1
|
Yadav N, Djalali S, Poveda A, Ricardo MG, Seeberger PH, Jiménez-Barbero J, Delbianco M. Dissecting the Conformational Stability of a Glycan Hairpin. J Am Chem Soc 2024; 146:6369-6376. [PMID: 38377472 PMCID: PMC10921397 DOI: 10.1021/jacs.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Systematic structural studies of model oligopeptides revealed important aspects of protein folding and offered design principles to access non-natural materials. In the same way, the rules that regulate glycan folding could be established by studying synthetic oligosaccharide models. However, their analysis is often limited due to the synthetic and analytical complexity. By utilizing a glycan capable of spontaneously folding into a hairpin conformation as a model system, we investigated the factors that contribute to its conformational stability in aqueous solution. The modular design of the hairpin model featured a trisaccharide turn unit and two β-1,4-oligoglucoside stacking strands that allowed for systematic chemical modifications of the glycan sequence, including the introduction of NMR labels and staples. Nuclear magnetic resonance assisted by molecular dynamics simulations revealed that stereoelectronic effects and multiple glycan-glycan interactions are the major determinants of folding stabilization. Chemical modifications in the glycan primary sequence (e.g., strand elongation) can be employed to fine-tune the rigidity of structural motifs distant from the modification sites. These results could inspire the design of other glycan architectures, with implications in glycobiology and material sciences.
Collapse
Affiliation(s)
- Nishu Yadav
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Surusch Djalali
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Ana Poveda
- CIC
bioGUNE, Basque Research and Technology Alliance, Derio 48160, Spain
| | - Manuel G. Ricardo
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology Alliance, Derio 48160, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
- Department
of Inorganic & Organic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa 48940, Spain
- Centro de
Investigación Biomedica en Red de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
2
|
Marks JD, Ayuso VE, Carlomagno Y, Yue M, Todd TW, Hao Y, Li Z, McEachin ZT, Shantaraman A, Duong DM, Daughrity LM, Jansen-West K, Shao W, Calliari A, Bejarano JG, DeTure M, Rawlinson B, Casey MC, Lilley MT, Donahue MH, Jawahar VM, Boeve BF, Petersen RC, Knopman DS, Oskarsson B, Graff-Radford NR, Wszolek ZK, Dickson DW, Josephs KA, Qi YA, Seyfried NT, Ward ME, Zhang YJ, Prudencio M, Petrucelli L, Cook CN. TMEM106B core deposition associates with TDP-43 pathology and is increased in risk SNP carriers for frontotemporal dementia. Sci Transl Med 2024; 16:eadf9735. [PMID: 38232138 PMCID: PMC10841341 DOI: 10.1126/scitranslmed.adf9735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.
Collapse
Affiliation(s)
- Jordan D. Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Virginia Estades Ayuso
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ying Hao
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziyi Li
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zachary T. McEachin
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
- Department for Human Genetics, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Duc M. Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | | | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Calliari
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bailey Rawlinson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Meredith T. Lilley
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Megan H. Donahue
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Dennis W. Dickson
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong-Jie Zhang
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mercedes Prudencio
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N. Cook
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
3
|
Farajzadeh-Dehkordi M, Mafakher L, Harifi A, Samiee-Rad F, Rahmani B. Computational analysis of the functional and structural impact of the most deleterious missense mutations in the human Protein C. PLoS One 2023; 18:e0294417. [PMID: 38015884 PMCID: PMC10683990 DOI: 10.1371/journal.pone.0294417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Protein C (PC) is a vitamin K-dependent factor that plays a crucial role in controlling anticoagulant processes and acts as a cytoprotective agent to promote cell survival. Several mutations in human PC are associated with decreased protein production or altered protein structure, resulting in PC deficiency. In this study, we conducted a comprehensive analysis of nonsynonymous single nucleotide polymorphisms in human PC to prioritize and confirm the most high-risk mutations predicted to cause disease. Of the 340 missense mutations obtained from the NCBI database, only 26 were classified as high-risk mutations using various bioinformatic tools. Among these, we identified that 12 mutations reduced the stability of protein, and thereby had the greatest potential to disturb protein structure and function. Molecular dynamics simulations revealed moderate alterations in the structural stability, flexibility, and secondary structural organization of the serine protease domain of human PC for five missense mutations (L305R, W342C, G403R, V420E, and W444C) when compared to the native structure that could maybe influence its interaction with other molecules. Protein-protein interaction analyses demonstrated that the occurrence of these five mutations can affect the regular interaction between PC and activated factor V. Therefore, our findings assume that these mutants can be used in the identification and development of therapeutics for diseases associated with PC dysfunction, although assessment the effect of these mutations need to be proofed in in-vitro.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Harifi
- Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Iran
| | - Fatemeh Samiee-Rad
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Pathobiology, Faculty of Medical School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
To J, Zhang X, Tam JP. Design of Potent and Salt-Insensitive Antimicrobial Branched Peptides. Polymers (Basel) 2023; 15:3594. [PMID: 37688220 PMCID: PMC10489980 DOI: 10.3390/polym15173594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Dendrimeric and branched peptides are polypeptides formed by diverse types of scaffolds to give them different forms. Previously, we reported a cascade-type, Lys-scaffolded antimicrobial peptide dendrimer D4R tethered with four RLYR tetrapeptides. Antimicrobial D4R is broad-spectrum, salt insensitive, and as potent as the natural-occurring tachyplesins, displaying minimum inhibitory concentrations (MIC) < 1 μM. However, the relationships between scaffolds and antimicrobial potency remain undefined. Here, we report the design of four novel types of peptide antimicrobials whose scaffolded backbones are lysine (Lys), iso-Lys, ornithine (Orn), or iso-Orn tethered with RLYR on their α- or sidechain-amines to give ε-, δ-, and their α-branched peptides. When assayed against ten microorganisms, the Lys-scaffolded α- and ε-branched peptides are broadly active, salt insensitive, and as potent as D4R and tachyplesins, whereas the corresponding Orn-scaffolded α- and δ-branched peptides are salt sensitive and much less potent, displaying MICs ranging from 1 to >500 μM. Structure-activity relationship studies suggested that Lys-scaffolds, but not Orn-scaffolds, can support a reverse turn to organize RLYR tetrapeptides as parallel β-strands to form an amphipathic structure with Leu-Tyr as a hydrophobic core. Together, these results provide a structural approach for designing potent and salt-insensitive dendrimeric or branched peptide antimicrobials.
Collapse
Affiliation(s)
| | | | - James P. Tam
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
5
|
Liu A, Calicdan XA, Glover GN, Luo X, Barroso GT, Hoppe BK, Boyle KM, Witus LS. Investigation of the Effect of Turn Residues on Tetrapeptide Aldol Catalysts with β-Turn Propensity. ACS OMEGA 2022; 7:45336-45340. [PMID: 36530262 PMCID: PMC9753199 DOI: 10.1021/acsomega.2c05921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Peptide catalysts for a wide diversity of reaction types contain a common motif-residues that bias the sequence toward β-turn secondary structure. In this work, we explore what role that secondary structure plays in the catalysis of aldol reactions for primary amine tetrapeptide aldol catalysts. Using a lead tetrapeptide β-turn catalytic sequence, we varied the i + 1 and i + 2 residues to amino acids that would affect the β-turn propensity. We then studied the correlation between secondary structure, aldol rate enhancement, and stereoselectivity of the reaction between hydroxyacetone and 4-nitrobenzaldehyde. Using the i + 3 amide chemical shift as a measure of β-turn character, we found a rough correlation between the peptide structure and reaction kinetics but minimal effect on stereoselectivity. These trends may help aid the design of future catalytic sequences.
Collapse
|
6
|
Li J, Chen J, Wang Y, Yao L. Detecting the Hydrogen Bond Cooperativity in a Protein β-Sheet by H/D Exchange. Int J Mol Sci 2022; 23:ijms232314821. [PMID: 36499147 PMCID: PMC9740688 DOI: 10.3390/ijms232314821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The hydrogen bond (H-bond) cooperativity in the β-sheet of GB3 is investigated by a NMR hydrogen/deuterium (H/D) exchange method. It is shown that the weakening of one backbone N-H…O=C H-bond between two β-strands, β1 and β2, due to the exchange of NH to ND of the H-bond donor in β1, perturbs the chemical shift of 13Cα, 13Cβ, 1Hα, 1HN, and 15N of the H-bond acceptor and its following residue in β2. Quantum mechanical calculations suggest that the -H-bond chemical shift isotope effect is caused by the structural reorganization in response to the H-bond weakening. This structural reorganization perturbs four neighboring H-bonds, with three being weaker and one being stronger, indicating that three H-bonds are cooperative and one is anticooperative with the perturbed H-bond. The sign of the cooperativity depends on the relative position of the H-bonds. This H-bond cooperativity, which contributes to β-sheet stability overall, can be important for conformational coupling across the β-sheet.
Collapse
Affiliation(s)
- Jingwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingfei Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Yefei Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Correspondence: (Y.W.); (L.Y.)
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Correspondence: (Y.W.); (L.Y.)
| |
Collapse
|
7
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
The Effects of Charged Amino Acid Side-Chain Length on Diagonal Cross-Strand Interactions between Carboxylate- and Ammonium-Containing Residues in a β-Hairpin. Molecules 2022; 27:molecules27134172. [PMID: 35807421 PMCID: PMC9268152 DOI: 10.3390/molecules27134172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/02/2023] Open
Abstract
The β-sheet is one of the common protein secondary structures, and the aberrant aggregation of β-sheets is implicated in various neurodegenerative diseases. Cross-strand interactions are an important determinant of β-sheet stability. Accordingly, both diagonal and lateral cross-strand interactions have been studied. Surprisingly, diagonal cross-strand ion-pairing interactions have yet to be investigated. Herein, we present a systematic study on the effects of charged amino acid side-chain length on a diagonal ion-pairing interaction between carboxylate- and ammonium-containing residues in a β-hairpin. To this end, 2D-NMR was used to investigate the conformation of the peptides. The fraction folded population and the folding free energy were derived from the chemical shift data. The fraction folded population for these peptides with potential diagonal ion pairs was mostly lower compared to the corresponding peptide with a potential lateral ion pair. The diagonal ion-pairing interaction energy was derived using double mutant cycle analysis. The Asp2-Dab9 (Asp: one methylene; Dab: two methylenes) interaction was the most stabilizing (−0.79 ± 0.14 kcal/mol), most likely representing an optimal balance between the entropic penalty to enable the ion-pairing interaction and the number of side-chain conformations that can accommodate the interaction. These results should be useful for designing β-sheet containing molecular entities for various applications.
Collapse
|
9
|
Fiore KE, Patist MJ, Giannakoulias S, Huang CH, Verma H, Khatri B, Cheng RP, Chatterjee J, Petersson EJ. Structural impact of thioamide incorporation into a β-hairpin. RSC Chem Biol 2022; 3:582-591. [PMID: 35656485 PMCID: PMC9092430 DOI: 10.1039/d1cb00229e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
The thioamide is a naturally-occurring single atom substitution of the canonical amide bond. The exchange of oxygen to sulfur alters the amide's physical and chemical characteristics, thereby expanding its functionality. Incorporation of thioamides in prevalent secondary structures has demonstrated that they can either have stabilizing, destabilizing, or neutral effects. We performed a systematic investigation of the structural impact of thioamide incorporation in a β-hairpin scaffold with nuclear magnetic resonance (NMR). Thioamides as hydrogen bond donors did not increase the foldedness of the more stable "YKL" variant of this scaffold. In the less stable "HPT" variant of the scaffold, the thioamide could be stabilizing as a hydrogen bond donor and destabilizing as a hydrogen bond acceptor, but the extent of the perturbation depended upon the position of incorporation. To better understand these effects we performed structural modelling of the macrocyclic folded HPT variants. Finally, we compare the thioamide effects that we observe to previous studies of both side-chain and backbone perturbations to this β-hairpin scaffold to provide context for our observations.
Collapse
Affiliation(s)
- Kristen E Fiore
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| | - Martijn J Patist
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| | - Cheng-Hsin Huang
- Department of Chemistry, National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - Richard P Cheng
- Department of Chemistry, National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia 19104 USA
| |
Collapse
|
10
|
Masquelier E, Liang SP, Sepunaru L, Morse DE, Gordon MJ. Reversible electrochemical triggering and optical interrogation of polylysine α-helix formation. Bioelectrochemistry 2022; 144:108007. [PMID: 34871847 DOI: 10.1016/j.bioelechem.2021.108007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Reversible electrochemical triggering of the random coil to α-helix conformational transition of polylysine (Lys10, Lys20, Lys50) was accomplished at a Pt electrode at potentials < |1| V vs. Ag/AgCl. Direct electroreduction of the N-terminus vs ε-amino groups in Lys sidechains, as well as hydronium reduction and electrolysis, could be easily distinguished and deconvolved using differential pulse voltammetry. Electrochemistry was coupled with in situ UV absorbance and circular dichroism spectroscopies to dynamically follow the evolution of α-helix formation at different potentials. Isotope experiments in H2O vs. D2O unequivocally confirm that direct electroreduction of ε-NH3+/ND3+ groups in Lys sidechains, rather than electrochemically generated pH gradient-induced deprotonation, leads to subsequent α-helix formation. The site-selective electrochemistry and optical methodologies presented herein can be generalized and extended to interrogate other protonation-sensitive biomolecular systems, and potentially provide access to early intermediates and control over the dynamic structural evolution of peptides and proteins.
Collapse
Affiliation(s)
- Eloise Masquelier
- Materials Department, University of California, Santa Barbara, CA, United States
| | - Sheng-Ping Liang
- Dept. Of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Lior Sepunaru
- Dept. Of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Daniel E Morse
- Dept. Of Molecular, Cellular and Development Biology, University of California, Santa Barbara, CA, United States; Institue for Collaborative Biotechnologies, University of California, Santa Barbara, CA, United States
| | - Michael J Gordon
- Dept. Of Chemical Engineering, University of California, Santa Barbara, CA, United States; Institue for Collaborative Biotechnologies, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
11
|
Albanese KI, Leaver-Fay A, Treacy JW, Park R, Houk KN, Kuhlman B, Waters ML. Comparative Analysis of Sulfonium-π, Ammonium-π, and Sulfur-π Interactions and Relevance to SAM-Dependent Methyltransferases. J Am Chem Soc 2022; 144:2535-2545. [PMID: 35108000 PMCID: PMC8923077 DOI: 10.1021/jacs.1c09902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the measurement and analysis of sulfonium-π, thioether-π, and ammonium-π interactions in a β-hairpin peptide model system, coupled with computational investigation and PDB analysis. These studies indicated that the sulfonium-π interaction is the strongest and that polarizability contributes to the stronger interaction with sulfonium relative to ammonium. Computational studies demonstrate that differences in solvation of the trimethylsulfonium versus the trimethylammonium group also contribute to the stronger sulfonium-π interaction. In comparing sulfonium-π versus sulfur-π interactions in proteins, analysis of SAM- and SAH-bound enzymes in the PDB suggests that aromatic residues are enriched in close proximity to the sulfur of both SAM and SAH, but the populations of aromatic interactions of the two cofactors are not significantly different, with the exception of the Me-π interactions in SAM, which are the most prevalent interaction in SAM but are not possible for SAH. This suggests that the weaker interaction energies due to loss of the cation-π interaction in going from SAM to SAH may contribute to turnover of the cofactor.
Collapse
Affiliation(s)
- Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Andrew Leaver-Fay
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1569
| | - Rodney Park
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1569
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| |
Collapse
|
12
|
McBride JM, Tlusty T. Slowest-first protein translation scheme: Structural asymmetry and co-translational folding. Biophys J 2021; 120:5466-5477. [PMID: 34813729 PMCID: PMC8715247 DOI: 10.1016/j.bpj.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Proteins are translated from the N to the C terminus, raising the basic question of how this innate directionality affects their evolution. To explore this question, we analyze 16,200 structures from the Protein Data Bank (PDB). We find remarkable enrichment of α helices at the C terminus and β strands at the N terminus. Furthermore, this α-β asymmetry correlates with sequence length and contact order, both determinants of folding rate, hinting at possible links to co-translational folding (CTF). Hence, we propose the "slowest-first" scheme, whereby protein sequences evolved structural asymmetry to accelerate CTF: the slowest of the cooperatively folding segments are positioned near the N terminus so they have more time to fold during translation. A phenomenological model predicts that CTF can be accelerated by asymmetry in folding rate, up to double the rate, when folding time is commensurate with translation time; analysis of the PDB predicts that structural asymmetry is indeed maximal in this regime. This correspondence is greater in prokaryotes, which generally require faster protein production. Altogether, this indicates that accelerating CTF is a substantial evolutionary force whose interplay with stability and functionality is encoded in secondary structure asymmetry.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea; Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
13
|
Richaud AD, Zhao G, Hobloss S, Roche SP. Folding in Place: Design of β-Strap Motifs to Stabilize the Folding of Hairpins with Long Loops. J Org Chem 2021; 86:13535-13547. [PMID: 34499510 PMCID: PMC8576641 DOI: 10.1021/acs.joc.1c01442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite their pivotal role in defining antibody affinity and protein function, β-hairpins harboring long noncanonical loops remain synthetically challenging because of the large entropic penalty associated with their conformational folding. Little is known about the contribution and impact of stabilizing motifs on the folding of β-hairpins with loops of variable length and plasticity. Here, we report a design of minimalist β-straps (strap = strand + cap) that offset the entropic cost of long-loop folding. The judicious positioning of noncovalent interactions (hydrophobic cluster and salt-bridge) within the novel 8-mer β-strap design RW(V/H)W···WVWE stabilizes hairpins with up to 10-residue loops of varying degrees of plasticity (Tm up to 52 °C; 88 ± 1% folded at 18 °C). This "hyper" thermostable β-strap outperforms the previous gold-standard technology of β-strand-β-cap (16-mer) and provides a foundation for producing new classes of long hairpins as a viable and practical alternative to macrocyclic peptides.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Samir Hobloss
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
14
|
Liu X, Waters R, Gilbert HE, Barroso GT, Boyle KM, Witus LS. The role of β-hairpin conformation in ester hydrolysis peptide catalysts based on a TrpZip scaffold. RSC Adv 2021; 11:23714-23718. [PMID: 34354822 PMCID: PMC8285361 DOI: 10.1039/d1ra04288b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
To explore the role of peptide conformation on catalytic activity in the context of ester hydrolysis catalysts, pairs of sequences were designed that contained or lacked β-hairpin character. For the hydrolysis of para-nitrophenylacetate in aqueous media, we found small but consistent trends wherein His-containing sequences based on a TrpZip scaffold showed higher catalytic activity without β-hairpin character.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Riley Waters
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Hannah E Gilbert
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Gage T Barroso
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Kelsey M Boyle
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Leah S Witus
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| |
Collapse
|
15
|
Chang JY, Li NZ, Wang WM, Liu CT, Yu CH, Chen YC, Lu D, Lin PH, Huang CH, Kono O, Yang TY, Sun YT, Huang PY, Pan YJ, Chen TH, Liu MC, Huang SL, Huang SJ, Cheng RP. Longer charged amino acids favor β-strand formation in hairpin peptides. J Pept Sci 2021; 27:e3333. [PMID: 34114290 DOI: 10.1002/psc.3333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/11/2022]
Abstract
Interactions between charged amino acids significantly influence the structure and function of proteins. The encoded charged amino acids Asp, Glu, Arg, and Lys have different number of hydrophobic methylenes linking the backbone to the charged functionality. It remains to be fully understood how does this difference in the number of methylenes affect protein structure stability. Protein secondary structures are the fundamental three-dimensional building blocks of protein structures. β-Sheet structures are particularly interesting, because these structures have been associated with a number of protein misfolding diseases. Herein, we report the effect of charged amino acid side chain length at two β-strand positions individually on the stability of a β-hairpin. The charged amino acids include side chains with a carboxylate, an ammonium, or a guanidinium group. The experimental peptides, fully folded reference peptides, and fully unfolded reference peptides were synthesized by solid phase peptide synthesis and analyzed by 2D NMR methods including TOCSY, DQF-COSY, and ROESY. Sequence specific assignments were performed for all peptides. The chemical shift data were used to derive the fraction folded population and the folding free energy for the experimental peptides. Results showed that the fraction folded population increased with increasing charged amino acid side chain length. These results should be useful for developing functional peptides that adopt the β-conformation.
Collapse
Affiliation(s)
- Jing-Yuan Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Nian-Zhi Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chih-Ting Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsu Yu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yan-Chen Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Daniel Lu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hsin Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Orika Kono
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yi Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Sun
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yen-Jin Pan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ting-Hsuan Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Mu-Chun Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shou-Ling Huang
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Richard P Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Morita R, Shigeta Y, Harada R. Comprehensive predictions of secondary structures for comparative analysis in different species. J Struct Biol 2021; 213:107735. [PMID: 33831508 DOI: 10.1016/j.jsb.2021.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Protein structures are directly linked to biological functions. However, there is a gap of knowledge between the decoded genome and the structure. To bridge the gap, we focused on the secondary structure (SS). From a comprehensive analysis of predicted SS of proteins in different types of organisms, we have arrived at the following findings: The proportions of SS in genomes were different among phylogenic domains. The distributions of strand lengths indicated structural limitations in all of the species. Different from bacteria and archaea, eukaryotes have an abundance of α-helical and random coil proteins. Interestingly, there was a relationship between SS and post-translational modifications. By calculating hydrophobicity moments of helices and strands, highly amphipathic fragments of SS were found, which might be related to the biological functions. In conclusion, comprehensive predictions of SS will provide valuable perspectives to understand the entire protein structures in genomes and will help one to discover or design functional proteins.
Collapse
Affiliation(s)
- Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki. Japan.
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki. Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki. Japan.
| |
Collapse
|
17
|
Swapping the Positions in a Cross-Strand Lateral Ion-Pairing Interaction between Ammonium- and Carboxylate-Containing Residues in a β-Hairpin. Molecules 2021; 26:molecules26051346. [PMID: 33802596 PMCID: PMC7961788 DOI: 10.3390/molecules26051346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/20/2022] Open
Abstract
Cross-strand lateral ion-pairing interactions are important for antiparallel β-sheet stability. Statistical studies suggested that swapping the position of cross-strand lateral residues should not significantly affect the interaction. Herein, we swapped the position of ammonium- and carboxylate-containing residues with different side-chain lengths in a cross-strand lateral ion-pairing interaction in a β-hairpin. The peptides were analyzed by 2D-NMR. The fraction folded population and folding free energy were derived from the chemical shift data. The ion-pairing interaction energy was derived using double mutant cycle analysis. The general trends for the fraction folded population and interaction energetics remained similar upon swapping the position of the interacting charged residues. The most stabilizing cross-strand interactions were between short residues, similar to the unswapped study. However, the fraction folded populations for most of the swapped peptides were higher compared to the corresponding unswapped peptides. Furthermore, subtle differences in the ion-pairing interaction energy upon swapping were observed, most likely due to the “unleveled” relative positioning of the interacting residues created by the inherent right-handed twist of the structure. These results should be useful for developing functional peptides that rely on lateral ion-pairing interactions across antiparallel β-strands.
Collapse
|
18
|
The Finite Size Effects and Two-State Paradigm of Protein Folding. Int J Mol Sci 2021; 22:ijms22042184. [PMID: 33671738 PMCID: PMC7926810 DOI: 10.3390/ijms22042184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
The coil to globule transition of the polypeptide chain is the physical phenomenon behind the folding of globular proteins. Globular proteins with a single domain usually consist of about 30 to 100 amino acid residues, and this finite size extends the transition interval of the coil-globule phase transition. Based on the pedantic derivation of the two-state model, we introduce the number of amino acid residues of a polypeptide chain as a parameter in the expressions for two cooperativity measures and reveal their physical significance. We conclude that the k2 measure, defined as the ratio of van ’t Hoff and calorimetric enthalpy is related to the degeneracy of the denatured state and describes the number of cooperative units involved in the transition; additionally, it is found that the widely discussed k2=1 is just the necessary condition to classify the protein as the two-state folder. We also find that Ωc, a quantity not limited from above and growing with system size, is simply proportional to the square of the transition interval. This fact allows us to perform the classical size scaling analysis of the coil-globule phase transition. Moreover, these two measures are shown to describe different characteristics of protein folding.
Collapse
|
19
|
Grant AM, Krecker MC, Gupta MK, Dennis PB, Crosby MG, Tsukruk VV. Marine Structural Protein Stability Induced by Hofmeister Salt Annealing and Enzymatic Cross-Linking. ACS Biomater Sci Eng 2020; 6:5519-5526. [PMID: 33320559 DOI: 10.1021/acsbiomaterials.0c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Humboldt squid is one of the fiercest marine predators thanks in part to its sucker ring teeth that are biopolymer blends of a protein isoform family called suckerin with compression strength that rivals silkworm silk. Here, we focus on the popular suckerin-12 isoform to understand what makes the secondary structure of this biopolymer different in water and the potential role of diverse physical and chemical cross-linkings. By choosing a salt post-treatment, in accordance with the Hofmeister series, we achieved film stability with salt annealing that is comparable to chemical cross-links. By correlating the film morphology with the protein secondary structure changes, suckerin-12 films were shown to contract upon treatment with kosmotropic salts and exhibited increased stability in water. These changes are related to the rearrangement of suckerin-12 secondary structure from random coils and helices to β-sheets. Overall, understanding secondary structure changes caused by aqueous and ionic environments can be instructive for the tuning of the suckerin film sclerotization, its conversion to a tough biological material, and to ultimately produce the natural squid sucker ring teeth.
Collapse
Affiliation(s)
- Anise M Grant
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30305, United States
| | - Michelle C Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30305, United States
| | - Maneesh K Gupta
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Patrick B Dennis
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Marquise G Crosby
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30305, United States
| |
Collapse
|
20
|
Jain P, Badger DB, Liang Y, Gebhard AW, Santiago D, Murray P, Kaulagari SR, Gauthier TJ, Nair R, Kumar M, Guida WC, Hazlehurst LA, McLaughlin ML. Bioactivity improvement via display of the hydrophobic core of
HYD1
in a cyclic
β‐hairpin
‐like scaffold,
MTI
‐101. Pept Sci (Hoboken) 2020; 113:e24199. [PMID: 35859761 PMCID: PMC9285608 DOI: 10.1002/pep2.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Abstract
HYD1 is an all D‐amino acid linear 10‐mer peptide that was discovered by one‐bead‐one‐compound screening. HYD1 has five hydrophobic amino acids flanked by polar amino acids. Alanine scanning studies showed that alternating hydrophobic amino acid residues and N‐ and C‐terminal lysine side chains were contributors to the biological activity of the linear 10‐mer analogs. This observation led us to hypothesize that display of the hydrophobic pentapeptide sequence of HYD1 in a cyclic beta‐hairpin‐like scaffold could lead to better bioavailability and biological activity. An amphipathic pentapeptide sequence was used to form an antiparallel strand and those strands were linked via dipeptide‐like sequences selected to promote β‐turns. Early cyclic analogs were more active but otherwise mimicked the biological activity of the linear HYD1 peptide. The cyclic peptidomimetics were synthesized using standard Fmoc solid phase synthesis to form linear peptides, followed by solution phase or on‐resin cyclization. SAR studies were carried out with an aim to increase the potency of these drug candidates for the killing of multiple myeloma cells in vitro. The solution structures of 1, 5, and 10 were elucidated using NMR spectroscopy. 1H NMR and 2D TOCSY studies of these peptides revealed a downfield Hα proton chemical shift and 2D NOE spectral analysis consistent with a β‐hairpin‐like structure.
Collapse
Affiliation(s)
- Priyesh Jain
- Department of Chemistry University of South Florida Tampa Florida USA
- Drug Discovery Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
- Modulation Therapeutics Incorporated Morgantown West Virginia USA
| | - David B. Badger
- Department of Chemistry University of South Florida Tampa Florida USA
- Drug Discovery Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
| | - Yi Liang
- Department of Chemistry University of South Florida Tampa Florida USA
| | - Anthony W. Gebhard
- Tumor Biology Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
| | - Daniel Santiago
- Department of Chemistry University of South Florida Tampa Florida USA
| | - Philip Murray
- Department of Chemistry University of South Florida Tampa Florida USA
| | - Sridhar R. Kaulagari
- Tumor Biology Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
- Department of Pharmaceutical Sciences West Virginia University Health Sciences Center Morgantown West Virginia USA
| | - Ted J. Gauthier
- Department of Chemistry University of South Florida Tampa Florida USA
| | - Rajesh Nair
- Tumor Biology Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
| | - MohanRaja Kumar
- Department of Chemistry University of South Florida Tampa Florida USA
| | - Wayne C. Guida
- Department of Chemistry University of South Florida Tampa Florida USA
- Drug Discovery Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
| | - Lori A. Hazlehurst
- Modulation Therapeutics Incorporated Morgantown West Virginia USA
- Tumor Biology Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
- Department of Pharmaceutical Sciences West Virginia University Health Sciences Center Morgantown West Virginia USA
| | - Mark L. McLaughlin
- Department of Chemistry University of South Florida Tampa Florida USA
- Tumor Biology Department H. Lee Moffitt Cancer Center & Research Institute Tampa Florida USA
- Department of Pharmaceutical Sciences West Virginia University Health Sciences Center Morgantown West Virginia USA
- Department of Chemistry West Virginia University Morgantown West Virginia USA
| |
Collapse
|
21
|
Pandey G, Das PP, Ramakrishnan V. Directive Effect of Chain Length in Modulating Peptide Nano-assemblies. Protein Pept Lett 2020; 27:923-929. [PMID: 32091324 DOI: 10.2174/0929866527666200224114627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. OBJECTIVES In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. METHODS We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. RESULTS Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. CONCLUSION The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Prem Prakash Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
22
|
Fitzpatrick AW, Saibil HR. Cryo-EM of amyloid fibrils and cellular aggregates. Curr Opin Struct Biol 2019; 58:34-42. [PMID: 31200186 PMCID: PMC6778506 DOI: 10.1016/j.sbi.2019.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
Neurodegenerative and other protein misfolding diseases are associated with the aggregation of a protein, which may be mutated in genetic forms of disease, or the wild type form in late onset sporadic disease. A wide variety of proteins and peptides can be involved, with aggregation originating from a natively folded or a natively unstructured species. Large deposits of amyloid fibrils are typically associated with cell death in late stage pathology. In this review, we illustrate the contributions of cryo-EM and related methods to the structure determination of amyloid fibrils extracted post mortem from patient brains or formed in vitro. We also discuss cell models of protein aggregation and the contributions of electron tomography to understanding the cellular context of aggregation.
Collapse
Affiliation(s)
- Anthony Wp Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, Quad 4C, New York, NY 10027, USA.
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck College London, Malet St, London WC1E 7HX, UK.
| |
Collapse
|
23
|
Peddie V, Abell AD. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Gu H, Xue Z, Wang M, Yang M, Wang K, Xu D. Effect of Hydroxyapatite Surface on BMP-2 Biological Properties by Docking and Molecular Simulation Approaches. J Phys Chem B 2019; 123:3372-3382. [DOI: 10.1021/acs.jpcb.9b01982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Menghao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | | | | | | |
Collapse
|
25
|
Corbett KS, Moin SM, Yassine HM, Cagigi A, Kanekiyo M, Boyoglu-Barnum S, Myers SI, Tsybovsky Y, Wheatley AK, Schramm CA, Gillespie RA, Shi W, Wang L, Zhang Y, Andrews SF, Joyce MG, Crank MC, Douek DC, McDermott AB, Mascola JR, Graham BS, Boyington JC. Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. mBio 2019; 10:e02810-18. [PMID: 30808695 PMCID: PMC6391921 DOI: 10.1128/mbio.02810-18] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza vaccines targeting the highly conserved stem of the hemagglutinin (HA) surface glycoprotein have the potential to protect against pandemic and drifted seasonal influenza viruses not covered by current vaccines. While HA stem-based immunogens derived from group 1 influenza A viruses have been shown to induce intragroup heterosubtypic protection, HA stem-specific antibody lineages originating from group 2 may be more likely to possess broad cross-group reactivity. We report the structure-guided development of mammalian-cell-expressed candidate vaccine immunogens based on influenza A virus group 2 H3 and H7 HA stem trimers displayed on self-assembling ferritin nanoparticles using an iterative, multipronged approach involving helix stabilization, loop optimization, disulfide bond addition, and side-chain repacking. These immunogens were thermostable, formed uniform and symmetric nanoparticles, were recognized by cross-group-reactive broadly neutralizing antibodies (bNAbs) with nanomolar affinity, and elicited protective, homosubtypic antibodies in mice. Importantly, several immunogens were able to activate B cells expressing inferred unmutated common ancestor (UCA) versions of cross-group-reactive human bNAbs from two multidonor classes, suggesting they could initiate elicitation of these bNAbs in humans.IMPORTANCE Current influenza vaccines are primarily strain specific, requiring annual updates, and offer minimal protection against drifted seasonal or pandemic strains. The highly conserved stem region of hemagglutinin (HA) of group 2 influenza A virus subtypes is a promising target for vaccine elicitation of broad cross-group protection against divergent strains. We used structure-guided protein engineering employing multiple protein stabilization methods simultaneously to develop group 2 HA stem-based candidate influenza A virus immunogens displayed as trimers on self-assembling nanoparticles. Characterization of antigenicity, thermostability, and particle formation confirmed structural integrity. Group 2 HA stem antigen designs were identified that, when displayed on ferritin nanoparticles, activated B cells expressing inferred unmutated common ancestor (UCA) versions of human antibody lineages associated with cross-group-reactive, broadly neutralizing antibodies (bNAbs). Immunization of mice led to protection against a lethal homosubtypic influenza virus challenge. These candidate vaccines are now being manufactured for clinical evaluation.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- Cross Reactions
- Drug Carriers/metabolism
- Ferritins/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Heterologous
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Mice
- Protein Multimerization
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/isolation & purification
Collapse
Affiliation(s)
- Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hadi M Yassine
- Qatar University Biomedical Research Center, Doha, Qatar
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sky I Myers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
βαβ Super-Secondary Motifs: Sequence, Structural Overview, and Pursuit of Potential Autonomously Folding βαβ Sequences from (β/α) 8/TIM Barrels. Methods Mol Biol 2019; 1958:221-236. [PMID: 30945221 DOI: 10.1007/978-1-4939-9161-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
βαβ super-secondary structures constitute the basic building blocks of (β/α)8 class of proteins. Despite the success in designing super-secondary structures, till date, there is not a single example of a natural βαβ sequence known to fold in isolation. In this chapter, to address the finding the "needles" in the haystack scenario, we have combined the sequence preferences and structural features of independent βαβ motifs, dictated by natural selection, with rationally derived parameters from a designed βαβ motif adopting stable fold in solution. Guided by this approach, a set of potential βαβ sequences from (β/α)8/TIM barrels are proposed as likely candidates for autonomously folding based on the assessment of their foldability.
Collapse
|
27
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
28
|
D’Souza A, Torres J, Bhattacharjya S. Expanding heme-protein folding space using designed multi-heme β-sheet mini-proteins. Commun Chem 2018. [DOI: 10.1038/s42004-018-0078-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Laibe J, Caffrey A, Broutin M, Guiglion S, Pierscionek B, Nebel JC. Coil conversion to β-strand induced by dimerization. Proteins 2018; 86:1221-1230. [PMID: 30019777 DOI: 10.1002/prot.25574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 11/05/2022]
Abstract
Most molecular processes in living organisms rely on protein-protein interactions, many of which are mediated by β-sheet interfaces; this study investigates the formation of β-sheet interfaces through the conversion of coils into β-strands. Following an exhaustive search in the Protein Data Bank, the corresponding structural dimorphic fragments were extracted, characterized, and analyzed. Their short strand lengths and specific amino acid profiles indicate that dimorphic β-strand interfaces are likely to be less stable than standard ones and could even convert to coil interfaces if their environment changes. Moreover, the construction of a simple classifier able to discriminate between the sequences of dimorphic and standard β-strand interfaces suggests that the nature of those dimorphic sequences could be predicted, providing a novel means of identifying proteins capable of forming dimers.
Collapse
Affiliation(s)
- Johanna Laibe
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, United Kingdom
| | - Aaron Caffrey
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, United Kingdom
| | - Melanie Broutin
- Department of Bioengineering, Nice Sophia Antipolis University Engineering School, Biot, France
| | - Solene Guiglion
- Department of Bioengineering, Nice Sophia Antipolis University Engineering School, Biot, France
| | - Barbara Pierscionek
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jean-Christophe Nebel
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, United Kingdom
| |
Collapse
|
30
|
Agrahari AK, Sneha P, George Priya Doss C, Siva R, Zayed H. A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metab Brain Dis 2018; 33:589-600. [PMID: 29047041 DOI: 10.1007/s11011-017-0121-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/04/2017] [Indexed: 01/16/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most commonly inherited congenital neurological disorders, affecting approximately 1 in 2500 in the US. About 80 genes were found to be in association with CMT. The phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is an essential enzyme in the primary stage of de novo and salvage nucleotide synthesis. The mutations in the PRPS1 gene leads to X-linked Charcot-Marie-Tooth neuropathy type 5 (CMTX5), PRS super activity, Arts syndrome, X-linked deafness-1, breast cancer, and colorectal cancer. In the present study, we obtained 20 missense mutations from UniProt and dbSNP databases and applied series of comprehensive in silico prediction methods to assess the degree of pathogenicity and stability. In silico tools predicted four missense mutations (D52H, M115 T, L152P, and D203H) to be potential disease causing mutations. We further subjected the four mutations along with native protein to 50 ns molecular dynamics simulation (MDS) using Gromacs package. The resulting trajectory files were analyzed to understand the stability differences caused by the mutations. We used the Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), solvent accessibility surface area (SASA), Covariance matrix, Principal Component Analysis (PCA), Free Energy Landscape (FEL), and secondary structure analysis to assess the structural changes in the protein upon mutation. Our study suggests that the four mutations might affect the PRPS1 protein function and stability of the structure. The proposed study may serve as a platform for drug repositioning and personalized medicine for diseases that are caused by the PRPS1 deficiency.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - P Sneha
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - R Siva
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
31
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
D'Souza A, Wu X, Yeow EKL, Bhattacharjya S. Designed Heme-Cage β-Sheet Miniproteins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| | - Xiangyang Wu
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Edwin Kok Lee Yeow
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| |
Collapse
|
33
|
D'Souza A, Wu X, Yeow EKL, Bhattacharjya S. Designed Heme-Cage β-Sheet Miniproteins. Angew Chem Int Ed Engl 2017; 56:5904-5908. [PMID: 28440962 DOI: 10.1002/anie.201702472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 01/21/2023]
Abstract
The structure and function of naturally occurring proteins are governed by a large number of amino acids (≥100). The design of miniature proteins with desired structures and functions not only substantiates our knowledge about proteins but can also contribute to the development of novel applications. Excellent progress has been made towards the design of helical proteins with diverse functions. However, the development of functional β-sheet proteins remains challenging. Herein, we describe the construction and characterization of four-stranded β-sheet miniproteins made up of about 19 amino acids that bind heme inside a hydrophobic binding pocket or "heme cage" by bis-histidine coordination in an aqueous environment. The designed miniproteins bound to heme with high affinity comparable to that of native heme proteins. Atomic-resolution structures confirmed the presence of a four-stranded β-sheet fold. The heme-protein complexes also exhibited high stability against thermal and chaotrope-induced unfolding.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangyang Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Edwin Kok Lee Yeow
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
34
|
Kar K, Baker MA, Lengyel GA, Hoop CL, Kodali R, Byeon IJ, Horne WS, van der Wel PCA, Wetzel R. Backbone Engineering within a Latent β-Hairpin Structure to Design Inhibitors of Polyglutamine Amyloid Formation. J Mol Biol 2016; 429:308-323. [PMID: 27986569 DOI: 10.1016/j.jmb.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022]
Abstract
Candidates for the toxic molecular species in the expanded polyglutamine (polyQ) repeat diseases range from various types of aggregates to "misfolded" monomers. One way to vet these candidates is to develop mutants that restrict conformational landscapes. Previously, we inserted two self-complementary β-hairpin enhancing motifs into a short polyQ sequence to generate a mutant, here called "βHP," that exhibits greatly improved amyloid nucleation without measurably enhancing β-structure in the monomer ensemble. We extend these studies here by introducing single-backbone H-bond impairing modifications αN-methyl Gln or l-Pro at key positions within βHP. Modifications predicted to allow formation of a fully H-bonded β-hairpin at the fibril edge while interfering with H-bonding to the next incoming monomer exhibit poor amyloid formation and act as potent inhibitors in trans of simple polyQ peptide aggregation. In contrast, a modification that disrupts intra-β-hairpin H-bonding within βHP, while also aggregating poorly, is ineffective at inhibiting amyloid formation in trans. The inhibitors constitute a dynamic version of the edge-protection negative design strategy used in protein evolution to limit unwanted protein aggregation. Our data support a model in which polyQ peptides containing strong β-hairpin encouraging motifs only rarely form β-hairpin conformations in the monomer ensemble, but nonetheless take on such conformations at key steps during amyloid formation. The results provide insights into polyQ solution structure and fibril formation while also suggesting an approach to the design of inhibitors of polyQ amyloid growth that focuses on conformational requirements for fibril and nucleus elongation.
Collapse
Affiliation(s)
- Karunakar Kar
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Matthew A Baker
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - George A Lengyel
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cody L Hoop
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - In-Ja Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
35
|
Abstract
Centrioles are evolutionarily conserved cylindrical cell organelles with characteristic radial symmetry. Despite their considerable size (400 nm × 200 nm, in humans), genetic studies suggest that relatively few protein components are involved in their assembly. We recently characterized the molecular architecture of the centrosomal P4.1-associated protein (CPAP), which is crucial for controlling the centriolar cylinder length. Here, we review the remarkable architecture of the C-terminal domain of CPAP, termed the G-box, which comprises a single, entirely solvent exposed, antiparallel β-sheet. Molecular dynamics simulations support the stability of the G-box domain even in the face of truncations or amino acid substitutions. The similarity of the G-box domain to amyloids (or amyloid precursors) is strengthened by its oligomeric arrangement to form continuous fibrils. G-box fibrils were observed in crystals as well as in solution and are also supported by simulations. We conclude that the G-box domain may well represent the best analogue currently available for studies of exposed β-sheets, unencumbered by additional structural elements or severe aggregations problems.
Collapse
|
36
|
D'Souza A, Mahajan M, Bhattacharjya S. Designed multi-stranded heme binding β-sheet peptides in membrane. Chem Sci 2016; 7:2563-2571. [PMID: 28660027 PMCID: PMC5477022 DOI: 10.1039/c5sc04108b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 01/20/2023] Open
Abstract
Designed peptides demonstrating well-defined structures and functioning in membrane environment are of significant interest in developing novel proteins for membrane active biological processes including enzymes, electron transfer, ion channels and energy conversion. Heme proteins' ability to carry out multiple functions in nature has inspired the design of several helical heme binding peptides and proteins soluble in water and also recently in membrane. Naturally occurring β-sheet proteins are both water and membrane soluble, and are known to bind heme, however, designed heme binding β-sheet proteins are yet to be reported, plausibly because of the complex folding and difficulty in introducing heme binding sites in the β-sheet structures. Here, we describe the design, NMR structures and biochemical functional characterization of four stranded and six stranded membrane soluble β-sheet peptides that bind heme and di-heme, respectively. The designed peptides contain either DP-G or DP-DA residues for the nucleation of β-turns intended to stabilize multi-stranded β-sheet topologies and ligate heme with bis-His coordination between adjacent antiparallel β-strands. Furthermore, we have optimized a high affinity heme binding pocket, Kd ∼ nM range, in the adjacent β-strands by utilizing a series of four stranded β-sheet peptides employing β- and ω-amino acids. We find that there is a progressive increase in cofactor binding affinity in the designed peptides with the alkyl chain length of ω-amino acids. Notably, the six stranded β-sheet peptide binds two molecules of heme in a cooperative fashion. The designed peptides perform peroxidase activity with varying ability and efficiently carried out electron transfer with membrane associated protein cytochrome c. The current study demonstrates the designing of functional β-sheet proteins in a membrane environment and expands the repertoire of heme protein design.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences , 60 Nanyang Drive , 637551 , Singapore .
| | - Mukesh Mahajan
- School of Biological Sciences , 60 Nanyang Drive , 637551 , Singapore .
| | | |
Collapse
|
37
|
Bureau HR, Hershkovits E, Quirk S, Hernandez R. Determining the Energetics of Small β-Sheet Peptides using Adaptive Steered Molecular Dynamics. J Chem Theory Comput 2016; 12:2028-37. [PMID: 26930270 DOI: 10.1021/acs.jctc.5b01110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically driven unfolding is a useful computational tool for extracting the energetics and stretching pathway of peptides. In this work, two representative β-hairpin peptides, chignolin (PDB: 1UAO ) and trpzip1 (PDB: 1LE0 ), were investigated using an adaptive variant of the original steered molecular dynamics method called adaptive steered molecular dynamics (ASMD). The ASMD method makes it possible to perform energetic calculations on increasingly complex biological systems. Although the two peptides are similar in length and have similar secondary structures, their unfolding energetics are quite different. The hydrogen bonding profile and specific residue pair interaction energies provide insight into the differing stabilities of these peptides and reveal which of the pairs provides the most significant stabilization.
Collapse
Affiliation(s)
- Hailey R Bureau
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Eli Hershkovits
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Stephen Quirk
- Kimberly-Clark Corporation , Atlanta, Georgia 30076-2199, United States
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
38
|
Popp A, Scheerer D, Chi H, Keiderling TA, Hauser K. Site‐Specific Dynamics of β‐Sheet Peptides with
D
Pro–Gly Turns Probed by Laser‐Excited Temperature‐Jump Infrared Spectroscopy. Chemphyschem 2016; 17:1273-80. [DOI: 10.1002/cphc.201501089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Popp
- Department of Chemistry University of Konstanz 78457 Konstanz Germany), Fax: (+49) 7531-88-3139
| | - David Scheerer
- Department of Chemistry University of Konstanz 78457 Konstanz Germany), Fax: (+49) 7531-88-3139
| | - Heng Chi
- Department of Pharmacy and Health Management Jiangsu Food and Pharmaceutical Science College 4 E. Meicheng Rd. Huai'an Jiangsu Province 223003 P. R. China
| | - Timothy A. Keiderling
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago Illinois 60607-7061 USA
| | - Karin Hauser
- Department of Chemistry University of Konstanz 78457 Konstanz Germany), Fax: (+49) 7531-88-3139
| |
Collapse
|
39
|
Kier BL, Newbloom GM, Pozzo LD, Andersen NH. A Structuring Repeat for Peptide Design: Long Beta Ribbons. Chembiochem 2016; 17:224-7. [PMID: 26603832 DOI: 10.1002/cbic.201500618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/20/2022]
Abstract
Beta sheets are inherently length-limited; adding residues to the ends of model β-sheets does not necessarily grow the β-sheet. Here, we present a method for extending β-sheets to any length with a stabilizing repeat unit containing cross-strand Trp residues. Beta ribbons as long as 35 residues (approaching 100 Å in length) are reported and characterized.
Collapse
Affiliation(s)
- Brandon L Kier
- Department of Chemistry, University of Washington, Box 351700, Bagley Hall, Seattle, WA, 98195-1700, USA.
| | - Gregory M Newbloom
- Department of Chemical Engineering, University of Washington, Box 351750, Benson Hall, Seattle, WA, 98195-1750, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Box 351750, Benson Hall, Seattle, WA, 98195-1750, USA
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Box 351700, Bagley Hall, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
40
|
De Leon Rodriguez LM, Hemar Y, Cornish J, Brimble MA. Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chem Soc Rev 2016; 45:4797-824. [DOI: 10.1039/c5cs00941c] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses about β-sheet peptide structure at the molecular level and the bulk mechanical properties of the corresponding hydrogels.
Collapse
Affiliation(s)
| | - Yacine Hemar
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- The Riddet Institute
| | - Jillian Cornish
- Department of Medicine
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
41
|
Zeng J, Jiang F, Wu YD. Folding Simulations of an α-Helical Hairpin Motif αtα with Residue-Specific Force Fields. J Phys Chem B 2015; 120:33-41. [PMID: 26673753 DOI: 10.1021/acs.jpcb.5b09027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Helical hairpin (two-helix bundle) is a structure motif composed of two interacting helices connected by a turn or a short loop. It is an important model for protein folding studies, filling the gap between isolated α-helix and larger all-α domains. Here, we present, for the first time, successful folding simulations of an α-helical hairpin. Our RSFF1 and RSFF2 force fields give very similar predicted structures of this αtα peptide, which is in good agreement with its NMR structure. Our simulations also give site-specific stability of α-helix formation in good agreement with amide hydrogen exchange experiments. Combining the folding free energy landscapes and analyses of structures sampled in five different ranges of the fraction of native contacts (Q), a folding mechanism of αtα is proposed. The most stable sites of Q9-E15 in helix-1 and E24-A30 in helix-2 close to the loop region act as the folding initiation sites. The formation of interhelix side-chain contacts also initiates near the loop region, but some residues in the central parts of the two helices also form contacts quite early. The two termini fold at a final stage, and the loop region remains flexible during the whole folding process. This mechanism is similar to the "zipping out" pathway of β-hairpin folding.
Collapse
Affiliation(s)
- Juan Zeng
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
42
|
Kung VM, Cornilescu G, Gellman SH. Impact of Strand Number on Parallel β-Sheet Stability. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Kung VM, Cornilescu G, Gellman SH. Impact of Strand Number on Parallel β-Sheet Stability. Angew Chem Int Ed Engl 2015; 54:14336-9. [PMID: 26457984 DOI: 10.1002/anie.201506448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/27/2015] [Indexed: 11/10/2022]
Abstract
We have examined whether parallel β-sheet secondary structure becomes more stable as the number of β-strands increases, via comparisons among peptides designed to adopt two- or three-stranded parallel β-sheet conformations in aqueous solution. Our three-strand design is the first experimental model of a triple-stranded parallel β-sheet. Analysis of the designed peptides by nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy supports the hypothesis that increasing the number of β-strands, from two to three, increases the stability of the parallel β-sheet. We present the first experimental evidence for cooperativity in the folding of a triple-stranded parallel β-sheet, and we show how minimal model systems may enable experimental documentation of characteristic properties, such as CD spectra, of parallel β-sheets.
Collapse
Affiliation(s)
- Vanessa M Kung
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706 (USA)
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706 (USA)
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706 (USA).
| |
Collapse
|
44
|
Kier BL, Anderson JM, Andersen NH. Disulfide-Mediated β-Strand Dimers: Hyperstable β-Sheets Lacking Tertiary Interactions and Turns. J Am Chem Soc 2015; 137:5363-71. [PMID: 25835058 PMCID: PMC7450586 DOI: 10.1021/ja5117809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Disulfide bonds between cysteine residues are essential to the structure and folding of many proteins. Yet their role in the design of structured peptides and proteins has frequently been limited to use as intrachain covalent staples that reinforce existing structure or induce knot-like conformations. In β-hairpins, their placement at non-H-bonding positions across antiparallel strands has proven useful for achieving fully folded positive controls. Here we report a new class of designed β-sheet peptide dimers with strand-central disulfides as a key element. We have found that the mere presence of a disulfide bond near the middle of a short peptide chain is sufficient to nucleate some antiparallel β-sheet structure; addition of β-capping units and other favorable cross-strand interactions yield hyperstable sheets. Strand-central cystines were found to be superior to the best designed reversing turns in terms of nucleating β-sheet structure formation. We have explored the limitations and possibilities of this technique (the use of disulfides as sheet nucleators), and we provide a set of rules and rationales for the application and further design of disulfide-tethered "turnless" β-sheets.
Collapse
Affiliation(s)
- Brandon L Kier
- Chemistry Department, University of Washington, Seattle, Washington 98195, United States
| | - Jordan M Anderson
- Chemistry Department, University of Washington, Seattle, Washington 98195, United States
| | - Niels H Andersen
- Chemistry Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
45
|
Smith JE, Liang C, Tseng M, Li N, Li S, Mowles AK, Mehta AK, Lynn DG. Defining the Dynamic Conformational Networks of Cross-β Peptide Assembly. Isr J Chem 2015. [DOI: 10.1002/ijch.201500012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Rouch DA. Evolution of the first genetic cells and the universal genetic code: a hypothesis based on macromolecular coevolution of RNA and proteins. J Theor Biol 2014; 357:220-44. [PMID: 24931677 DOI: 10.1016/j.jtbi.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022]
Abstract
A qualitative hypothesis based on coevolution of protein and nucleic acid macromolecules was developed to explain the evolution of the first genetic cells, from the likely organic chemical-rich environment of early earth, through to the Last Universal Common Ancestor (LUCA). The evolution of the first genetic cell was divided into three phases, proto-genetic cells I, II and III, and the transition to each milestone is described, based on development of chemical cross-catalysis, bio-cross-catalysis, and the universal genetic code, respectively. Selection of macromolecular properties of both peptides and nucleic acids, in response to environmental factors, was likely to be a key aspect of early evolution. The development of hereditable nucleic acids with various key functions; translation, transcription and replication, is described. These functions are envisaged to have coevolved with protein enzymes, from simple organic precursors. Genetically heritable nucleotides may have developed after the local earth environment had cooled below 63 °C. Around this temperature G-C bases would have been preferentially utilized for nucleotide synthesis. Under these conditions RNA type nucleotides were then likely selected from a range of different types of nucleotide backbones through template-based synthesis. Initial development of the genetic coding system was simplified by the availability of proto-messenger RNA sequences that contained only G and C bases, and the need to encode only four amino acids. The step-wise addition of further amino acids to the code was predicted to parallel the growing metabolic complexity of the proto-genetic cell. On completion of this evolutionary process the proto-genetic cell is envisaged to have become the LUCA, the last common ancestor of bacteria, eukaryote and archaea domains. Key issues addressed by the model include: (a) the transition from non-hereditable random sequences of peptides and nucleic acids to specific proteins coded by hereditable nucleotide sequences, (b) the origin of homochiral amino acids and sugars, and (c) the mutation limits on the sizes of early nucleic acid genomes. The first genome was limited to a size of about 200 base pairs.
Collapse
Affiliation(s)
- Duncan A Rouch
- Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Melbourne, Vic 3083, Australia.
| |
Collapse
|
47
|
Abstract
Since the first report in 1993 (JACS 115, 5887-5888) of a peptide able to form a monomeric β-hairpin structure in aqueous solution, the design of peptides forming either β-hairpins (two-stranded antiparallel β-sheets) or three-stranded antiparallel β-sheets has become a field of growing interest and activity. These studies have yielded great insights into the principles governing the stability and folding of β-hairpins and antiparallel β-sheets. This chapter provides an overview of the reported β-hairpin/β-sheet peptides focussed on the applied design criteria, reviews briefly the factors contributing to β-hairpin/β-sheet stability, and describes a protocol for the de novo design of β-sheet-forming peptides based on them. Guidelines to select appropriate turn and strand residues and to avoid self-association are provided. The methods employed to check the success of new designed peptides are also summarized. Since NMR is the best technique to that end, NOEs and chemical shifts characteristic of β-hairpins and three-stranded antiparallel β-sheets are given.
Collapse
Affiliation(s)
- M Angeles Jiménez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Física Rocasolano (IQFR), Serrano 119, 28006, Madrid, Spain,
| |
Collapse
|
48
|
Mahajan M, Bhattacharjya S. β-Hairpin peptides: heme binding, catalysis, and structure in detergent micelles. Angew Chem Int Ed Engl 2013; 52:6430-4. [PMID: 23640811 DOI: 10.1002/anie.201300241] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Mukesh Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
49
|
Mahajan M, Bhattacharjya S. β-Hairpin Peptides: Heme Binding, Catalysis, and Structure in Detergent Micelles. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Olivares-Quiroz L. Thermodynamics of ideal proteinogenic homopolymer chains as a function of the energy spectrum E, helical propensity ω and enthalpic energy barrier. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:155103. [PMID: 23515207 DOI: 10.1088/0953-8984/25/15/155103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A reformulation and generalization of the Zwanzig model (ZW model) for ideal homopolymer chains poly-X, where X represents any of the twenty naturally occurring proteinogenic amino acid residues is presented. This reformulation and generalization provides a direct connection between coarse-grained parameters originally proposed in the ZW model with variables from the Lifson-Roig (LR) theory, such as the helical propensity per residue ω, and new variables introduced here, such as the energy gap Δ between unfolded and folded structures, as well as the ratio f of the energy scales involved. This enables us to discover the relevance of the energy spectrum E to the onset of configurational phase transitions. From the configurational partition function Q, thermodynamic properties such as the configurational entropy S, specific heat v and average energy <E> are calculated in terms of the number of residues K, temperature T, helical propensity ω and energy barrier ΔH for different poly-X chains in vacuo. Results obtained here provide substantial evidence that configurational phase transitions for ideal poly-X chains correspond to first-order phase transitions. An anomalous behavior of the thermodynamic functions <E>, Cv, S with respect to the number K of residues is also highlighted. On-going methods of solution are outlined.
Collapse
Affiliation(s)
- L Olivares-Quiroz
- Universidad Autónoma de la Ciudad de México, Campus Cuautepec, Av La Corona 320, Col Loma Alta CP 07160 DF, Mexico.
| |
Collapse
|