1
|
Mullen NJ, Shukla SK, Thakur R, Kollala SS, Wang D, Chaika N, Santana JF, Miklavcic WR, LaBreck DA, Mallareddy JR, Price DH, Natarajan A, Mehla K, Sykes DB, Hollingsworth MA, Singh PK. DHODH inhibition enhances the efficacy of immune checkpoint blockade by increasing cancer cell antigen presentation. eLife 2024; 12:RP87292. [PMID: 38973593 PMCID: PMC11230627 DOI: 10.7554/elife.87292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.
Collapse
Affiliation(s)
- Nicholas J Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Surendra K Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, University of IowaIowa CityUnited States
| | - William R Miklavcic
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Drew A LaBreck
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - David H Price
- Department of Biochemistry and Molecular Biology, University of IowaIowa CityUnited States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| |
Collapse
|
2
|
Zhan Y, Ma S, Zhang T, Zhang L, Zhao P, Yang X, Liu M, Cheng W, Li Y, Wang J. Identification of a novel monocyte/macrophage-related gene signature for predicting survival and immune response in acute myeloid leukemia. Sci Rep 2024; 14:14012. [PMID: 38890346 PMCID: PMC11189543 DOI: 10.1038/s41598-024-64567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological tumor with poor immunotherapy effect. This study was to develop a monocyte/macrophage-related prognostic risk score (MMrisk) and identify new therapeutic biomarkers for AML. We utilized differentially expressed genes (DEGs) in combination with single-cell RNA sequencing to identify monocyte/macrophage-related genes (MMGs). Eight genes were selected for the construction of a MMrisk model using univariate Cox regression analysis and LASSO regression analysis. We then validated the MMrisk on two GEO datasets. Lastly, we investigated the immunologic characteristics and advantages of immunotherapy and potential targeted drugs for MMrisk groups. Our study identified that the MMrisk is composed of eight MMGs, including HOPX, CSTB, MAP3K1, LGALS1, CFD, MXD1, CASP1 and BCL2A1. The low MMrisk group survived longer than high MMrisk group (P < 0.001). The high MMrisk group was positively correlated with B cells, plasma cells, CD4 memory cells, Mast cells, CAFs, monocytes, M2 macrophages, Endothelial, tumor mutation, and most immune checkpoints (PD1, Tim-3, CTLA4, LAG3). Furthermore, drug sensitivity analysis showed that AZD.2281, Axitinib, AUY922, ABT.888, and ATRA were effective in high-risk MM patients. Our research shows that MMrisk is a potential biomarker which is helpful to identify the molecular characteristics of AML immunology.
Collapse
Affiliation(s)
- Yun Zhan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Sixing Ma
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Department of Vascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Luxin Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Xueying Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Min Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Weiwei Cheng
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Ya Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China.
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
3
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
4
|
Mullen NJ, Shukla SK, Thakur R, Kollala SS, Wang D, Chaika N, Santana JF, Miklavcic WR, LaBreck DA, Mallareddy JR, Price DH, Natarajan A, Mehla K, Sykes DB, Hollingsworth MA, Singh PK. DHODH inhibition enhances the efficacy of immune checkpoint blockade by increasing cancer cell antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.03.535399. [PMID: 37066260 PMCID: PMC10103971 DOI: 10.1101/2023.04.03.535399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is 1) strictly dependent on pyrimidine nucleotide depletion, 2) independent of canonical antigen presentation pathway transcriptional regulators, and 3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.
Collapse
Affiliation(s)
- Nicholas J. Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Surendra K. Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Juan F. Santana
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, USA
| | - William R. Miklavcic
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Drew A. LaBreck
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - David H. Price
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Pankaj K. Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|