
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nathaniel C Miller
- U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA, USA
| | - Donna J Shillington
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Anne Bécel
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Daniel Lizarralde
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Sidney R Hemming
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| |
Collapse
|
6
|
Giovannelli D, Barry PH, de Moor JM, Jessen GL, Schrenk MO, Lloyd KG. Sampling across large-scale geological gradients to study geosphere-biosphere interactions. Front Microbiol 2022; 13:998133. [PMID: 36386678 PMCID: PMC9659755 DOI: 10.3389/fmicb.2022.998133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps-including lower temperature sites-over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale.
Collapse
Affiliation(s)
- Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute of Marine Biological Resources and Biotechnologies, National Research Council, CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Peter H. Barry
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
| | - J. Maarten de Moor
- Observatorio Volcanológico y Sismológico de Costa Rica (OVSICORI), Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Karen G. Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
7
|
3He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Constraining the magmatic 3He/4He signature of fluids degassed from a magmatic system is crucial for making inferences on its mantle source. This is especially important in arc volcanism, where variations in the composition of the wedge potentially induced by slab sediment fluids must be distinguished from the effects of magma differentiation, degassing, and crustal contamination. The study of fluid inclusions (FIs) trapped in minerals of volcanic rocks is becoming an increasingly used methodology in geochemical studies that integrates the classical study of volcanic and geothermal fluids. Here, we report on the first noble gas (He, Ne, Ar) concentrations and isotopic ratios of FI in olivine (Ol) and pyroxene (Px) crystals separated from eruptive products of the Telica and Baru volcanoes, belonging to the Nicaraguan and Panamanian arc-segments of Central America Volcanic arc (CAVA). FIs from Telica yield air corrected 3He/4He (Rc/Ra) of 7.2–7.4 Ra in Ol and 6.1–7.3 in Px, while those from Baru give 7.1–8.0 Ra in Ol and 4.2–5.8 Ra in Px. After a data quality check and a comparison with previous 3He/4He measurements carried out on the same volcanoes and along CAVA, we constrained a magmatic Rc/Ra signature of 7.5 Ra for Telica and of 8.0 Ra for Baru, both within the MORB range (8 ± 1 Ra). These 3He/4He differences also reflect variations in the respective arc-segments, which cannot be explained by radiogenic 4He addition due to variable crust thickness, as the mantle beneath Nicaragua and Panama is at about 35 and 30 km, respectively. We instead highlight that the lowest 3He/4He signature observed in the Nicaraguan arc segment reflects a contamination of the underlying wedge by slab sediment fluids. Rc/Ra values up to 9.0 Ra are found at Pacaya volcano in Guatemala, where the crust is 45 km thick, while a 3He/4He signature of about 8.0 Ra was measured at Turrialba volcano in Costa Rica, which is similar to that of Baru, and reflects possible influence of slab melting, triggered by a change in subduction conditions and the contemporary subduction of the Galapagos hot-spot track below southern Costa Rica and western Panama.
Collapse
|