1
|
Lee CE, Messer LF, Wattiez R, Matallana-Surget S. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Proteomics 2025:e202400208. [PMID: 39760247 DOI: 10.1002/pmic.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities; however, the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over 3 (D3) and 7 (D7) days, focusing on microbial diversity, activity and biofilm development. In total, 2948 proteins were analysed, revealing dominant proteomes from Pseudomonas and Marinomonas, with near-complete metagenome-assembled genomes (MAGs). Pseudomonas dominated at D3, whilst at D7, Marinomonas, along with Acinetobacter, Vibrio and other genera became more prevalent. Pseudomonas and Marinomonas showed high expression of reactive oxygen species (ROS) suppression proteins, associated with oxidative stress regulation, whilst granule formation, and alternative carbon utilisation enzymes, also indicated nutrient limitations. Interestingly, 13 alkanes and other xenobiotic degradation enzymes were expressed by five genera. The expression of toxins, several type VI secretion system (TVISS) proteins, and biofilm formation proteins by Pseudomonas indicated their competitive advantage against other taxa. Upregulated metabolic pathways relating to substrate transport also suggested enhanced nutrient cross-feeding within the more diverse biofilm community. These insights enhance our understanding of plastisphere ecology and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
2
|
Gao X, Liu H, Mei W, Zhang W, Dong H, Fu X, Xie M, Han Y, Wang L. Particle size is an important factor influencing the effects of biochar return to woodland soils: An evaluation from the perspective of sapling growth and soil microbial carbon processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123272. [PMID: 39527876 DOI: 10.1016/j.jenvman.2024.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Biochar can increase ecosystem carbon sequestration by promoting plant growth and stabilizing soil organic carbon (SOC). Biochar produced from forest waste typically varies in particle size and is frequently applied directly for soil enhancement without pulverization. The effects of different biochar particle sizes on sapling growth, woodland soil properties and microbial carbon processes are unclear. This study used field experiments to compare the effects of different biochar particle sizes on sapling growth and microbial metabolic entropy (qCO2). The impacting mechanisms were explored by examining soil physicochemical properties, enzyme activity, and microbial community structure. The application of forest waste (FW) and small particle biochar (SPBC, particle size<2 mm) did not significantly affect sapling growth. Conversely, middle particle biochar (MPBC, particle size 2-10 mm) and large particle biochar (LPBC, particle size>10 mm) reduced sapling biomass by 20.76% and 38.87%, respectively, compared to SPBC. MPBC and LPBC applications resulted in soil nutrient loss (total nitrogen and available phosphorus), inhibiting sapling growth. After 167 days, qCO2 rankings were as follows: FW (30.37 ± 5.18) (P<0.05)> LPBC (20.91 ± 3.62) > CK (16.21 ± 2.71) > MPBC (15.99 ± 3.54) > SPBC (7.8 ± 0.80) (P < 0.05). The rankings of organic carbon retention rates rankings were as follows: SPBC (85.14%) > LPBC (70.35%) > FW (67.31%) > CK (54.53%) > MPBC (51.96%). SPBC increased biochar-soil-microbe interactions, raised the relative proportion of k/r-strategy bacteria, reduced extracellular cellulase activity thus inhibit qCO2. In conclusion, small particle biochar (<2 mm), compared to larger-particle biochar, improves SOC sequestration without negatively affecting sapling growth. Therefore, particle size should be considered as a management indicator for biochar applications in artificial forest practices.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haoting Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenxuan Mei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenwen Zhang
- Shanghai Forestry General Station, Shanghai, 200040, China
| | - Haoyu Dong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Mengdi Xie
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yujie Han
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, 200030, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; College of Civil Engineering and Architecture, Xinjiang University, Xinjiang, 830046, China.
| |
Collapse
|
3
|
Li L, Li C, Guo H, Liu Y, Sheng J, Guo S, Shen Q, Ling N, Guo J. Enhanced carbon use efficiency and warming resistance of soil microorganisms under organic amendment. ENVIRONMENT INTERNATIONAL 2024; 192:109043. [PMID: 39369561 DOI: 10.1016/j.envint.2024.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The frequency and intensity of extreme weather events, including rapid temperature fluctuations, are increasing because of climate change. Long-term fertilization practices have been observed to alter microbial physiology and community structure, thereby affecting soil carbon sequestration. However, the effects of warming on the carbon sequestration potential of soil microbes adapted to long-term fertilization remain poorly understood. In this study, we utilized 18O isotope labeling to assess microbial carbon use efficiency (CUE) and employed stable isotope probing (SIP) with 18O-H2O to identify growing taxa in response to temperature changes (5-35 °C). Organic amendment with manure or straw residue significantly increased microbial CUE by 86-181 % compared to unfertilized soils. The microorganisms inhabiting organic amended soils displayed greater resistance of microbial CUE to high temperatures (25-35 °C) compared to those inhabiting soils fertilized only with minerals. Microbial growth patterns determined by the classification of taxa into incorporators or non-incorporators based on 18O incorporation into DNA exhibited limited phylogenetic conservation in response to temperature changes. Microbial clusters were identified by grouping taxa with similar growth patterns across different temperatures. Organic amendments enriched microbial clusters associated with increased CUE, whereas clusters in unfertilized or mineral-only fertilized soils were linked to decreased CUE. Specifically, shifts in the composition of growing bacteria were correlated with enhanced microbial CUE, whereas modifications in the composition of growing fungi were associated with diminished CUE. Notably, the responses of microbial CUE to temperature fluctuations were primarily driven by changes in the bacterial composition. Overall, our findings demonstrate that organic amendments enhance soil microbial CUE and promote the enrichment of specific microbial clusters that are better equipped to cope with temperature changes. This study establishes a theoretical foundation for manipulating soil microbes to enhance carbon sequestration under global climate scenarios.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Chenhua Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hanyue Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhua Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Junjie Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Wang M, Vladimirsky A, Giometto A. Overcoming toxicity: why boom-and-bust cycles are good for non-antagonistic microbes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607393. [PMID: 39211125 PMCID: PMC11361132 DOI: 10.1101/2024.08.09.607393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antagonistic interactions are critical determinants of microbial community stability and composition, offering host benefits such as pathogen protection and providing avenues for antimicrobial control. While the ability to eliminate competitors confers an advantage to antagonistic microbes, it often incurs a fitness cost. Consequently, many microbes only produce toxins or engage in antagonistic behavior in response to specific cues like population density or environmental stress. In laboratory settings, antagonistic microbes typically dominate over sensitive ones, raising the question of why both antagonistic and non-antagonistic microbes are found in natural environments and host microbiomes. Here, using both theoretical models and experiments with killer strains of Saccharomyces cerevisiae , we show that boom-and-bust dynamics caused by temporal environmental fluctuations can favor non-antagonistic microbes that do not incur the growth rate cost of toxin production. Additionally, using control theory, we derive bounds on the competitive performance and identify optimal regulatory toxin-production strategies in various boom-and-bust environments where population dilutions occur either deterministically or stochastically over time. Our findings offer a new perspective on how both antagonistic and non-antagonistic microbes can thrive under varying environmental conditions.
Collapse
|
5
|
Sampara P, Lawson CE, Scarborough MJ, Ziels RM. Advancing environmental biotechnology with microbial community modeling rooted in functional 'omics. Curr Opin Biotechnol 2024; 88:103165. [PMID: 39033648 DOI: 10.1016/j.copbio.2024.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Emerging biotechnologies that solve pressing environmental and climate emergencies will require harnessing the vast functional diversity of the underlying microbiomes driving such engineered processes. Modeling is a critical aspect of process engineering that informs system design as well as aids diagnostic optimization of performance. 'Conventional' bioprocess models assume homogenous biomass within functional guilds and thus fail to predict emergent properties of diverse microbial physiologies, such as product specificity and community interactions. Yet, recent advances in functional 'omics-based approaches can provide a 'lens' through which we can probe and measure in situ ecophysiologies of environmental microbiomes. Here, we overview microbial community modeling approaches that incorporate functional 'omics data, which we posit can advance our ability to design and control new environmental biotechnologies going forward.
Collapse
Affiliation(s)
- Pranav Sampara
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher E Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Trejos-Espeleta JC, Marin-Jaramillo JP, Schmidt SK, Sommers P, Bradley JA, Orsi WD. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proc Natl Acad Sci U S A 2024; 121:e2402689121. [PMID: 38954550 PMCID: PMC11252988 DOI: 10.1073/pnas.2402689121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Climate warming is causing widespread deglaciation and pioneer soil formation over glacial deposits. Melting glaciers expose rocky terrain and glacial till sediment that is relatively low in biomass, oligotrophic, and depleted in nutrients. Following initial colonization by microorganisms, glacial till sediments accumulate organic carbon and nutrients over time. However, the mechanisms driving soil nutrient stabilization during early pedogenesis after glacial retreat remain unclear. Here, we traced amino acid uptake by microorganisms in recently deglaciated high-Arctic soils and show that fungi play a critical role in the initial stabilization of the assimilated carbon. Pioneer basidiomycete yeasts were among the predominant taxa responsible for carbon assimilation, which were associated with overall high amino acid use efficiency and reduced respiration. In intermediate- and late-stage soils, lichenized ascomycete fungi were prevalent, but bacteria increasingly dominated amino acid assimilation, with substantially decreased fungal:bacterial amino acid assimilation ratios and increased respiration. Together, these findings demonstrate that fungi are important drivers of pedogenesis in high-Arctic ecosystems that are currently subject to widespread deglaciation from global warming.
Collapse
Affiliation(s)
- Juan Carlos Trejos-Espeleta
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
| | - Juan P. Marin-Jaramillo
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
| | - Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
| | - James A. Bradley
- Aix Marseille University, University of Toulon, Centre national de la recherche scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO), Marseille, France13009
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom, E1 4NS
| | - William D. Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
| |
Collapse
|
7
|
Mendonca C, Zhang L, Waldbauer JR, Aristilde L. Disproportionate Carbon Dioxide Efflux in Bacterial Metabolic Pathways for Different Organic Substrates Leads to Variable Contribution to Carbon-Use Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11041-11052. [PMID: 38860668 PMCID: PMC11210201 DOI: 10.1021/acs.est.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Microbial organic matter turnover is an important contributor to the terrestrial carbon dioxide (CO2) budget. Partitioning of organic carbons into biomass relative to CO2 efflux, termed carbon-use efficiency (CUE), is widely used to characterize organic carbon cycling by soil microorganisms. Recent studies challenge proposals of CUE dependence on the oxidation state of the substrate carbon and implicate instead metabolic strategies. Still unknown are the metabolic mechanisms underlying variability in CUE. We performed a multiomics investigation of these mechanisms in Pseudomonas putida, a versatile soil bacterium of the Gammaproteobacteria, processing a mixture of plant matter derivatives. Our 13C-metabolomics data captured substrate carbons into different metabolic pathways: cellulose-derived sugar carbons in glycolytic and pentose-phosphate pathways; lignin-related aromatic carbons in the tricarboxylic acid cycle. Subsequent 13C-metabolic flux analysis revealed a 3-fold lower investment of sugar carbons in CO2 efflux compared to aromatic carbons, in agreement with reported substrate-dependent CUE. Proteomics analysis revealed enzyme-level regulation only for substrate uptake and initial catabolism, which dictated downstream fluxes through CO2-producing versus biomass-synthesizing reactions. Metabolic partitioning as shown here explained the substrate-dependent CUE calculated from reported metabolic flux analyses of other bacteria, further supporting a metabolism-guided perspective for predicting the microbial conversion of accessible organic matter to CO2 efflux.
Collapse
Affiliation(s)
- Caroll
M. Mendonca
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Lichun Zhang
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jacob R. Waldbauer
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Ludmilla Aristilde
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Yang M, Liu N, Wang B, Li Y, Li W, Shi X, Yue X, Liu CQ. Stepwise degradation of organic matters driven by microbial interactions in China΄s coastal wetlands: Evidence from carbon isotope analysis. WATER RESEARCH 2024; 250:121062. [PMID: 38157604 DOI: 10.1016/j.watres.2023.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The microbial "unseen majority" as drivers of carbon cycle represent a significant source of uncertain climate change. To comprehend the resilience of life forms on Earth to climate change, it is crucial to incorporate knowledge of intricate microbial interactions and their impact to carbon transformation. Combined with carbon stable isotope analysis and high-throughput sequencing technology, the underlying mechanism of microbial interactions for organic carbon degradation has been elucidated. Niche differentiation enabled archaea to coexist with bacteria mainly in a cooperative manner. Bacteria composed of specialists preferred to degrade lighter carbon, while archaea were capable of utilizing heavier carbon. Microbial resource-dependent interactions drove stepwise degradation of organic matter. Bacterial cooperation directly facilitated the degradation of algae-dominated particulate organic carbon, while competitive feeding of archaea caused by resource scarcity significantly promoted the mineralization of heavier particulate organic carbon and then the release of dissolved inorganic carbon. Meanwhile, archaea functioned as a primary decomposer and collaborated with bacteria in the gradual degradation of dissolved organic carbon. This study emphasized microbial interactions driving carbon cycle and provided new perspectives for incorporating microorganisms into carbon biogeochemical models.
Collapse
Affiliation(s)
- Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Yajun Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinrui Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Marschmann GL, Tang J, Zhalnina K, Karaoz U, Cho H, Le B, Pett-Ridge J, Brodie EL. Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model. Nat Microbiol 2024; 9:421-433. [PMID: 38316928 PMCID: PMC10847045 DOI: 10.1038/s41564-023-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.
Collapse
Affiliation(s)
- Gianna L Marschmann
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinyun Tang
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kateryna Zhalnina
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Heejung Cho
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Beatrice Le
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Qiao Y, Huang Q, Guo H, Qi M, Zhang H, Xu Q, Shen Q, Ling N. Nutrient status changes bacterial interactions in a synthetic community. Appl Environ Microbiol 2024; 90:e0156623. [PMID: 38126758 PMCID: PMC10807438 DOI: 10.1128/aem.01566-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Microbial interactions affect community stability and niche spaces in all ecosystems. However, it is not clear what factors influence these interactions, leading to changes in species fitness and ecological niches. Here, we utilized 16 monocultures and their corresponding pairwise co-cultures to measure niche changes among 16 cultivable bacterial species in a wide range of carbon sources, and we used resource availability as a parameter to alter the interactions of the synthetic bacterial community. Our results suggest that metabolic similarity drives niche deformation between bacterial species. We further found that resource limitation resulted in increased microbial inhibition and more negative interactions. At high resource availability, bacteria exhibited little inhibitory potential and stronger facilitation (in 71% of cases), promoting niche expansion. Overall, our results show that metabolic similarity induces different degrees of resource competition, altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. This framework may lay the basis for understanding complex niche deformation and microbial interactions as modulated by metabolic similarity and resource availability.IMPORTANCEUnderstanding the intricate dynamics of microbial interactions is crucial for unraveling the stability and ecological roles of diverse ecosystems. However, the factors driving these interactions, leading to shifts in species fitness and ecological niches, remain inadequately explored. We demonstrate that metabolic similarity serves as a key driver of niche deformation between bacterial species. Resource availability emerges as a pivotal parameter, affecting interactions within the community. Our findings reveal heightened microbial inhibition and more negative interactions under resource-limited conditions. The prevalent facilitation is observed under conditions of high resource availability, underscoring the potential for niche expansion in such contexts. These findings emphasize that metabolic similarity induces varying degrees of resource competition, thereby altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. Our workflow has broad implications for understanding the roles of metabolic similarity and resource availability in microbial interactions and for designing synthetic microbial communities.
Collapse
Affiliation(s)
- Yizhu Qiao
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qiwei Huang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Hanyue Guo
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Meijie Qi
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - He Zhang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qicheng Xu
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Simpson A, Wood-Charlson EM, Smith M, Koch BJ, Beilsmith K, Kimbrel JA, Kellom M, Hunter CI, Walls RL, Schriml LM, Wilhelm RC. MISIP: a data standard for the reuse and reproducibility of any stable isotope probing-derived nucleic acid sequence and experiment. Gigascience 2024; 13:giae071. [PMID: 39399973 PMCID: PMC11471955 DOI: 10.1093/gigascience/giae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
DNA/RNA-stable isotope probing (SIP) is a powerful tool to link in situ microbial activity to sequencing data. Every SIP dataset captures distinct information about microbial community metabolism, process rates, and population dynamics, offering valuable insights for a wide range of research questions. Data reuse maximizes the information derived from the labor and resource-intensive SIP approaches. Yet, a review of publicly available SIP sequencing metadata showed that critical information necessary for reproducibility and reuse was often missing. Here, we outline the Minimum Information for any Stable Isotope Probing Sequence (MISIP) according to the Minimum Information for any (x) Sequence (MIxS) framework and include examples of MISIP reporting for common SIP experiments. Our objectives are to expand the capacity of MIxS to accommodate SIP-specific metadata and guide SIP users in metadata collection when planning and reporting an experiment. The MISIP standard requires 5 metadata fields-isotope, isotopolog, isotopolog label, labeling approach, and gradient position-and recommends several fields that represent best practices in acquiring and reporting SIP sequencing data (e.g., gradient density and nucleic acid amount). The standard is intended to be used in concert with other MIxS checklists to comprehensively describe the origin of sequence data, such as for marker genes (MISIP-MIMARKS) or metagenomes (MISIP-MIMS), in combination with metadata required by an environmental extension (e.g., soil). The adoption of the proposed data standard will improve the reuse of any sequence derived from a SIP experiment and, by extension, deepen understanding of in situ biogeochemical processes and microbial ecology.
Collapse
Affiliation(s)
- Abigayle Simpson
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Montana Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kathleen Beilsmith
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Ramona L Walls
- Data Collaboration Center, Critical Path Institute, Tucson, AZ 85718, USA
| | - Lynn M Schriml
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD 21201, USA
| | - Roland C Wilhelm
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Mahmoudi N, Wilhelm RC. Can we manage microbial systems to enhance carbon storage? Environ Microbiol 2023; 25:3011-3018. [PMID: 37431673 DOI: 10.1111/1462-2920.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Climate change is an urgent environmental issue with wide-ranging impacts on ecosystems and society. Microbes are instrumental in maintaining the balance between carbon (C) accumulation and loss in the biosphere, actively regulating greenhouse gas fluxes from vast reservoirs of organic C stored in soils, sediments and oceans. Heterotrophic microbes exhibit varying capacities to access, degrade and metabolise organic C-leading to variations in remineralisation and turnover rates. The present challenge lies in effectively translating this accumulated knowledge into strategies that effectively steer the fate of organic C towards prolonged sequestration. In this article, we discuss three ecological scenarios that offer potential avenues for shaping C turnover rates in the environment. Specifically, we explore the promotion of slow-cycling microbial byproducts, the facilitation of higher carbon use efficiency, and the influence of biotic interactions. The ability to harness and control these processes relies on the integration of ecological principles and management practices, combined with advances in economically viable technologies to effectively manage microbial systems in the environment.
Collapse
Affiliation(s)
- Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montréal, Quebec, Canada
| | - Roland C Wilhelm
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
13
|
Wattenburger CJ, Buckley DH. Land use alters bacterial growth dynamics in soil. Environ Microbiol 2023; 25:3239-3254. [PMID: 37783513 DOI: 10.1111/1462-2920.16514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Microbial growth and mortality are major determinants of soil carbon cycling. We measured in situ growth dynamics of individual bacterial taxa in cropped and successional soils in response to a resource pulse. We hypothesized that land use imposes selection pressures on growth characteristics. We estimated growth and death for 453 and 73 taxa, respectively. The average generation time was 5.04 ± 6.28 (SD; range 0.7-63.5) days. Lag times were shorter in cultivated than successional soils and resource amendment decreased lag times. Taxa exhibiting the greatest growth response also exhibited the greatest mortality, indicative of boom-and-bust dynamics. We observed a bimodal growth rate distribution, representing fast- and slow-growing clusters. Both clusters grew more rapidly in successional soils, which had more organic matter, than cultivated soils. Resource amendment increased the growth rate of the slower growing but not the faster-growing cluster via a mixture of increased growth rates and species turnover, indicating that competitive dynamics constrain growth rates in situ. These two clusters show that copiotrophic bacteria in soils may be subdivided into different life history groups and that these subgroups respond independently to land use and resource availability.
Collapse
Affiliation(s)
- Cassandra J Wattenburger
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Barnett SE, Buckley DH. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ Microbiol 2023; 25:1785-1795. [PMID: 37139849 DOI: 10.1111/1462-2920.16395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Soil viruses are important components of the carbon (C) cycle, yet we still know little about viral ecology in soils. We added diverse 13 C-labelled carbon sources to soil and we used metagenomic-SIP to detect 13 C assimilation by viruses and their putative bacterial hosts. These data allowed us to link a 13 C-labelled bacteriophage to its 13 C-labelled Streptomyces putative host, and we used qPCR to track the dynamics of the putative host and phage in response to C inputs. Following C addition, putative host numbers increased rapidly for 3 days, and then more gradually, reaching maximal abundance on Day 6. Viral abundance and virus:host ratio increased dramatically over 6 days, and remained high thereafter (8.42 ± 2.94). From Days 6 to 30, virus:host ratio remained high, while putative host numbers declined more than 50%. Putative host populations were 13 C-labelled on Days 3-30, while 13 C-labelling of phage was detected on Days 14 and 30. This dynamic suggests rapid growth and 13 C-labelling of the host fueled by new C inputs, followed by extensive host mortality driven by phage lysis. These findings indicate that the viral shunt promotes microbial turnover in soil following new C inputs, thereby altering microbial community dynamics, and facilitating soil organic matter production.
Collapse
Affiliation(s)
- Samuel E Barnett
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
16
|
Tang L, Zhao X, Chen X, Jiang Y, Gudda F, Wang Y, Ling W. Distribution of bound-PAH residues and their correlations with the bacterial community at different depths of soil from an abandoned chemical plant site. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131328. [PMID: 37043862 DOI: 10.1016/j.jhazmat.2023.131328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The situ pollutant residue and microbial characteristics in contaminated environments are crucial for ecological restoration and soil utilization. This work reported the variation of polycyclic aromatic hydrocarbon (PAH) residues and the bacterial community at different depths in an aged-abandoned site. These results unveiled that over 90% of low molecular weight (LMW) and medium molecular weight (MMW), 52.84-76.88% of high molecular weight (HMW) bound-PAH (BP) residues were sequestrated in humin (HM). The stresses of PAH and soil depth enhanced the frequency of bacteria associations, especially positive associations. We enriched and cultured PAH degradation bacteria (PDB) from the sampling site mainly consisting of Pseudomonas and Acinetobacter, which were originally 0.39-0.52% abundant in the sampling site. The abundances of PDB and PAH-degradation genes (PDGs) were higher at shallower depths and increased with high PAH concentration. Simultaneously, Pearson correlation analysis and experimental verification found that the process of PAH binding with SOM limited the further increase of PDB and PDGs in PAH-contaminated sites. These findings may illustrate possible ecological risks of contaminated soils and provide guidance for the isolation and application of PDB.
Collapse
Affiliation(s)
- Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jiang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fredrick Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhao Wang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Tang Q, Li Q, Tong L, Wu R, Xu J. Rhizospheric soil organic carbon accumulated but its molecular groups redistributed via rhizospheric soil microorganisms along multi-root Cerasus humilis plantation chronosequence at the karst rocky desertification control area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27588-9. [PMID: 37184792 DOI: 10.1007/s11356-023-27588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Though the relationships between the microorganism communities and the edaphic factors in rhizosphere soil along the plantation chronosequence have been widely reported, few researches have appeared on the interrelationship about rhizospheric soil microorganism community and soil organic carbon (SOC) under multi-root Cerasus humilis plantations of different age. In our study, the rhizospheric soil microbial communities, soil physicochemistry, and SOC molecular groups in plantations of 1-, 3-, and 5-year-old Cerasus humilis were investigated in karst rocky desertification control area of southwest China. It was found that karst rhizospheric soil moisture, total nitrogen, available potassium, and 46-60 ppm N-alkyl/methoxyl C decreased; however, SOC and fungal:bacterial ratio decreased along multi-root Cerasus humilis plantation chronosequence. Proteobacteria, Actinobacteriota, Acidobacteriota, and Ascomycota were recognized as the top 4 phyla in the karst rhizospheric soil microbial co-occurrence network. Moreover, Cerasus humilis plantations exerted significantly direct effect on rhizospheric soil microbial communities and soil physicochemical properties exerted significantly direct effects on SOC molecular groups. Our results suggested that the increased Cerasus humilis plantation years will promote C sequestration (e.g., SOC) with the continued input of root litter, root exudates, and plant litter. The inputted and activated C can be preferentially consumed by rhizospheric soil microorganisms and converted into microbial-derived compounds, which are finally incorporated into recalcitrant SOC pools. Hence, Cerasus humilis redistributed SOC molecular groups via rhizospheric soil microorganisms, and increased ratio of fungi:bacteria in rhizosphere was associated with C sequestration which could not be regarded as a widespread rule. Though our study is the first attempt to recognize the interaction between rhizospheric soil microbial community and SOC molecular groups at the karst rocky desertification control area, it provides a baseline for further research that ecological restoration can promote soil C sequestration via soil microorganisms in the early period of eco-restoration at karst area.
Collapse
Affiliation(s)
- Qin Tang
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, Guangxi, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- International Research Center On Karst Under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, Guangxi, China
| | - Qiang Li
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, Guangxi, China.
- International Research Center On Karst Under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, Guangxi, China.
| | - Lingchen Tong
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, Guangxi, China
- International Research Center On Karst Under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, Guangxi, China
| | - Rui Wu
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, Guangxi, China
- International Research Center On Karst Under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, Guangxi, China
| | - Jiao Xu
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, Guangxi, China
- International Research Center On Karst Under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, Guangxi, China
| |
Collapse
|
18
|
Li B, Tao Y, Mao Z, Gu Q, Han Y, Hu B, Wang H, Lai A, Xing P, Wu QL. Iron oxides act as an alternative electron acceptor for aerobic methanotrophs in anoxic lake sediments. WATER RESEARCH 2023; 234:119833. [PMID: 36889095 DOI: 10.1016/j.watres.2023.119833] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Conventional aerobic CH4-oxidizing bacteria (MOB) are frequently detected in anoxic environments, but their survival strategy and ecological contribution are still enigmatic. Here we explore the role of MOB in enrichment cultures under O2 gradients and an iron-rich lake sediment in situ by combining microbiological and geochemical techniques. We found that enriched MOB consortium used ferric oxides as alternative electron acceptors for oxidizing CH4 with the help of riboflavin when O2 was unavailable. Within the MOB consortium, MOB transformed CH4 to low molecular weight organic matter such as acetate for consortium bacteria as a carbon source, while the latter secrete riboflavin to facilitate extracellular electron transfer (EET). Iron reduction coupled to CH4 oxidation mediated by the MOB consortium was also demonstrated in situ, reducing 40.3% of the CH4 emission in the studied lake sediment. Our study indicates how MOBs survive under anoxia and expands the knowledge of this previously overlooked CH4 sink in iron-rich sediments.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiujin Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yixuan Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Anxing Lai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
19
|
Genomic Features Predict Bacterial Life History Strategies in Soil, as Identified by Metagenomic Stable Isotope Probing. mBio 2023; 14:e0358422. [PMID: 36877031 PMCID: PMC10128055 DOI: 10.1128/mbio.03584-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Bacteria catalyze the formation and destruction of soil organic matter, but the bacterial dynamics in soil that govern carbon (C) cycling are not well understood. Life history strategies explain the complex dynamics of bacterial populations and activities based on trade-offs in energy allocation to growth, resource acquisition, and survival. Such trade-offs influence the fate of soil C, but their genomic basis remains poorly characterized. We used multisubstrate metagenomic DNA stable isotope probing to link genomic features of bacteria to their C acquisition and growth dynamics. We identify several genomic features associated with patterns of bacterial C acquisition and growth, notably genomic investment in resource acquisition and regulatory flexibility. Moreover, we identify genomic trade-offs defined by numbers of transcription factors, membrane transporters, and secreted products, which match predictions from life history theory. We further show that genomic investment in resource acquisition and regulatory flexibility can predict bacterial ecological strategies in soil. IMPORTANCE Soil microbes are major players in the global carbon cycle, yet we still have little understanding of how the carbon cycle operates in soil communities. A major limitation is that carbon metabolism lacks discrete functional genes that define carbon transformations. Instead, carbon transformations are governed by anabolic processes associated with growth, resource acquisition, and survival. We use metagenomic stable isotope probing to link genome information to microbial growth and carbon assimilation dynamics as they occur in soil. From these data, we identify genomic traits that can predict bacterial ecological strategies which define bacterial interactions with soil carbon.
Collapse
|
20
|
Elevated temperature and CO 2 strongly affect the growth strategies of soil bacteria. Nat Commun 2023; 14:391. [PMID: 36693873 PMCID: PMC9873651 DOI: 10.1038/s41467-023-36086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
The trait-based strategies of microorganisms appear to be phylogenetically conserved, but acclimation to climate change may complicate the scenario. To study the roles of phylogeny and environment on bacterial responses to sudden moisture increases, we determine bacterial population-specific growth rates by 18O-DNA quantitative stable isotope probing (18O-qSIP) in soils subjected to a free-air CO2 enrichment (FACE) combined with warming. We find that three growth strategies of bacterial taxa - rapid, intermediate and slow responders, defined by the timing of the peak growth rates - are phylogenetically conserved, even at the sub-phylum level. For example, members of class Bacilli and Sphingobacteriia are mainly rapid responders. Climate regimes, however, modify the growth strategies of over 90% of species, partly confounding the initial phylogenetic pattern. The growth of rapid bacterial responders is more influenced by phylogeny, whereas the variance for slow responders is primarily explained by environmental conditions. Overall, these results highlight the role of phylogenetic and environmental constraints in understanding and predicting the growth strategies of soil microorganisms under global change scenarios.
Collapse
|
21
|
Wilhelm RC, Amsili JP, Kurtz KSM, van Es HM, Buckley DH. Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils. ISME COMMUNICATIONS 2023; 3:1. [PMID: 37081121 PMCID: PMC9829723 DOI: 10.1038/s43705-022-00209-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
Soil microbiomes are sensitive to current and previous soil conditions, and bacterial 'bioindicators' of biological, physical, and chemical soil properties have considerable potential for soil health assessment. However, the lack of ecological or physiological information for most soil microorganisms limits our ability to interpret the associations of bioindicators and, thus, their utility for guiding management. We identified bioindicators of tillage intensity and twelve soil properties used to rate soil health using a 16S rRNA gene-based survey of farmland across North America. We then inferred the genomic traits of bioindicators and evaluated their environment-wide associations (EWAS) with respect to agricultural management practice, disturbance, and plant associations with 89 studies from agroecosystems. Most bioindicators were either positively correlated with biological properties (e.g., organic matter) or negatively correlated with physical and chemical properties. Higher soil health ratings corresponded with smaller genome size and higher coding density, while lower ratings corresponded with larger genomes and higher rrn copy number. Community-weighted genome size explained most variation in health ratings. EWAS linked prominent bioindicators with the impacts of environmental disturbances. Our findings provide ecological insights into bioindicators of soil properties relevant to soil health management, illustrating the tight coupling of microbiome and soil function.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA.
| | - Joseph P Amsili
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Kirsten S M Kurtz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Harold M van Es
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wollard J, Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. MICROBIOME 2022; 10:199. [PMID: 36434737 PMCID: PMC9700909 DOI: 10.1186/s40168-022-01391-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.
Collapse
Affiliation(s)
- Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Marissa Lafler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Ashley N. Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Anne Kakouridis
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | | | | | | | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | | | - Mary Firestone
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA USA
| |
Collapse
|
23
|
Wilhelm RC, Barnett SE, Swenson TL, Youngblut ND, Koechli CN, Bowen BP, Northen TR, Buckley DH. Tracing Carbon Metabolism with Stable Isotope Metabolomics Reveals the Legacy of Diverse Carbon Sources in Soil. Appl Environ Microbiol 2022; 88:e0083922. [PMID: 36300927 PMCID: PMC9680644 DOI: 10.1128/aem.00839-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
Tracking the metabolic activity of whole soil communities can improve our understanding of the transformation and fate of carbon in soils. We used stable isotope metabolomics to trace 13C from nine labeled carbon sources into the water-soluble metabolite pool of an agricultural soil over time. Soil was amended with a mixture of all nine sources, with one source isotopically labeled in each treatment. We compared changes in the 13C enrichment of metabolites with respect to carbon source and time over a 48-day incubation and contrasted differences between soluble sources (glucose, xylose, amino acids, etc.) and insoluble sources (cellulose and palmitic acid). Whole soil metabolite profiles varied singularly by time, while the composition of 13C-labeled metabolites differed primarily by carbon source (R2 = 0.68) rather than time (R2 = 0.07), with source-specific differences persisting throughout incubations. The 13C labeling of metabolites from insoluble carbon sources occurred slower than that from soluble sources but yielded a higher average atom percent (atom%) 13C in metabolite markers of biomass (amino acids and nucleic acids). The 13C enrichment of metabolite markers of biomass stabilized between 5 and 15 atom% 13C by the end of incubations. Temporal patterns in the 13C enrichment of tricarboxylic acid cycle intermediates, nucleobases (uracil and thymine), and by-products of DNA salvage (allantoin) closely tracked microbial activity. Our results demonstrate that metabolite production in soils is driven by the carbon source supplied to the community and that the fate of carbon in metabolites do not generally converge over time as a result of ongoing microbial processing and recycling. IMPORTANCE Carbon metabolism in soil remains poorly described due to the inherent difficulty of obtaining information on the microbial metabolites produced by complex soil communities. Our study demonstrates the use of stable isotope probing (SIP) to study carbon metabolism in soil by tracking 13C from supplied carbon sources into metabolite pools and biomass. We show that differences in the metabolism of sources influence the fate of carbon in soils. Heterogeneity in 13C-labeled metabolite profiles corresponded with compositional differences in the metabolically active populations, providing a basis for how microbial community composition correlates with the quality of soil carbon. Our study demonstrates the application of SIP-metabolomics in studying soils and identifies several metabolite markers of growth, activity, and other aspects of microbial function.
Collapse
Affiliation(s)
- Roland C. Wilhelm
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Samuel E. Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Tami L. Swenson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas D. Youngblut
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chantal N. Koechli
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Benjamin P. Bowen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Joint BioEnergy Institute, Emeryville, California, USA
| | - Daniel H. Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Drinkwater LE, Snapp SS. Advancing the science and practice of ecological nutrient management for smallholder farmers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.921216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil degradation is widespread in smallholder agrarian communities across the globe where limited resource farmers struggle to overcome poverty and malnutrition. This review lays out the scientific basis and practical management options for an ecologically based approach to sustainably managing soil fertility, with particular attention to smallholder subsistence systems. We seek to change the trajectory of development programs that continue to promote inorganic fertilizers and other high input strategies to resource constrained smallholders, despite ample evidence that this approach is falling short of food security goals and contributing to resource degradation. Ecological nutrient management (ENM) is an agroecological approach to managing the biogeochemical cycles that govern soil ecosystem services and soil fertility. The portfolio of ENM strategies extends beyond reliance on inorganic fertilizers and is guided by the following five principles: (1) Build soil organic matter and other nutrient reserves. (2) Minimize the size of N and P pools that are the most susceptible to loss. (3) Maximize agroecosystem capacity to use soluble, inorganic N and P. (4) Use functional and phylogenetic biodiversity to minimize bare fallows and maximize presence of growing plants. (5) Construct agroecosystem and field scale mass balances to track net nutrient flows over multiple growing seasons. Strategic increases in spatial and temporal plant species diversity is a core ENM tactic that expands agroecosystem multifunctionality to meet smallholder priorities beyond soil restoration and crop yields. Examples of ENM practices include the use of functionally designed polycultures, diversified rotations, reduced fallow periods, increased reliance on legumes, integrated crop-livestock production, and use of variety of soil amendments. These practices foster soil organic matter accrual and restoration of soil function, both of which underpin agroecosystem resilience. When ENM is first implemented, short-term yield outcomes are variable; however, over the long-term, management systems that employ ENM can increase yields, yield stability, profitability and food security. ENM rests on a solid foundation of ecosystem and biogeochemical science, and despite the many barriers imposed by current agricultural policies, successful ENM systems are being promoted by some development actors and used by smallholder farmers, with promising results.
Collapse
|
25
|
Barnett SE, Youngblut ND, Buckley DH. Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history. Environ Microbiol 2022; 24:5230-5247. [PMID: 35920035 DOI: 10.1111/1462-2920.16146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Soil dwelling microorganisms are key players in the terrestrial carbon cycle, driving both the degradation and stabilization of soil organic matter. Bacterial community structure and function vary with respect to land-use, yet the ecological drivers of this variation remain poorly described and difficult to predict. We conducted a multi-substrate DNA-stable isotope probing experiment across cropland, old-field, and forest habitats to link carbon mineralization dynamics with the dynamics of bacterial growth and carbon assimilation. We tracked the movement of 13 C derived from five distinct carbon sources as it was assimilated into bacterial DNA over time. We show that carbon mineralization, community composition, and carbon assimilation dynamics all differed with respect to land-use. We also show that microbial community dynamics affect carbon assimilation dynamics and are associated with soil DNA content. Soil DNA yield is easy to measure and may be useful in predicting microbial community dynamics linked to soil carbon cycling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Wang Y, Wilhelm RC, Swenson TL, Silver A, Andeer PF, Golini A, Kosina SM, Bowen BP, Buckley DH, Northen TR. Substrate Utilization and Competitive Interactions Among Soil Bacteria Vary With Life-History Strategies. Front Microbiol 2022; 13:914472. [PMID: 35756023 PMCID: PMC9225577 DOI: 10.3389/fmicb.2022.914472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have evolved various life-history strategies to survive fluctuating resource conditions in soils. However, it remains elusive how the life-history strategies of microorganisms influence their processing of organic carbon, which may affect microbial interactions and carbon cycling in soils. Here, we characterized the genomic traits, exometabolite profiles, and interactions of soil bacteria representing copiotrophic and oligotrophic strategists. Isolates were selected based on differences in ribosomal RNA operon (rrn) copy number, as a proxy for life-history strategies, with pairs of "high" and "low" rrn copy number isolates represented within the Micrococcales, Corynebacteriales, and Bacillales. We found that high rrn isolates consumed a greater diversity and amount of substrates than low rrn isolates in a defined growth medium containing common soil metabolites. We estimated overlap in substrate utilization profiles to predict the potential for resource competition and found that high rrn isolates tended to have a greater potential for competitive interactions. The predicted interactions positively correlated with the measured interactions that were dominated by negative interactions as determined through sequential growth experiments. This suggests that resource competition was a major force governing interactions among isolates, while cross-feeding of metabolic secretion likely contributed to the relatively rare positive interactions observed. By connecting bacterial life-history strategies, genomic features, and metabolism, our study advances the understanding of the links between bacterial community composition and the transformation of carbon in soils.
Collapse
Affiliation(s)
- Ying Wang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Roland C. Wilhelm
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tami L. Swenson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anita Silver
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter F. Andeer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Amber Golini
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Suzanne M. Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Benjamin P. Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Daniel H. Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
27
|
Cyle KT, Klein AR, Aristilde L, Martínez CE. Dynamic utilization of low-molecular-weight organic substrates across a microbial growth rate gradient. J Appl Microbiol 2022; 133:1479-1495. [PMID: 35665577 DOI: 10.1111/jam.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
AIM Low-molecular-weight organic substances (LMWOSs) are at the nexus between microorganisms, plant roots, detritus, and the soil mineral matrix. Nominal oxidation state of carbon (NOSC) has been suggested a potential parameter for modeling microbial uptake rates of LMWOSs and the efficiency of carbon incorporation into new biomass. METHODS AND RESULTS In this study, we assessed the role of compound class and oxidation state on uptake kinetics and substrate-specific carbon use efficiency (SUE) during the growth of three model soil microorganisms, a fungal isolate (Penicillium spinulosum) and two bacterial isolates (Paraburkholderia solitsugae, and Ralstonia pickettii). Isolates were chosen that spanned a growth rate gradient (0.046-0.316 h-1 ) in media containing 34 common LMWOSs at realistically low initial concentrations (25 μM each). Clustered, co-utilization of LMWOSs occurred for all three organisms. Potential trends (p < 0.05) for early utilization of more oxidized substrates were present for the two bacterial isolates (P. solitsugae and R. pickettii), but high variability (R2 < 0.15) and a small effect of NOSC indicate these relationships are not useful for prediction. The SUEs of selected substrates ranged from 0.16-0.99 and there was no observed relationship between NOSC and SUE. CONCLUSION Our results do not provide compelling population-level support for NOSC as a predictive tool for either uptake kinetics or the efficiency of use of LMWOS in soil solution. SIGNIFICANCE AND IMPACT OF THE STUDY Metabolic strategies of organisms are likely more important than chemical identity in determining LMWOS cycling in soils. Previous community-level observations may be biased towards fast-responding bacterial community members.
Collapse
Affiliation(s)
- K Taylor Cyle
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Annaleise R Klein
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853.,Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, VIC 3168, Australia
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853.,Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
28
|
Hariharan J, Buckley DH. Elevational Gradients Impose Dispersal Limitation on Streptomyces. Front Microbiol 2022; 13:856263. [PMID: 35592003 PMCID: PMC9113539 DOI: 10.3389/fmicb.2022.856263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Dispersal governs microbial biogeography, but the rates and mechanisms of dispersal remain poorly characterized for most microbial taxa. Dispersal limitation is driven by limits on dissemination and establishment, respectively. Elevation gradients create striking patterns of biogeography because they produce steep environmental gradients at small spatial scales, and these gradients offer a powerful tool to examine mechanisms of dispersal limitation. We focus on Streptomyces, a bacterial genus common to soil, by using a taxon-specific phylogenetic marker, the RNA polymerase-encoding rpoB gene. By targeting Streptomyces, we assess dispersal limitation at finer phylogenetic resolution than is possible using whole community analyses. We characterized Streptomyces diversity at local spatial scales (100 to 3,000 m) in two temperate forest sites located in the Adirondacks region of New York State: Woods Lake (<100 m elevation change), and Whiteface Mountain (>1,000 m elevation change). Beta diversity varied considerably at both locations, indicative of dispersal limitation acting at local spatial scales, but beta diversity was significantly higher at Whiteface Mountain. Beta diversity varied across elevation at Whiteface Mountain, being lowest at the mountain’s base. We show that Streptomyces taxa exhibit elevational preferences, and these preferences are phylogenetically conserved. These results indicate that habitat preferences influence Streptomyces biogeography and suggest that barriers to establishment structure Streptomyces communities at higher elevations. These data illustrate that Streptomyces biogeography is governed by dispersal limitation resulting from a complex mixture of stochastic and deterministic processes.
Collapse
Affiliation(s)
- Janani Hariharan
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|