1
|
Li J, Cao D, Li W, Sarnthein J, Jiang T. Re-evaluating human MTL in working memory: insights from intracranial recordings. Trends Cogn Sci 2024; 28:1132-1144. [PMID: 39174398 DOI: 10.1016/j.tics.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The study of human working memory (WM) holds significant importance in neuroscience; yet, exploring the role of the medial temporal lobe (MTL) in WM has been limited by the technological constraints of noninvasive methods. Recent advancements in human intracranial neural recordings have indicated the involvement of the MTL in WM processes. These recordings show that different regions of the MTL are involved in distinct aspects of WM processing and also dynamically interact with each other and the broader brain network. These findings support incorporating the MTL into models of the neural basis of WM. This integration can better reflect the complex neural mechanisms underlying WM and enhance our understanding of WM's flexibility, adaptability, and precision.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- School of Psychology, Capital Normal University, Beijing, 100048, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Zurich Neuroscience Center, ETH Zurich, 8057 Zurich, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
2
|
Gresch D, Boettcher SEP, Gohil C, van Ede F, Nobre AC. Neural dynamics of shifting attention between perception and working-memory contents. Proc Natl Acad Sci U S A 2024; 121:e2406061121. [PMID: 39536078 PMCID: PMC11588118 DOI: 10.1073/pnas.2406061121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In everyday tasks, our focus of attention shifts seamlessly between contents in the sensory environment and internal memory representations. Yet, research has mainly considered external and internal attention in isolation. We used magnetoencephalography to compare the neural dynamics of shifting attention to visual contents within vs. between the external and internal domains. Participants performed a combined perception and working-memory task in which two sequential cues guided attention to upcoming (external) or memorized (internal) sensory information. Critically, the second cue could redirect attention to visual content within the same or alternative domain as the first cue. Multivariate decoding unveiled distinct patterns of human brain activity when shifting attention within vs. between domains. Brain activity distinguishing within- from between-domain shifts was broadly distributed and highly dynamic. Intriguingly, crossing domains did not invoke an additional stage prior to shifting attention. Alpha lateralization, a canonical marker of shifting spatial attention, showed no delay when cues redirected attention to the same vs. alternative domain. Instead, evidence suggested that neural states associated with a given domain linger and influence subsequent shifts of attention within vs. between domains. Our findings provide critical insights into the neural dynamics that govern attentional shifts between perception and working memory.
Collapse
Affiliation(s)
- Daniela Gresch
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT06510
| | - Sage E. P. Boettcher
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Freek van Ede
- Institute for Brain and Behaviour Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Anna C. Nobre
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT06510
- Wu Tsai Institute, Yale University, New Haven, CT06510
| |
Collapse
|
3
|
Büchel PK, Klingspohr J, Kehl MS, Staresina BP. Brain and eye movement dynamics track the transition from learning to memory-guided action. Curr Biol 2024; 34:5054-5061.e4. [PMID: 39437781 DOI: 10.1016/j.cub.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Learning never stops. As we navigate life, we continuously acquire and update knowledge to optimize memory-guided action, with a gradual shift from the former to the latter as we master our environment. How are these learning dynamics expressed in the brain and in behavioral patterns? Here, we devised a spatiotemporal image learning task ("Memory Arena") in which participants learn a set of 50 items to criterion across repeated exposure blocks. Critically, brief task-free periods between successive image presentations allowed us to assess multivariate electroencephalogram (EEG) patterns representing the previous and/or upcoming image identity, as well as anticipatory eye movements toward the upcoming image location. As expected, participants eventually met the performance criterion, albeit with different learning rates. During task-free periods, we were able to readily decode representations of both previous and upcoming image identities. Importantly though, decoding strength followed opposing slopes for previous vs. upcoming images across time, with a gradual decline of evidence for the previous image and a gradual increase of evidence for the upcoming image. Moreover, the ratio of upcoming vs. previous image evidence directly followed behavioral learning rates. Finally, eye movement data revealed that participants increasingly used the task-free period to anticipate upcoming image locations, with target-precision slopes paralleling both behavioral performance measures as well as EEG decodability of the upcoming image across time. Together, these results unveil the neural and behavioral dynamics underlying the gradual transition from learning to memory-guided action.
Collapse
Affiliation(s)
- Philipp K Büchel
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Hanzeplein, Groningen 9713 GZ, the Netherlands; Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; Department of Epileptology, University Hospital Bonn, Venusberg Campus, Bonn 53127, Germany
| | - Janina Klingspohr
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Hanzeplein, Groningen 9713 GZ, the Netherlands; Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Marcel S Kehl
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Warneford Lane, Oxford OX3 7JX, UK.
| |
Collapse
|
4
|
朱 俞, 于 洪, 赵 秀, 王 春. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:926-934. [PMID: 39462660 PMCID: PMC11527742 DOI: 10.7507/1001-5515.202311055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/11/2024] [Indexed: 10/29/2024]
Abstract
Ischemic stroke often leads to cognitive dysfunction, which delays the recovery process of patients. However, its pathogenesis is not yet clear. In this study, the cerebral ischemia-reperfusion model was built as the experimental object, and the hippocampal dentate gyrus (DG) was the target brain area. TTC staining was used to evaluate the degree of cerebral infarction, and nerve cell membrane potentials and local field potentials (LFPs) signals were collected to explore the mechanism of cognitive impairment in ischemia-reperfusion mice. The results showed that the infarcted area on the right side of the brain of the mice in the model group was white. The resting membrane potential, the number of action potential discharges, the post-hyperpolarization potential and the maximum ascending slope of the hippocampal DG nerve cells in the model mice were significantly lower than those in the control group ( P < 0.01); the peak time, half-wave width, threshold and maximum descending slope of the action potential were significantly higher than those in the control group ( P < 0.01). The time-frequency energy values of LFPs signals in the θ and γ bands of mice in the ischemia and reperfusion groups were significantly reduced ( P < 0.01), and the time-frequency energy values in the reperfusion group were increased compared with the ischemia group ( P < 0.01). The signal complexity of LFPs in the ischemia and reperfusion group was significantly reduced ( P < 0.05), and the signal complexity in the reperfusion group was increased compared with the ischemia group ( P < 0.05). In summary, cerebral ischemia-reperfusion reduced the excitability of nerve cells in the DG area of the mouse hippocampus; cerebral ischemia reduced the discharge activity and signal complexity of nerve cells, and the electrophysiological indicators recovered after reperfusion, but it failed to reach the healthy state during the experiment period.
Collapse
Affiliation(s)
- 俞灿 朱
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 洪丽 于
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 秀芝 赵
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 春方 王
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
5
|
Monzel M, Leelaarporn P, Lutz T, Schultz J, Brunheim S, Reuter M, McCormick C. Hippocampal-occipital connectivity reflects autobiographical memory deficits in aphantasia. eLife 2024; 13:RP94916. [PMID: 39325034 PMCID: PMC11426968 DOI: 10.7554/elife.94916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Aphantasia refers to reduced or absent visual imagery. While most of us can readily recall decade-old personal experiences (autobiographical memories, AM) with vivid mental images, there is a dearth of information about whether the loss of visual imagery in aphantasics affects their AM retrieval. The hippocampus is thought to be a crucial hub in a brain-wide network underlying AM. One important question is whether this network, especially the connectivity of the hippocampus, is altered in aphantasia. In the current study, we tested 14 congenital aphantasics and 16 demographically matched controls in an AM fMRI task to investigate how key brain regions (i.e. hippocampus and visual-perceptual cortices) interact with each other during AM re-experiencing. All participants were interviewed regarding their autobiographical memory to examine their episodic and semantic recall of specific events. Aphantasics reported more difficulties in recalling AM, were less confident about their memories, and described less internal and emotional details than controls. Neurally, aphantasics displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In addition, controls showed strong negative functional connectivity between the hippocampus and the visual cortex during AM and resting-state functional connectivity between these two brain structures predicted better visualization skills. Our results indicate that visual mental imagery plays an important role in detail-rich vivid AM, and that this type of cognitive function is supported by the functional connection between the hippocampus and the visual-perceptual cortex.
Collapse
Affiliation(s)
- Merlin Monzel
- Department of Psychology, University of BonnBonnGermany
- German Center for Neurodegenerative DiseasesBonnGermany
| | - Pitshaporn Leelaarporn
- German Center for Neurodegenerative DiseasesBonnGermany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital BonnBonnGermany
| | - Teresa Lutz
- German Center for Neurodegenerative DiseasesBonnGermany
| | - Johannes Schultz
- Center for Economics and Neuroscience, University of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of BonnBonnGermany
| | | | - Martin Reuter
- Department of Psychology, University of BonnBonnGermany
| | - Cornelia McCormick
- German Center for Neurodegenerative DiseasesBonnGermany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital BonnBonnGermany
| |
Collapse
|
6
|
Zeltser A, Ochneva A, Riabinina D, Zakurazhnaya V, Tsurina A, Golubeva E, Berdalin A, Andreyuk D, Leonteva E, Kostyuk G, Morozova A. EEG Techniques with Brain Activity Localization, Specifically LORETA, and Its Applicability in Monitoring Schizophrenia. J Clin Med 2024; 13:5108. [PMID: 39274319 PMCID: PMC11395834 DOI: 10.3390/jcm13175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia. The study's novelty lies in the comprehensive survey of EEG methods and detailed exploration of LORETA in schizophrenia research. This evaluation aligns with clinical objectives and has been performed for the first time. Methods: The study is split into two sections. Part I examines different EEG methodologies and adjuncts to detail brain activity in deep layers in articles published between 2018 and 2023 in PubMed. Part II focuses on the role of LORETA in investigating structural and functional changes in schizophrenia in studies published between 1999 and 2024 in PubMed. Results: Combining imaging techniques and EEG provides opportunities for mapping brain activity. Using LORETA, studies of schizophrenia have identified hemispheric asymmetry, especially increased activity in the left hemisphere. Cognitive deficits were associated with decreased activity in the dorsolateral prefrontal cortex and other areas. Comparison of the first episode of schizophrenia and a chronic one may help to classify structural change as a cause or as a consequence of the disorder. Antipsychotic drugs such as olanzapine or clozapine showed a change in P300 source density and increased activity in the delta and theta bands. Conclusions: Given the relatively low spatial resolution of LORETA, the method offers benefits such as accessibility, high temporal resolution, and the ability to map depth layers, emphasizing the potential of LORETA in monitoring the progression and treatment response in schizophrenia.
Collapse
Affiliation(s)
- Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeria Zakurazhnaya
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Marketing, Faculty of Economics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Leonteva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education "Russian Biotechnological University (ROSBIOTECH)", Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
7
|
Ambrus GG. Shared neural codes of recognition memory. Sci Rep 2024; 14:15846. [PMID: 38982142 PMCID: PMC11233521 DOI: 10.1038/s41598-024-66158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recognition memory research has identified several electrophysiological indicators of successful memory retrieval, known as old-new effects. These effects have been observed in different sensory domains using various stimulus types, but little attention has been given to their similarity or distinctiveness and the underlying processes they may share. Here, a data-driven approach was taken to investigate the temporal evolution of shared information content between different memory conditions using openly available EEG data from healthy human participants of both sexes, taken from six experiments. A test dataset involving personally highly familiar and unfamiliar faces was used. The results show that neural signals of recognition memory for face stimuli were highly generalized starting from around 200 ms following stimulus onset. When training was performed on non-face datasets, an early (around 200-300 ms) to late (post-400 ms) differentiation was observed over most regions of interest. Successful cross-classification for non-face stimuli (music and object/scene associations) was most pronounced in late period. Additionally, a striking dissociation was observed between familiar and remembered objects, with shared signals present only in the late window for correctly remembered objects, while cross-classification for familiar objects was successful in the early period as well. These findings suggest that late neural signals of memory retrieval generalize across sensory modalities and stimulus types, and the dissociation between familiar and remembered objects may provide insight into the underlying processes.
Collapse
Affiliation(s)
- Géza Gergely Ambrus
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK.
| |
Collapse
|
8
|
Clancy KJ, Devignes Q, Ren B, Pollmann Y, Nielsen SR, Howell K, Kumar P, Belleau EL, Rosso IM. Spatiotemporal dynamics of hippocampal-cortical networks underlying the unique phenomenological properties of trauma-related intrusive memories. Mol Psychiatry 2024; 29:2161-2169. [PMID: 38454081 PMCID: PMC11408261 DOI: 10.1038/s41380-024-02486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Trauma-related intrusive memories (TR-IMs) possess unique phenomenological properties that contribute to adverse post-traumatic outcomes, positioning them as critical intervention targets. However, transdiagnostic treatments for TR-IMs are scarce, as their underlying mechanisms have been investigated separate from their unique phenomenological properties. Extant models of more general episodic memory highlight dynamic hippocampal-cortical interactions that vary along the anterior-posterior axis of the hippocampus (HPC) to support different cognitive-affective and sensory-perceptual features of memory. Extending this work into the unique properties of TR-IMs, we conducted a study of eighty-four trauma-exposed adults who completed daily ecological momentary assessments of TR-IM properties followed by resting-state functional magnetic resonance imaging (rs-fMRI). Spatiotemporal dynamics of anterior and posterior hippocampal (a/pHPC)-cortical networks were assessed using co-activation pattern analysis to investigate their associations with different properties of TR-IMs. Emotional intensity of TR-IMs was inversely associated with the frequency and persistence of an aHPC-default mode network co-activation pattern. Conversely, sensory features of TR-IMs were associated with more frequent co-activation of the HPC with sensory cortices and the ventral attention network, and the reliving of TR-IMs in the "here-and-now" was associated with more persistent co-activation of the pHPC and the visual cortex. Notably, no associations were found between HPC-cortical network dynamics and conventional symptom measures, including TR-IM frequency or retrospective recall, underscoring the utility of ecological assessments of memory properties in identifying their neural substrates. These findings provide novel insights into the neural correlates of the unique features of TR-IMs that are critical for the development of individualized, transdiagnostic treatments for this pervasive, difficult-to-treat symptom.
Collapse
Affiliation(s)
- Kevin J Clancy
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Quentin Devignes
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Yara Pollmann
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Sienna R Nielsen
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Kristin Howell
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily L Belleau
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Lin X, Chen D, Liu J, Yao Z, Xie H, Anderson MC, Hu X. Observing the suppression of individual aversive memories from conscious awareness. Cereb Cortex 2024; 34:bhae080. [PMID: 38863114 PMCID: PMC11166503 DOI: 10.1093/cercor/bhae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 06/13/2024] Open
Abstract
When reminded of an unpleasant experience, people often try to exclude the unwanted memory from awareness, a process known as retrieval suppression. Here we used multivariate decoding (MVPA) and representational similarity analyses on EEG data to track how suppression unfolds in time and to reveal its impact on item-specific cortical patterns. We presented reminders to aversive scenes and asked people to either suppress or to retrieve the scene. During suppression, mid-frontal theta power within the first 500 ms distinguished suppression from passive viewing of the reminder, indicating that suppression rapidly recruited control. During retrieval, we could discern EEG cortical patterns relating to individual memories-initially, based on theta-driven visual perception of the reminders (0 to 500 ms) and later, based on alpha-driven reinstatement of the aversive scene (500 to 3000 ms). Critically, suppressing retrieval weakened (during 360 to 600 ms) and eventually abolished item-specific cortical patterns, a robust effect that persisted until the reminder disappeared (780 to 3000 ms). Representational similarity analyses provided converging evidence that retrieval suppression weakened the representation of target scenes during the 500 to 3000 ms reinstatement window. Together, rapid top-down control during retrieval suppression abolished cortical patterns of individual memories, and precipitated later forgetting. These findings reveal a precise chronometry on the voluntary suppression of individual memories.
Collapse
Affiliation(s)
- Xuanyi Lin
- Center for Sleep & Circadian Biology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, United States
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Hui Xie
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C Anderson
- MRC Cognition & Brain Sciences Unit, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518057, China
| |
Collapse
|
10
|
Gresch D, Boettcher SEP, van Ede F, Nobre AC. Shifting attention between perception and working memory. Cognition 2024; 245:105731. [PMID: 38278040 DOI: 10.1016/j.cognition.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/02/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Most everyday tasks require shifting the focus of attention between sensory signals in the external environment and internal contents in working memory. To date, shifts of attention have been investigated within each domain, but shifts between the external and internal domain remain poorly understood. We developed a combined perception and working-memory task to investigate and compare the consequences of shifting spatial attention within and between domains in the service of a common orientation-reproduction task. Participants were sequentially cued to attend to items either in working memory or to an upcoming sensory stimulation. Stay trials provided a baseline condition, while shift trials required participants to shift their attention to another item within the same or different domain. Validating our experimental approach, we found evidence that participants shifted attention effectively in either domain (Experiment 1). In addition, we observed greater costs when transitioning attention between as compared to within domains (Experiments 1, 2). Strikingly, these costs persisted even when participants were given more time to complete the attentional shift (Experiment 2). Biases in fixational gaze behaviour tracked attentional orienting in both domains, but revealed no latency or magnitude difference for within- versus between-domain shifts (Experiment 1). Collectively, the results from Experiments 1 and 2 suggest that shifting between attentional domains might be regulated by a unique control function. Our results break new ground for exploring the ubiquitous act of shifting attention between perception and working memory to guide adaptive behaviour in everyday cognition.
Collapse
Affiliation(s)
- Daniela Gresch
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Sage E P Boettcher
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands.
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK; Wu Tsai Institute, Yale University, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Kim K, Nokia MS, Palva S. Distinct Hippocampal Oscillation Dynamics in Trace Eyeblink Conditioning Task for Retrieval and Consolidation of Associations. eNeuro 2024; 11:ENEURO.0030-23.2024. [PMID: 38627063 PMCID: PMC11046259 DOI: 10.1523/eneuro.0030-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.
Collapse
Affiliation(s)
- Kayeon Kim
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Centre for Cognitive Neuroscience, School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
- Division of psychology, VISE, Faculty of Education and Psychology, University of Oulu, Oulu, Ostrobothnia FI-90014, Finland
| |
Collapse
|
13
|
Borderie A, Caclin A, Lachaux JP, Perrone-Bertollotti M, Hoyer RS, Kahane P, Catenoix H, Tillmann B, Albouy P. Cross-frequency coupling in cortico-hippocampal networks supports the maintenance of sequential auditory information in short-term memory. PLoS Biol 2024; 22:e3002512. [PMID: 38442128 PMCID: PMC10914261 DOI: 10.1371/journal.pbio.3002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
It has been suggested that cross-frequency coupling in cortico-hippocampal networks enables the maintenance of multiple visuo-spatial items in working memory. However, whether this mechanism acts as a global neural code for memory retention across sensory modalities remains to be demonstrated. Intracranial EEG data were recorded while drug-resistant patients with epilepsy performed a delayed matched-to-sample task with tone sequences. We manipulated task difficulty by varying the memory load and the duration of the silent retention period between the to-be-compared sequences. We show that the strength of theta-gamma phase amplitude coupling in the superior temporal sulcus, the inferior frontal gyrus, the inferior temporal gyrus, and the hippocampus (i) supports the short-term retention of auditory sequences; (ii) decodes correct and incorrect memory trials as revealed by machine learning analysis; and (iii) is positively correlated with individual short-term memory performance. Specifically, we show that successful task performance is associated with consistent phase coupling in these regions across participants, with gamma bursts restricted to specific theta phase ranges corresponding to higher levels of neural excitability. These findings highlight the role of cortico-hippocampal activity in auditory short-term memory and expand our knowledge about the role of cross-frequency coupling as a global biological mechanism for information processing, integration, and memory in the human brain.
Collapse
Affiliation(s)
- Arthur Borderie
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
| | - Anne Caclin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | - Jean-Philippe Lachaux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | | | - Roxane S. Hoyer
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Hélène Catenoix
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Department of Functional Neurology and Epileptology, Lyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 University, Lyon, France
| | - Barbara Tillmann
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Laboratory for Research on Learning and Development, LEAD–CNRS UMR5022, Université de Bourgogne, Dijon, France
| | - Philippe Albouy
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| |
Collapse
|
14
|
Kunz L, Staresina BP, Reinacher PC, Brandt A, Guth TA, Schulze-Bonhage A, Jacobs J. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat Neurosci 2024; 27:587-599. [PMID: 38366143 PMCID: PMC10917673 DOI: 10.1038/s41593-023-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
Associative memory enables the encoding and retrieval of relations between different stimuli. To better understand its neural basis, we investigated whether associative memory involves temporally correlated spiking of medial temporal lobe (MTL) neurons that exhibit stimulus-specific tuning. Using single-neuron recordings from patients with epilepsy performing an associative object-location memory task, we identified the object-specific and place-specific neurons that represented the separate elements of each memory. When patients encoded and retrieved particular memories, the relevant object-specific and place-specific neurons activated together during hippocampal ripples. This ripple-locked coactivity of stimulus-specific neurons emerged over time as the patients' associative learning progressed. Between encoding and retrieval, the ripple-locked timing of coactivity shifted, suggesting flexibility in the interaction between MTL neurons and hippocampal ripples according to behavioral demands. Our results are consistent with a cellular account of associative memory, in which hippocampal ripples coordinate the activity of specialized cellular populations to facilitate links between stimuli.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim A Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Yan Y, Zhan J, Garrod O, Cui X, Ince RAA, Schyns PG. Strength of predicted information content in the brain biases decision behavior. Curr Biol 2023; 33:5505-5514.e6. [PMID: 38065096 DOI: 10.1016/j.cub.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Prediction-for-perception theories suggest that the brain predicts incoming stimuli to facilitate their categorization.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 However, it remains unknown what the information contents of these predictions are, which hinders mechanistic explanations. This is because typical approaches cast predictions as an underconstrained contrast between two categories18,19,20,21,22,23,24-e.g., faces versus cars, which could lead to predictions of features specific to faces or cars, or features from both categories. Here, to pinpoint the information contents of predictions and thus their mechanistic processing in the brain, we identified the features that enable two different categorical perceptions of the same stimuli. We then trained multivariate classifiers to discern, from dynamic MEG brain responses, the features tied to each perception. With an auditory cueing design, we reveal where, when, and how the brain reactivates visual category features (versus the typical category contrast) before the stimulus is shown. We demonstrate that the predictions of category features have a more direct influence (bias) on subsequent decision behavior in participants than the typical category contrast. Specifically, these predictions are more precisely localized in the brain (lateralized), are more specifically driven by the auditory cues, and their reactivation strength before a stimulus presentation exerts a greater bias on how the individual participant later categorizes this stimulus. By characterizing the specific information contents that the brain predicts and then processes, our findings provide new insights into the brain's mechanisms of prediction for perception.
Collapse
Affiliation(s)
- Yuening Yan
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, UK
| | - Jiayu Zhan
- School of Psychological and Cognitive Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| | - Oliver Garrod
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, UK
| | - Xuan Cui
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, UK
| | - Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, UK
| | - Philippe G Schyns
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, UK.
| |
Collapse
|
16
|
Klink H, Kaiser D, Stecher R, Ambrus GG, Kovács G. Your place or mine? The neural dynamics of personally familiar scene recognition suggests category independent familiarity encoding. Cereb Cortex 2023; 33:11634-11645. [PMID: 37885126 DOI: 10.1093/cercor/bhad397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Recognizing a stimulus as familiar is an important capacity in our everyday life. Recent investigation of visual processes has led to important insights into the nature of the neural representations of familiarity for human faces. Still, little is known about how familiarity affects the neural dynamics of non-face stimulus processing. Here we report the results of an EEG study, examining the representational dynamics of personally familiar scenes. Participants viewed highly variable images of their own apartments and unfamiliar ones, as well as personally familiar and unfamiliar faces. Multivariate pattern analyses were used to examine the time course of differential processing of familiar and unfamiliar stimuli. Time-resolved classification revealed that familiarity is decodable from the EEG data similarly for scenes and faces. The temporal dynamics showed delayed onsets and peaks for scenes as compared to faces. Familiarity information, starting at 200 ms, generalized across stimulus categories and led to a robust familiarity effect. In addition, familiarity enhanced category representations in early (250-300 ms) and later (>400 ms) processing stages. Our results extend previous face familiarity results to another stimulus category and suggest that familiarity as a construct can be understood as a general, stimulus-independent processing step during recognition.
Collapse
Affiliation(s)
- Hannah Klink
- Department of Neurology, Universitätsklinikum, Kastanienstraße1 Jena, D-07747 Jena, Thüringen, Germany
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Leutragraben 1, D-07743 Jena, Thüringen, Germany
| | - Daniel Kaiser
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-University Gießen, Arndtstraße 2, D-35392 Gießen, Hessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Justus-Liebig-University Gießen and Philipps-University Marburg, Hans-Meerwein-Straße 6 Mehrzweckgeb, 03C022, Marburg, D-35032, Hessen, Germany
| | - Rico Stecher
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-University Gießen, Arndtstraße 2, D-35392 Gießen, Hessen, Germany
| | - Géza G Ambrus
- Department of Psychology, Bournemouth University, Poole House P319, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom
| | - Gyula Kovács
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Leutragraben 1, D-07743 Jena, Thüringen, Germany
| |
Collapse
|
17
|
Servais A, Hurter C, Barbeau EJ. Attentional switch to memory: An early and critical phase of the cognitive cascade allowing autobiographical memory retrieval. Psychon Bull Rev 2023; 30:1707-1721. [PMID: 37118526 DOI: 10.3758/s13423-023-02270-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/30/2023]
Abstract
Remembering and mentally reliving yesterday's lunch is a typical example of episodic autobiographical memory retrieval. In the present review, we reappraised the complex cascade of cognitive processes involved in memory retrieval, by highlighting one particular phase that has received little interest so far: attentional switch to memory (ASM). As attention cannot be simultaneously directed toward external stimuli and internal memories, there has to be an attentional switch from the external to the internal world in order to initiate memory retrieval. We formulated hypotheses and developed hypothetical models of both the cognitive and brain processes that accompany ASM. We suggest that gaze aversion could serve as an objective temporal marker of the point at which people switch their attention to memory, and highlight several fields (neuropsychology, neuroscience, social cognition, comparative psychology) in which ASM markers could be essential. Our review thus provides a new framework for understanding the early stages of autobiographical memory retrieval.
Collapse
Affiliation(s)
- Anaïs Servais
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France.
- ENAC, 7, avenue Edouard Belin, 31055, Toulouse, France.
| | | | - Emmanuel J Barbeau
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France
| |
Collapse
|
18
|
Fitzhugh MC, Pa J. Women with hearing loss show increased dementia risk and brain atrophy. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12499. [PMID: 38026760 PMCID: PMC10680060 DOI: 10.1002/dad2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Hearing loss is a modifiable risk factor for dementia. However, it is unknown whether risk differs by sex. Study 1 used Cox proportional hazard models to examine sex differences in the association between hearing loss (measured by speech-reception thresholds) and dementia risk. Study 2 examined how 2-year changes in hearing is associated with changes in brain volume in auditory-limbic regions. Both studies used UK Biobank data. Women with poor hearing had the greatest risk of dementia, whereas women and men with insufficient hearing were at similar risk. Men with poor hearing did not have increased risk. Presence of social isolation/depressed mood minimally contributed to dementia risk in men and women. Women, but not men, with hearing loss had greater atrophy in auditory and limbic regions compared to normal hearing women and men. Women with hearing loss show greater risk of dementia and brain atrophy, highlighting the need to examine sex-specific mechanisms.
Collapse
Affiliation(s)
- Megan C. Fitzhugh
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Judy Pa
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
19
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Cheng Y, Zhai Y, Yuan Y, Li H, Zhao W, Fan Z, Zhou L, Gao X, Zhan Y, Sun H. Xenon inhalation attenuates neuronal injury and prevents epilepsy in febrile seizure Sprague-Dawley pups. Front Cell Neurosci 2023; 17:1155303. [PMID: 37645594 PMCID: PMC10461106 DOI: 10.3389/fncel.2023.1155303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Background Febrile seizures (FS) usually occur in childhood and may cause irreversible neuronal damage, cognitive functional defects, and an increase in the risk of epilepsy later in life. Anti-epileptic drugs (AEDs), currently used to treat FS in children, can relieve seizures. However, their effects in preventing the risk of developing epilepsy in later life are unsatisfactory. Moreover, AEDs may damage child brain development. Here, we evaluated the efficiency of xenon in treating prolonged FS (PFS) and preventing epilepsy in Sprague-Dawley pups. Methods Prolonged FS was induced by hyperthermic treatment. After 90 min of PFS, the pups in the xenon treatment group were immediately treated with 70% xenon/21% oxygen/9% nitrogen for 60 min. The levels of glutamate, mitochondrial oxidative stress, mitophagy, and neuronal injury, seizures, learning, and memory functions were measured at specific time points. Results Neonatal period PFS led to spontaneous seizure, learning and memory dysfunction, accompanied by increased levels of glutamate, mitochondrial oxidative stress, mitophagy, and neuronal injury. Xenon treatment alleviated the changes caused by PFS and reduced the risk of PFS developing into epilepsy later. Conclusion Our results suggest that xenon inhalation could be a potential therapeutic strategy to attenuate neuronal injury and prevent epilepsy in patients with FS.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Wenke Zhao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Zhenhai Fan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Ling Zhou
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yan Zhan
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
21
|
Damera SR, Malone PS, Stevens BW, Klein R, Eberhardt SP, Auer ET, Bernstein LE, Riesenhuber M. Metamodal Coupling of Vibrotactile and Auditory Speech Processing Systems through Matched Stimulus Representations. J Neurosci 2023; 43:4984-4996. [PMID: 37197979 PMCID: PMC10324991 DOI: 10.1523/jneurosci.1710-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/10/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
It has been postulated that the brain is organized by "metamodal," sensory-independent cortical modules capable of performing tasks (e.g., word recognition) in both "standard" and novel sensory modalities. Still, this theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful metamodal processing at the level of neural representations. Specification at this level may be particularly important in neurotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense. Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling between them and somatosensory areas. Our results advance our understanding of brain organization by providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devices that aim to tap into existing processing streams in the brain.SIGNIFICANCE STATEMENT It has been proposed that the brain is organized by "metamodal," sensory-independent modules specialized for performing certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind individuals "to see" by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching encoding schemes is critical to unlocking the brain's metamodal potential.
Collapse
Affiliation(s)
- Srikanth R Damera
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Patrick S Malone
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Benson W Stevens
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Richard Klein
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Silvio P Eberhardt
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | - Edward T Auer
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | - Lynne E Bernstein
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | | |
Collapse
|
22
|
Waters SJ, Basile BM, Murray EA. Reevaluating the role of the hippocampus in memory: A meta-analysis of neurotoxic lesion studies in nonhuman primates. Hippocampus 2023; 33:787-807. [PMID: 36649170 PMCID: PMC10213107 DOI: 10.1002/hipo.23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023]
Abstract
The hippocampus and perirhinal cortex are both broadly implicated in memory; nevertheless, their relative contributions to visual item recognition and location memory remain disputed. Neuropsychological studies in nonhuman primates that examine memory function after selective damage to medial temporal lobe structures report various levels of memory impairment-ranging from minor deficits to profound amnesia. The discrepancies in published findings have complicated efforts to determine the exact magnitude of visual item recognition and location memory impairments following damage to the hippocampus and/or perirhinal cortex. To provide the most accurate estimate to date of the overall effect size, we use meta-analytic techniques on data aggregated from 26 publications that assessed visual item recognition and/or location memory in nonhuman primates with and without selective neurotoxic lesions of the hippocampus or perirhinal cortex. We estimated the overall effect size, evaluated the relation between lesion extent and effect size, and investigated factors that may account for between-study variation. Grouping studies by lesion target and testing method, separate meta-analyses were conducted. One meta-analysis indicated that impairments on tests of visual item recognition were larger after lesions of perirhinal cortex than after lesions of the hippocampus. A separate meta-analysis showed that performance on tests of location memory was severely impaired by lesions of the hippocampus. For the most part, meta-regressions indicated that greater impairment corresponds with greater lesion extent; paradoxically, however, more extensive hippocampal lesions predicted smaller impairments on tests of visual item recognition. We conclude the perirhinal cortex makes a larger contribution than the hippocampus to visual item recognition, and the hippocampus predominately contributes to spatial navigation.
Collapse
Affiliation(s)
- Spencer J. Waters
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, USA
| | - Benjamin M. Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Department of Psychology, Dickinson College, Carlisle PA, USA
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| |
Collapse
|
23
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Wu X, Viñals X, Ben-Yakov A, Staresina BP, Fuentemilla L. Post-encoding Reactivation Is Related to Learning of Episodes in Humans. J Cogn Neurosci 2022; 35:74-89. [PMID: 36306242 DOI: 10.1162/jocn_a_01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prior animal and human studies have shown that post-encoding reinstatement plays an important role in organizing the temporal sequence of unfolding episodes in memory. Here, we investigated whether post-encoding reinstatement serves to promote the encoding of "one-shot" episodic learning beyond the temporal structure in humans. In Experiment 1, participants encoded sequences of pictures depicting unique and meaningful episodic-like events. We used representational similarity analysis on scalp EEG recordings during encoding and found evidence of rapid picture-elicited EEG pattern reinstatement at episodic offset (around 500 msec post-episode). Memory reinstatement was not observed between successive elements within an episode, and the degree of memory reinstatement at episodic offset predicted later recall for that episode. In Experiment 2, participants encoded a shuffled version of the picture sequences from Experiment 1, rendering each episode meaningless to the participant but temporally structured as in Experiment 1, and we found no evidence of memory reinstatement at episodic offset. These results suggest that post-encoding memory reinstatement is akin to the rapid formation of unique and meaningful episodes that unfold over time.
Collapse
Affiliation(s)
- Xiongbo Wu
- Bellvitge Institute for Biomedical Research, Spain.,University of Barcelona, Spain
| | | | | | | | - Lluís Fuentemilla
- Bellvitge Institute for Biomedical Research, Spain.,University of Barcelona, Spain
| |
Collapse
|
25
|
Sherman BE, Graves KN, Huberdeau DM, Quraishi IH, Damisah EC, Turk-Browne NB. Temporal Dynamics of Competition between Statistical Learning and Episodic Memory in Intracranial Recordings of Human Visual Cortex. J Neurosci 2022; 42:9053-9068. [PMID: 36344264 PMCID: PMC9732826 DOI: 10.1523/jneurosci.0708-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
The function of long-term memory is not just to reminisce about the past, but also to make predictions that help us behave appropriately and efficiently in the future. This predictive function of memory provides a new perspective on the classic question from memory research of why we remember some things but not others. If prediction is a key outcome of memory, then the extent to which an item generates a prediction signifies that this information already exists in memory and need not be encoded. We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in visual cortex during a statistical learning task and link the strength of these predictions to subsequent episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of which contained regularities that allowed the category of the next scene to be predicted. We verified that statistical learning occurred using neural frequency tagging and measured category prediction with multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by predictive items that were subsequently forgotten. Such interference provides a mechanism by which prediction can regulate memory formation to prioritize encoding of information that could help learn new predictive relationships.SIGNIFICANCE STATEMENT When faced with a new experience, we are rarely at a loss for what to do. Rather, because many aspects of the world are stable over time, we rely on past experiences to generate expectations that guide behavior. Here we show that these expectations during a new experience come at the expense of memory for that experience. From intracranial recordings of visual cortex, we decoded what humans expected to see next in a series of photographs based on patterns of neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak expectations could help improve these expectations in future encounters.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - Kathryn N Graves
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - David M Huberdeau
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - Imran H Quraishi
- Department of Neurology, Yale University, 800 Howard Avenue, New Haven, CT 06519
| | - Eyiyemisi C Damisah
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, CT 06510
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
- Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT 06510
| |
Collapse
|
26
|
Pullin AN, Farrar VS, Loxterkamp JW, Jones CT, Calisi RM, Horback K, Lein PJ, Makagon MM. Providing height to pullets does not influence hippocampal dendritic morphology or brain-derived neurotrophic factor at the end of the rearing period. Poult Sci 2022; 101:102161. [PMID: 36252500 PMCID: PMC9579382 DOI: 10.1016/j.psj.2022.102161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/16/2023] Open
Abstract
Pullets reared with diverse behavioral experiences are faster to learn spatial cognition tasks and acclimate more successfully to laying environments with elevated structures. However, the neural underpinnings of the improved spatial abilities are unclear. The objective of this study was to determine whether providing structural height in the rearing environment affected the development of the hippocampus and whether hippocampal neural metrics correlated with individual behavior on spatial cognition tasks. Female Dekalb White pullets were reared in a floor pen (FL), single-tiered aviary (ST), or two-tiered aviary (TT; 5 pens/treatment). Pullets completed floor-based Y-maze and elevated visual cliff tasks to evaluate depth perception at 15 and 16 wk, respectively. At 16 wk, brains were removed for Golgi-Cox staining (n = 12 for FL, 13 for ST, 13 total pullets for TT; 2 to 3 pullets/pen) and qPCR to measure gene expression of brain-derived neurotrophic factor (BDNF; n = 10 for FL, 11 for ST, and 9 pullets for TT). Rearing environment did not affect various morphometric outcomes of dendritic arborization, including Sholl profiles; mean dendritic length; sum dendritic length; number of dendrites, terminal tips, or nodes; soma size; or BDNF mRNA expression (P > 0.05). Hippocampal subregion did affect dendritic morphology, with multipolar neurons from the ventral subregion differing in several characteristics from multipolar neurons in the dorsomedial or dorsolateral subregions (P < 0.05). Neural metrics did not correlate with individual differences in behavior during the spatial cognition tasks. Overall, providing height during rearing did not affect dendritic morphology or BDNF at 16 wk of age, but other metrics in the hippocampus or other brain regions warrant further investigation. Additionally, other structural or social components or the role of animal personality are areas of future interest for how rearing environments influence pullet behavior.
Collapse
Affiliation(s)
- Allison N. Pullin
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Corresponding author:
| | - Victoria S. Farrar
- Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Jason W. Loxterkamp
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Claire T. Jones
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Rebecca M. Calisi
- Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Kristina Horback
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Maja M. Makagon
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
27
|
Grossmann K. Direct Oral Anticoagulants (DOACs) for Therapeutic Targeting of Thrombin, a Key Mediator of Cerebrovascular and Neuronal Dysfunction in Alzheimer's Disease. Biomedicines 2022; 10:1890. [PMID: 36009437 PMCID: PMC9405823 DOI: 10.3390/biomedicines10081890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Although preclinical research and observer studies on patients with atrial fibrillation concluded that direct oral anticoagulants (DOACs) can protect against dementia like Alzheimer's disease (AD), clinical investigation towards therapeutical approval is still pending. DOACs target pathological thrombin, which is, like toxic tau and amyloid-ß proteins (Aß), an early hallmark of AD. Especially in hippocampal and neocortical areas, the release of parenchymal Aß into the blood induces thrombin and proinflammatory bradykinin synthesis by activating factor XII of the contact system. Thrombin promotes platelet aggregation and catalyzes conversion of fibrinogen to fibrin, leading to degradation-resistant, Aß-containing fibrin clots. Together with oligomeric Aß, these clots trigger vessel constriction and cerebral amyloid angiopathy (CAA) with vessel occlusion and hemorrhages, leading to vascular and blood-brain barrier (BBB) dysfunction. As consequences, brain blood flow, perfusion, and supply with oxygen (hypoxia) and nutrients decrease. In parenchymal tissue, hypoxia stimulates Aß synthesis, leading to Aß accumulation, which is further enhanced by BBB-impaired perivascular Aß clearance. Aß trigger neuronal damage and promote tau pathologies. BBB dysfunction enables thrombin and fibrin(ogen) to migrate into parenchymal tissue and to activate glial cells. Inflammation and continued Aß production are the results. Synapses and neurons die, and cognitive abilities are lost. DOACs block thrombin by inhibiting its activity (dabigatran) or production (FXa-inhibitors, e.g., apixaban, rivaroxaban). Therefore, DOAC use could preserve vascular integrity and brain perfusion and, thereby, could counteract vascular-driven neuronal and cognitive decline in AD. A conception for clinical investigation is presented, focused on DOAC treatment of patients with diagnosed AD in early-stage and low risk of major bleeding.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
28
|
Spadone S, Tosoni A, Penna SD, Sestieri C. Alpha rhythm modulations in the intraparietal sulcus reflect decision signals during item recognition. Neuroimage 2022; 258:119345. [PMID: 35660462 DOI: 10.1016/j.neuroimage.2022.119345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 01/05/2023] Open
Abstract
Theoretical work and empirical observations suggest a contribution of regions along the intraparietal sulcus to the process of evidence accumulation during episodic memory retrieval. In the present study, we recorded magnetoencephalographic signals in a group of healthy human participants to test whether the pattern of oscillatory modulations in the lateral parietal lobe is consistent with the mnemonic accumulator hypothesis. To this aim, the dynamic properties and the spatial distribution of MEG oscillatory power modulations were investigated during an item recognition task in which the amount of evidence for old vs. new memory decisions was manipulated across three levels. A data-driven approach was employed to identify brain nodes where oscillatory activity was sensitive to both retrieval success and the amount of evidence for old decisions. The analysis identified three nodes in the left lateral parietal lobe where the event-related desynchronization (ERD) in the alpha frequency band showed both effects. Further analyses revealed that the alpha ERD in the intraparietal sulcus, but not in other parietal nodes: i. showed modulation of duration in response to the amount of evidence for both old and new decisions, ii. was behaviorally significant, and iii. more accurately tracked the subjective memory judgment rather than the objective memory status. The present findings provide support for a recent anatomical-functional model of the parietal involvement in episodic memory retrieval and suggest that the alpha ERD in the intraparietal sulcus might represent a neural signature of the evidence accumulation process during simple memory-based decisions.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy.
| |
Collapse
|
29
|
Mitchnick KA, Ahmad Z, Mitchnick SD, Ryan JD, Rosenbaum RS, Freud E. Damage to the human dentate gyrus impairs the perceptual discrimination of complex, novel objects. Neuropsychologia 2022; 172:108238. [PMID: 35513066 DOI: 10.1016/j.neuropsychologia.2022.108238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022]
Abstract
The hippocampus (HPC), and the dentate gyrus (DG) subregion in particular, is purported to be a pattern separator, orthogonally representing similar information so that distinct memories may be formed. The HPC may also be involved in complex perceptual discrimination. It is unclear if this role is limited to spatial/scene stimuli or extends to the discrimination of objects. Also unclear is whether the DG itself contributes to pattern separation beyond memory. BL, an individual with bilateral DG lesions, was previously shown to have poor discrimination of similar, everyday objects in memory. Here, we demonstrate that BL's deficit extends to complex perceptual discrimination of novel objects. Specifically, BL was presented with closely matched possible and impossible objects, which give rise to fundamentally different 3D perceptual representations despite being visually similar. BL performed significantly worse than controls when asked to select an odd object (e.g., impossible) amongst three identical counterpart objects (e.g., possible) presented at different rotations. His deficit was also evident in an atypical eye fixation pattern during this task. In contrast, BL's performance was indistinguishable from that of controls on other tasks involving the same objects, indicating that he could visually differentiate the object pairs, that he perceived the objects holistically in 3D, and that he has only a mild weakness in categorizing object possibility. Furthermore, his performance on standardized neuropsychological measures indicated intact mental rotation, visual-spatial attention, and working memory (visual and auditory). Collectively, these results provide evidence that the DG is necessary for complex perceptual discrimination of novel objects, indicating that the DG might function as a generic pattern separator of a wide range of stimuli within high-level perception, and that its role is not limited to memory.
Collapse
Affiliation(s)
- K A Mitchnick
- York University, Toronto, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - Z Ahmad
- York University, Toronto, Canada
| | | | - J D Ryan
- Rotman Research Institute at Baycrest Hospital, Toronto, Canada
| | - R S Rosenbaum
- York University, Toronto, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - E Freud
- York University, Toronto, Canada.
| |
Collapse
|