1
|
Krajcovic B, Cernotova D, Buchtova H, Stuchlik A, Kubik S, Svoboda J. CA1 ensembles expressing immediate-early genes are driven by context switch, shrink with sustained presence, and show no effect of change of task demands. Behav Brain Res 2025; 480:115407. [PMID: 39710210 DOI: 10.1016/j.bbr.2024.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
The hippocampus (HPC) is essential for navigation and memory, tracking environmental continuity and change, including navigation relative to moving targets. CA1 ensembles expressing immediate-early gene (IEG) Arc and Homer1a RNA are contextually specific. While IEG expression correlates with HPC-dependent task demands, the effects of behavioral demands on IEG-expressing ensembles remain unclear. In three experiments, we investigated the effects of context switch, sustained presence, and task demands on dorso-proximal CA1 IEG+ ensembles in rats. Experiment 1 showed that the size of IEG+ (Arc, Homer1a RNA) ensembles dropped to baseline during uninterrupted 30-min exploration, reflecting familiarization, unless a context switch was present. Context-specificity of the ensembles depended on both environment identity and timing of the context switch. Experiment 2 found no effect of HPC-dependent mobile robot avoidance or HPC-independent avoidance of a stationary robot on IEG+ ensembles beyond mere exploration. Experiment 3 replicated these findings for c-Fos protein. The data suggest that IEG+ ensembles are driven by a context switch and shrink over time during sustained presence in the same environment. We found no evidence of task demands or their change affecting the size, stability over time, or task-specificity of IEG+ ensembles. These results shed light on the temporal dynamics of CA1 IEG+ ensembles, and their control by contextual and behavioral factors.
Collapse
Affiliation(s)
- Branislav Krajcovic
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia; Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Daniela Cernotova
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia; Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Helena Buchtova
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia; Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ales Stuchlik
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Stepan Kubik
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Bordes J, Bajaj T, Miranda L, van Doeselaar L, Brix LM, Narayan S, Yang H, Mitra S, Kovarova V, Springer M, Kleigrewe K, Müller-Myhsok B, Gassen NC, Schmidt MV. Sex-specific fear acquisition following early life stress is linked to amygdala and hippocampal purine and glutamate metabolism. Commun Biol 2024; 7:1684. [PMID: 39702524 DOI: 10.1038/s42003-024-07396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Early life stress (ELS) can negatively impact health, increasing the risk of stress-related disorders, such as post-traumatic stress disorder (PTSD). Importantly, PTSD disproportionately affects women, emphasizing the critical need to explore how sex differences influence the genetic and metabolic neurobiological pathways underlying trauma-related behaviors. This study uses the limited bedding and nesting (LBN) paradigm to model ELS and investigate its sex-specific effects on fear memory formation. Employing innovative unsupervised behavioral classification, the current study reveals distinct behavioral patterns associated with fear acquisition and retrieval in male and female mice following ELS. Females exposed to LBN display heightened active fear responses, contrasting with males. Furthermore, the study examined the crucial link between behavioral regulation and cellular metabolism in key brain regions involved in fear and stress processing. Sex-specific and stress-dependent alterations were observed in purine, pyrimidine, and glutamate metabolism within the basolateral amygdala, the dorsal hippocampus, and the ventral hippocampus. These findings provide crucial insights into the complex interplay between metabolic pathways, the neurobiological underpinnings of fear memory, and stress responses. Importantly, they emphasize the significance of considering sex-specific metabolic alterations when investigating stress-related disorders, opening potential avenues for the development of targeted interventions.
Collapse
Affiliation(s)
- Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany
| | - Lucas Miranda
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bertram Müller-Myhsok
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
3
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
4
|
Joëls M, Karst H, Tasker JG. The emerging role of rapid corticosteroid actions on excitatory and inhibitory synaptic signaling in the brain. Front Neuroendocrinol 2024; 74:101146. [PMID: 39004314 DOI: 10.1016/j.yfrne.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- University Medical Center Groningen, University of Groningen, the Netherlands; University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Henk Karst
- University Medical Center Utrecht, Utrecht University, the Netherlands; SILS-CNS. University of Amsterdam, the Netherlands.
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, and Southeast Louisiana Veterans Affairs Healthcare System, New Orleans, USA.
| |
Collapse
|
5
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
6
|
Gullino LS, Fuller C, Dunn P, Collins HM, El Mestikawy S, Sharp T. Evidence for a Role of 5-HT-glutamate Co-releasing Neurons in Acute Stress Mechanisms. ACS Chem Neurosci 2024; 15:1185-1196. [PMID: 38377469 PMCID: PMC10958520 DOI: 10.1021/acschemneuro.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.
Collapse
Affiliation(s)
- L. Sophie Gullino
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Cara Fuller
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Poppy Dunn
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Helen M. Collins
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Salah El Mestikawy
- Douglas
Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC H4H
1R3, Canada
- Sorbonne
Université, INSERM, CNRS, Neuroscience Paris Seine –
Institut de Biologie Paris Seine (NPS – IBPS), 75005 Paris, France
| | - Trevor Sharp
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
7
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Franceschini A, Mazzamuto G, Checcucci C, Chicchi L, Fanelli D, Costantini I, Passani MB, Silva BA, Pavone FS, Silvestri L. Brain-wide neuron quantification toolkit reveals strong sexual dimorphism in the evolution of fear memory. Cell Rep 2023; 42:112908. [PMID: 37516963 DOI: 10.1016/j.celrep.2023.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Fear responses are functionally adaptive behaviors that are strengthened as memories. Indeed, detailed knowledge of the neural circuitry modulating fear memory could be the turning point for the comprehension of this emotion and its pathological states. A comprehensive understanding of the circuits mediating memory encoding, consolidation, and retrieval presents the fundamental technological challenge of analyzing activity in the entire brain with single-neuron resolution. In this context, we develop the brain-wide neuron quantification toolkit (BRANT) for mapping whole-brain neuronal activation at micron-scale resolution, combining tissue clearing, high-resolution light-sheet microscopy, and automated image analysis. The robustness and scalability of this method allow us to quantify the evolution of activity patterns across multiple phases of memory in mice. This approach highlights a strong sexual dimorphism in recruited circuits, which has no counterpart in the behavior. The methodology presented here paves the way for a comprehensive characterization of the evolution of fear memory.
Collapse
Affiliation(s)
- Alessandra Franceschini
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Giacomo Mazzamuto
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy; National Institute of Optics - National Research Council (CNR-INO), Sesto Fiorentino, Italy
| | - Curzio Checcucci
- Department of Information Engineering (DINFO), University of Florence, Florence, Italy
| | - Lorenzo Chicchi
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Duccio Fanelli
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Irene Costantini
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy; Department of Biology, University of Florence, Florence, Italy
| | | | - Bianca Ambrogina Silva
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy; IRCCS Humanitas Research Hospital, Lab of Circuits Neuroscience, Rozzano, Milan, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy; National Institute of Optics - National Research Council (CNR-INO), Sesto Fiorentino, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy; National Institute of Optics - National Research Council (CNR-INO), Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Yip KYT, Gräff J. Tissue clearing applications in memory engram research. Front Behav Neurosci 2023; 17:1181818. [PMID: 37700912 PMCID: PMC10493294 DOI: 10.3389/fnbeh.2023.1181818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
A memory engram is thought to be the physical substrate of the memory trace within the brain, which is generally depicted as a neuronal ensemble activated by learning to fire together during encoding and retrieval. It has been postulated that engram cell ensembles are functionally interconnected across multiple brain regions to store a single memory as an "engram complex", but visualizing this engram complex across the whole brain has for long been hindered by technical limitations. With the recent development of tissue clearing techniques, advanced light-sheet microscopy, and automated 3D image analysis, it has now become possible to generate a brain-wide map of engram cells and thereby to visualize the "engram complex". In this review, we first provide a comprehensive summary of brain-wide engram mapping studies to date. We then compile a guide on implementing the optimal tissue clearing technique for engram tagging approaches, paying particular attention to visualize engram reactivation as a critical mnemonic property, for which whole-brain multiplexed immunostaining becomes a challenging prerequisite. Finally, we highlight the potential of tissue clearing to simultaneously shed light on both the circuit connectivity and molecular underpinnings of engram cells in a single snapshot. In doing so, novel brain regions and circuits can be identified for subsequent functional manipulation, thus providing an opportunity to robustly examine the "engram complex" underlying memory storage.
Collapse
Affiliation(s)
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Stefaniuk M, Pawłowska M, Barański M, Nowicka K, Zieliński Z, Bijoch Ł, Legutko D, Majka P, Bednarek S, Jermakow N, Wójcik D, Kaczmarek L. Global brain c-Fos profiling reveals major functional brain networks rearrangements after alcohol reexposure. Neurobiol Dis 2023; 178:106006. [PMID: 36682503 DOI: 10.1016/j.nbd.2023.106006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.
Collapse
Affiliation(s)
- Marzena Stefaniuk
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland.
| | - Monika Pawłowska
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Institute of Experimental Physics, Section of Optics, Warsaw University, Warsaw, Poland
| | - Marcin Barański
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Klaudia Nowicka
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | | | - Łukasz Bijoch
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Laboratory of Neuronal Plasticity, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Diana Legutko
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Daniel Wójcik
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| |
Collapse
|
11
|
Davoudian PA, Shao LX, Kwan AC. Shared and Distinct Brain Regions Targeted for Immediate Early Gene Expression by Ketamine and Psilocybin. ACS Chem Neurosci 2023; 14:468-480. [PMID: 36630309 PMCID: PMC9898239 DOI: 10.1021/acschemneuro.2c00637] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Psilocybin is a psychedelic with therapeutic potential. While there is growing evidence that psilocybin exerts its beneficial effects through enhancing neural plasticity, the exact brain regions involved are not completely understood. Determining the impact of psilocybin on plasticity-related gene expression throughout the brain can broaden our understanding of the neural circuits involved in psychedelic-evoked neural plasticity. In this study, whole-brain serial two-photon microscopy and light sheet microscopy were employed to map the expression of the immediate early gene, c-Fos, in male and female mice. The drug-induced c-Fos expression following psilocybin administration was compared to that of subanesthetic ketamine and saline control. Psilocybin and ketamine produced acutely comparable elevations in c-Fos expression in numerous brain regions, including anterior cingulate cortex, locus coeruleus, primary visual cortex, central and basolateral amygdala, medial and lateral habenula, and claustrum. Select regions exhibited drug-preferential differences, such as dorsal raphe and insular cortex for psilocybin and the CA1 subfield of hippocampus for ketamine. To gain insights into the contributions of receptors and cell types, the c-Fos expression maps were related to brain-wide in situ hybridization data. The transcript analyses showed that the endogenous levels of Grin2a and Grin2b predict whether a cortical region is sensitive to drug-evoked neural plasticity for both ketamine and psilocybin. Collectively, the systematic mapping approach produced an unbiased list of brain regions impacted by psilocybin and ketamine. The data are a resource that highlights previously underappreciated regions for future investigations. Furthermore, the robust relationships between drug-evoked c-Fos expression and endogenous transcript distributions suggest glutamatergic receptors as a potential convergent target for how psilocybin and ketamine produce their rapid-acting and long-lasting therapeutic effects.
Collapse
Affiliation(s)
- Pasha A. Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Ling-Xiao Shao
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, 10065, USA
| |
Collapse
|
12
|
Overnight Corticosterone and Gene Expression in Mouse Hippocampus: Time Course during Resting Period. Int J Mol Sci 2023; 24:ijms24032828. [PMID: 36769150 PMCID: PMC9917930 DOI: 10.3390/ijms24032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the experiment was to test the effect of an elevated level of glucocorticoids on the mouse hippocampal transcriptome after 12 h of treatment with corticosterone that was administered during an active phase of the circadian cycle. Additionally, we also tested the circadian changes in gene expression and the decay time of transcriptomic response to corticosterone. Gene expression was analyzed using microarrays. Obtained results show that transcriptomic responses to glucocorticoids are heterogeneous in terms of the decay time with some genes displaying persistent changes in expression during 9 h of rest. We have also found a considerable overlap between genes regulated by corticosterone and genes implicated previously in stress response. The examples of such genes are Acer2, Agt, Apod, Aqp4, Etnppl, Fabp7, Fam107a, Fjx1, Fmo2, Galnt15, Gjc2, Heph, Hes5, Htra1, Jdp2, Kif5a, Lfng, Lrg1, Mgp, Mt1, Pglyrp1, Pla2g3, Plin4, Pllp, Ptgds, Ptn, Slc2a1, Slco1c1, Sult1a1, Thbd and Txnip. This indicates that the applied model is a useful tool for the investigation of mechanisms underlying the stress response.
Collapse
|
13
|
Bijoch Ł, Klos J, Pawłowska M, Wiśniewska J, Legutko D, Szachowicz U, Kaczmarek L, Beroun A. Whole-brain tracking of cocaine and sugar rewards processing. Transl Psychiatry 2023; 13:20. [PMID: 36683039 PMCID: PMC9868126 DOI: 10.1038/s41398-023-02318-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Natural rewards, such as food, and sex are appetitive stimuli available for animals in their natural environment. Similarly, addictive rewards such as drugs of abuse possess strong, positive valence, but their action relies on their pharmacological properties. Nevertheless, it is believed that both of these kinds of rewards activate similar brain circuitry. The present study aimed to discover which parts of the brain process the experience of natural and addictive rewards. To holistically address this question, we used a single-cell whole-brain imaging approach to find patterns of activation for acute and prolonged sucrose and cocaine exposure. We analyzed almost 400 brain structures and created a brain-wide map of specific, c-Fos-positive neurons engaged by these rewards. Acute but not prolonged sucrose exposure triggered a massive c-Fos expression throughout the brain. Cocaine exposure on the other hand potentiated c-Fos expression with prolonged use, engaging more structures than sucrose treatment. The functional connectivity analysis unraveled an increase in brain modularity after the initial exposure to both types of rewards. This modularity was increased after repeated cocaine, but not sucrose, intake. To check whether discrepancies between the processing of both types of rewards can be found on a cellular level, we further studied the nucleus accumbens, one of the most strongly activated brain structures by both sucrose and cocaine experience. We found a high overlap between natural and addictive rewards on the level of c-Fos expression. Electrophysiological measurements of cellular correlates of synaptic plasticity revealed that natural and addictive rewards alike induce the accumulation of silent synapses. These results strengthen the hypothesis that in the nucleus accumbens drugs of abuse cause maladaptive neuronal plasticity in the circuitry that typically processes natural rewards.
Collapse
Affiliation(s)
- Łukasz Bijoch
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Klos
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Monika Pawłowska
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland ,grid.12847.380000 0004 1937 1290Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Justyna Wiśniewska
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Diana Legutko
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Szachowicz
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
14
|
Miranda L, Bordes J, Gasperoni S, Lopez JP. Increasing resolution in stress neurobiology: from single cells to complex group behaviors. Stress 2023; 26:2186141. [PMID: 36855966 DOI: 10.1080/10253890.2023.2186141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Stress can have severe psychological and physiological consequences. Thus, inappropriate regulation of the stress response is linked to the etiology of mood and anxiety disorders. The generation and implementation of preclinical animal models represent valuable tools to explore and characterize the mechanisms underlying the pathophysiology of stress-related psychiatric disorders and the development of novel pharmacological strategies. In this commentary, we discuss the strengths and limitations of state-of-the-art molecular and computational advances employed in stress neurobiology research, with a focus on the ever-increasing spatiotemporal resolution in cell biology and behavioral science. Finally, we share our perspective on future directions in the fields of preclinical and human stress research.
Collapse
Affiliation(s)
- Lucas Miranda
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Gasperoni
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Juan Pablo Lopez
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Song X, Luan M, Zhang W, Zhang R, Xue L, Luan Y. Moderate-Intensity Ultrasound-Triggered On-Demand Analgesia Nanoplatforms for Postoperative Pain Management. Int J Nanomedicine 2022; 17:3177-3189. [PMID: 35909815 PMCID: PMC9329681 DOI: 10.2147/ijn.s367190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The restricted duration is a fundamental drawback of traditional local anesthetics during postoperative pain from a single injection. Therefore, an injectable local anesthetic that produces repeatable on-demand nerve blocks would be ideal. Methods We offer ultrasound-triggered on-demand analgesia consisting of dendritic mesoporous silica nanoparticles (DMSN) carried with ultrasound-sensitive perfluoropentane (PFP) and levobupivacaine (DMSN-bupi-PFP) to achieve repeatable and customizable on-demand local anesthetics. Results The vaporization of liquid PFP was triggered by ultrasound irradiation to produce a gas environment. Subsequently, the enhanced cavitation effect could improve the release of levobupivacaine to achieve pain relief under a moderate-intensity ultrasound irradiation. DMSN-bupi-PFP demonstrated a controlled-release pattern and showed a reinforced ultrasonic sensitivity compared to levobupivacaine loaded DMSN (DMSN-bupi). The sustained release of levobupivacaine produced continuous analgesia of more than 9 hours in a model of incision pain, approximately 3 times longer than a single free levobupivacaine injection (3 hours). The external ultrasound irradiation can trigger the release of levobupivacaine repeatedly, resulting in on-demand analgesia. In addition, DMSN-bupi-PFP nanoplatforms for ultrasound-enabled analgesia showed low neurotoxicity and good biocompatibility in vitro and in vivo. Conclusion This DMSN-bupi-PFP nanoplatform can be used in pain management by providing long-lasting and on-demand pain alleviation with the help of moderate-intensity ultrasound.
Collapse
Affiliation(s)
- Xinye Song
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Mengxiao Luan
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Weiyi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Ruizheng Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Li Xue
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yong Luan
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| |
Collapse
|
16
|
Oh JY, Lee YS, Hwang TY, Cho SJ, Jang JH, Ryu Y, Park HJ. Acupuncture Regulates Symptoms of Parkinson’s Disease via Brain Neural Activity and Functional Connectivity in Mice. Front Aging Neurosci 2022; 14:885396. [PMID: 35774113 PMCID: PMC9237259 DOI: 10.3389/fnagi.2022.885396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a multilayered progressive brain disease characterized by motor dysfunction and a variety of other symptoms. Although acupuncture has been used to ameliorate various symptoms of neurodegenerative disorders, including PD, the underlying mechanisms are unclear. Here, we investigated the mechanism of acupuncture by revealing the effects of acupuncture treatment on brain neural responses and its functional connectivity in an animal model of PD. We observed that destruction of neuronal network between many brain regions in PD mice were reversed by acupuncture. Using machine learning analysis, we found that the key region associated with the improvement of abnormal behaviors might be related to the neural activity of M1, suggesting that the changes of c-Fos in M1 could predict the improvement of motor function induced by acupuncture treatment. In addition, acupuncture treatment was shown to significantly normalize the brain neural activity not only in M1 but also in other brain regions related to motor behavior (striatum, substantia nigra pars compacta, and globus pallidus) and non-motor symptoms (hippocampus, lateral hypothalamus, and solitary tract) of PD. Taken together, our results demonstrate that acupuncture treatment might improve the PD symptoms by normalizing the brain functional connectivity in PD mice model and provide new insights that enhance our current understanding of acupuncture mechanisms for non-motor symptoms.
Collapse
Affiliation(s)
- Ju-Young Oh
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Ye-Seul Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, South Korea
| | - Tae-Yeon Hwang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Seong-Jin Cho
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Jae-Hwan Jang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Yeonhee Ryu
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Hi-Joon Park
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
- *Correspondence: Hi-Joon Park
| |
Collapse
|
17
|
Daskalakis NP, Meijer OC, de Kloet ER. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 2022; 18:100455. [PMID: 35601687 PMCID: PMC9118500 DOI: 10.1016/j.ynstr.2022.100455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
'You can't roll the clock back and reverse the effects of experiences' Bruce McEwen used to say when explaining how allostasis labels the adaptive process. Here we will for once roll the clock back to the times that the science of the glucocorticoid hormone was honored with a Nobel prize and highlight the discovery of their receptors in the hippocampus as inroad to its current status as master regulator in control of stress coping and adaptation. Glucocorticoids operate in concert with numerous neurotransmitters, neuropeptides, and other hormones with the aim to facilitate processing of information in the neurocircuitry of stress, from anticipation and perception of a novel experience to behavioral adaptation and memory storage. This action, exerted by the glucocorticoids, is guided by two complementary receptor systems, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), that need to be balanced for a healthy stress response pattern. Here we discuss the cellular, neuroendocrine, and behavioral studies underlying the MR:GR balance concept, highlight the relevance of hypothalamic-pituitary-adrenal (HPA) -axis patterns and note the limited understanding yet of sexual dimorphism in glucocorticoid actions. We conclude with the prospect that (i) genetically and epigenetically regulated receptor variants dictate cell-type-specific transcriptome signatures of stress-related neuropsychiatric symptoms and (ii) selective receptor modulators are becoming available for more targeted treatment. These two new developments may help to 'restart the clock' with the prospect to support resilience.
Collapse
Affiliation(s)
| | - Onno C. Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - E. Ron de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Schwabe L, Hermans EJ, Joëls M, Roozendaal B. Mechanisms of memory under stress. Neuron 2022; 110:1450-1467. [PMID: 35316661 DOI: 10.1016/j.neuron.2022.02.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
It is well established that stress has a major impact on memory, driven by the concerted action of various stress mediators on the brain. Recent years, however, have seen considerable advances in our understanding of the cellular, neural network, and cognitive mechanisms through which stress alters memory. These novel insights highlight the intricate interplay of multiple stress mediators, including-beyond corticosteroids, catecholamines, and peptides-for instance, endocannabinoids, which results in time-dependent shifts in large-scale neural networks. Such stress-induced network shifts enable highly specific memories of the stressful experience in the long run at the cost of transient impairments in mnemonic flexibility during and shortly after a stressful event. Based on these recent discoveries, we provide a new integrative framework that links the cellular, systems, and cognitive mechanisms underlying acute stress effects on memory processes and points to potential targets for treating aberrant memory in stress-related mental disorders.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Universität Hamburg, Hamburg, Germany.
| | - Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marian Joëls
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Benno Roozendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|