1
|
Hanau S, Helliwell JR. Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy. Acta Crystallogr F Struct Biol Commun 2024; 80:236-251. [PMID: 39259139 PMCID: PMC11448927 DOI: 10.1107/s2053230x24008112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - John R Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Costa S, Minucci A, Kumawat A, De Bonis M, Prontera G, Gelsomino M, Tana M, Tiberi E, Romano A, Ruggiero A, Mastrangelo S, Palumbo G, Giorgio V, Onori ME, Bolognesi M, Camilloni C, Luzzatto L, Vento G. Pathogenic G6PD variants: Different clinical pictures arise from different missense mutations in the same codon. Br J Haematol 2024. [PMID: 39295190 DOI: 10.1111/bjh.19775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
G6PD deficiency results from mutations in the X-linked G6PD gene. More than 200 variants are associated with enzyme deficiency: each one of them may either cause predisposition to haemolytic anaemia triggered by exogenous agents (class B variants), or may cause a chronic haemolytic disorder (class A variants). Genotype-phenotype correlations are subtle. We report a rare G6PD variant, discovered in a baby presenting with severe jaundice and haemolytic anaemia since birth: the mutation of this class A variant was found to be p.(Arg454Pro). Two variants affecting the same codon were already known: G6PD Union, p.(Arg454Cys), and G6PD Andalus, p.(Arg454His). Both these class B variants and our class A variant exhibit severe G6PD deficiency. By molecular dynamics simulations, we performed a comparative analysis of the three mutants and of the wild-type G6PD. We found that the tetrameric structure of the enzyme is not perturbed in any of the variants; instead, loss of the positively charged Arg residue causes marked variant-specific rearrangement of hydrogen bonds, and it influences interactions with the substrates G6P and NADP. These findings explain severe deficiency of enzyme activity and may account for p.(Arg454Pro) expressing a more severe clinical phenotype.
Collapse
Affiliation(s)
- Simonetta Costa
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Minucci
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amit Kumawat
- Department of Biosciences, University of Milano, Milan, Italy
| | - Maria De Bonis
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgia Prontera
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mariannita Gelsomino
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Milena Tana
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eloisa Tiberi
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alberto Romano
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Ruggiero
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palumbo
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Giorgio
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Elisabetta Onori
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Milan, Italy
- Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, Milan, Italy
| | - Carlo Camilloni
- Department of Biosciences, University of Milano, Milan, Italy
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
- Department of Hematology, University of Florence, Firenze, Italy
| | - Giovanni Vento
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, Cui Y, Davis JC, Mukkamala RS, Venditti FN, Hillis AL, Toker A, Vander Heiden MG, Spinelli JB, Kennedy NJ, Davis RJ, White FM. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609894. [PMID: 39257804 PMCID: PMC11383994 DOI: 10.1101/2024.08.28.609894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Chaudhary
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annie X Li
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonia E Trojan
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cameron T Flower
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula Vo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey C Davis
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachit S Mukkamala
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francesca N Venditti
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Özaslan MS. Some pyrroles as inhibitors of the pentose phosphate pathways enzymes: An in vitro and molecular docking study. J Mol Recognit 2024; 37:e3083. [PMID: 38514991 DOI: 10.1002/jmr.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are pentose phosphate pathway enzymes. Compounds with a heterocyclic pyrrole ring system containing this atom can be derivatized with various functional groups into highly effective bioactive agents. In this study, pyrrole derivatives on these enzyme's activity were investigated. The IC50 values of different concentrations of pyrrole derivatives for G6PD were found in the range of 0.022-0.221 mM Ki values 0.021 ± 0.003-0.177 ± 0.021 and for 6PGD IC50 values 0.020-0.147, mM Ki values 0.013 ± 0.002-0.113 ± 0.030 mM. The 2-acetyl-1-methylpyrrole (1g) showed the best inhibition value for G6PD and 6PGD enzymes. In addition, in silico molecular docking experiments were performed to elucidate how these pyrrole derivatives (1a-g) interact with the binding sites of the target enzymes. The study's findings on pyrrole derivatives could be used to create innovative therapeutics that could be a treatment for many diseases, especially cancer manifestations.
Collapse
Affiliation(s)
- Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
5
|
Zgheib O, Chamchoy K, Nouspikel T, Blouin JL, Cimasoni L, Quteineh L, Boonyuen U. Substitution of arginine 219 by glycine compromises stability, dimerization, and catalytic activity in a G6PD mutant. Commun Biol 2023; 6:1245. [PMID: 38066190 PMCID: PMC10709299 DOI: 10.1038/s42003-023-05599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common enzymopathies in humans, present in approximately half a billion people worldwide. More than 230 clinically relevant G6PD mutations of different classes have been reported to date. We hereby describe a patient with chronic hemolysis who presents a substitution of arginine by glycine at position 219 in G6PD protein. The variant was never described in an original publication or characterized on a molecular level. In the present study, we provide structural and biochemical evidence for the molecular basis of its pathogenicity. When compared to the wild-type enzyme, the Arg219Gly mutation markedly reduces the catalytic activity by 50-fold while having a negligible effect on substrate binding affinity. The mutation preserves secondary protein structure, but greatly decreases stability at higher temperatures and to trypsin digestion. Size exclusion chromatography elution profiles show monomeric and dimeric forms for the mutant, but only the latter for the wild-type form, suggesting a critical role of arginine 219 in G6PD dimer formation. Our findings have implications in the development of small molecule activators, with the goal of rescuing the phenotype observed in this and possibly other related mutants.
Collapse
Affiliation(s)
- Omar Zgheib
- Division of Genetic Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.
| | - Kamonwan Chamchoy
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thierry Nouspikel
- Division of Genetic Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Louis Blouin
- Division of Genetic Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Cimasoni
- Division of Pediatric Haematology, Department of Pediatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Lina Quteineh
- Division of Genetic Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Qiu X, Ye H, Li X, Li D, Jiang L, Liu R, Zhao Z, He D. IL-6/JAK2-dependent G6PD phosphorylation promotes nucleotide synthesis and supports tumor growth. Mol Metab 2023; 78:101836. [PMID: 37949355 PMCID: PMC10692918 DOI: 10.1016/j.molmet.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Tumor cells hijack inflammatory mechanisms to promote their own growth. IL-6 is one of the major cytokines, and is frequently upregulated in tumors. The pentose phosphate pathway (PPP) generates the indispensable building blocks to produce various nucleotides. Here we aimed to determine whether and how PPP is timely tuned in response to IL-6 to support tumor growth. METHODS Protein expression was examined by immunoblot. Protein interaction was examined by immunoprecipitation. Tumor cell proliferation in in vitro culture was examined by BrdU assay and colony formation assay. Tumor cell proliferation in mouse xenograft model was examined by Ki-67 staining. RESULTS Here we show that the metabolic flux of PPP and enzymatic activity of glucose-6-phosphate dehydrogenase (G6PD) is rapidly induced under IL-6 treatment, without obvious changes in G6PD expression level. Mechanistically, Janus kinase 2 (JAK2) phosphorylates G6PD Y437 under IL-6 treatment, which accentuates G6PD enzymatic activity by promoting G6PD binding with its substrate G6P. Further, JAK2-dependent G6PD Y437 phosphorylation is required for IL-6-induced nucleotide biosynthesis and tumor cell proliferation, and is associated with the progression of oral squamous cell carcinoma. CONCLUSIONS Our findings report a new mechanism implicated in the crosstalk between tumor cells and inflammatory microenvironment, by which JAK2-dependent activation of G6PD governs nucleotide synthesis to support tumor cell proliferation, thereby highlighting its value as a potential anti-tumor target.
Collapse
Affiliation(s)
- Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hongping Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaofei Li
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610057, PR China
| | - Dan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhe Zhao
- Nuclear Stress Medicine Center, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610057, PR China.
| | - Dan He
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610057, PR China.
| |
Collapse
|
7
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
8
|
Wu F, Muskat NH, Dvilansky I, Koren O, Shahar A, Gazit R, Elia N, Arbely E. Acetylation-dependent coupling between G6PD activity and apoptotic signaling. Nat Commun 2023; 14:6208. [PMID: 37798264 PMCID: PMC10556143 DOI: 10.1038/s41467-023-41895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Lysine acetylation has been discovered in thousands of non-histone human proteins, including most metabolic enzymes. Deciphering the functions of acetylation is key to understanding how metabolic cues mediate metabolic enzyme regulation and cellular signaling. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, is acetylated on multiple lysine residues. Using site-specifically acetylated G6PD, we show that acetylation can activate (AcK89) and inhibit (AcK403) G6PD. Acetylation-dependent inactivation is explained by structural studies showing distortion of the dimeric structure and active site of G6PD. We provide evidence for acetylation-dependent K95/97 ubiquitylation of G6PD and Y503 phosphorylation, as well as interaction with p53 and induction of early apoptotic events. Notably, we found that the acetylation of a single lysine residue coordinates diverse acetylation-dependent processes. Our data provide an example of the complex roles of acetylation as a posttranslational modification that orchestrates the regulation of enzymatic activity, posttranslational modifications, and apoptotic signaling.
Collapse
Affiliation(s)
- Fang Wu
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Natali H Muskat
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Inbar Dvilansky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Omri Koren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center (MCRC), Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Eyal Arbely
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
9
|
Hao Y, Ren T, Huang X, Li M, Lee JH, Chen Q, Liu R, Tang Q. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation. Redox Biol 2023; 65:102810. [PMID: 37478541 PMCID: PMC10404535 DOI: 10.1016/j.redox.2023.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Exposure to ionizing radiation leads to oxidative damages in living cells. NADPH provides the indispensable reducing power to regenerate the reduced glutathione to maintain cellular redox equilibria. In mammalian cells, pentose phosphate pathway (PPP) is the major route to produce NADPH by using glycolytic intermediates, and the rate-limiting step of PPP is controlled by glucose-6-phosphate dehydrogenase (G6PD). Nevertheless, whether G6PD is timely co-opted under ionizing radiation to cope with oxidative stress remains elusive. Here we show that cellular G6PD activity is induced 30 min after ionizing radiation, while its protein expression is mostly unchanged. Mechanistically, casein kinase 2 (CK2) phosphorylates G6PD T145 under ionizing radiation, which consolidates the enzymatic activity of G6PD by facilitating G6PD binding with its substrate NADP+. Further, CK2-dependent G6PD T145 phosphorylation promotes NADPH production, decreases ROS level and supports cell proliferation under ionizing radiation. Our findings report a new anti-oxidative signaling route under ionizing radiation, by which CK2-mediated rapid activation of G6PD orchestrates NADPH synthesis to maintain redox homeostasis, thereby highlighting its potential value in the early treatment of ionizing radiation-induced injuries.
Collapse
Affiliation(s)
- Yilong Hao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, PR China
| | - Tao Ren
- Oncology Department (Key Clinical Specialty of Sichuan Province), The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiaoke Huang
- Department of Urology, Xindu District People's Hospital of Chengdu, Chengdu, 610500, China
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduated School of Dong-A University, Busan, 49315, Republic of Korea
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, PR China.
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Qingfeng Tang
- Department of Urology, Xindu District People's Hospital of Chengdu, Chengdu, 610500, China.
| |
Collapse
|
10
|
Xu J, Zhao N, Meng X, Li J, Zhang T, Xu R, Wei X, Fan M. Transcriptomic and Metabolomic Profiling Uncovers Response Mechanisms of Alicyclobacillus acidoterrestris DSM 3922 T to Acid Stress. Microbiol Spectr 2023; 11:e0002223. [PMID: 37318333 PMCID: PMC10434157 DOI: 10.1128/spectrum.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Alicyclobacillus acidoterrestris, which has strong acidophilic and heat-resistant properties, can cause spoilage of pasteurized acidic juice. The current study determined the physiological performance of A. acidoterrestris under acidic stress (pH 3.0) for 1 h. Metabolomic analysis was carried out to investigate the metabolic responses of A. acidoterrestris to acid stress, and integrative analysis with transcriptome data was also performed. Acid stress inhibited the growth of A. acidoterrestris and altered its metabolic profiles. In total, 63 differential metabolites, mainly enriched in amino acid metabolism, nucleotide metabolism, and energy metabolism, were identified between acid-stressed cells and the control. Integrated transcriptomic and metabolomic analysis revealed that A. acidoterrestris maintains intracellular pH (pHi) homeostasis by enhancing amino acids decarboxylation, urea hydrolysis, and energy supply, which was verified using real-time quantitative PCR and pHi measurement. Additionally, two-component systems, ABC transporters, and unsaturated fatty acid synthesis also play crucial roles in resisting acid stress. Finally, a model of the responses of A. acidoterrestris to acid stress was proposed. IMPORTANCE Fruit juice spoilage caused by A. acidoterrestris contamination has become a major concern and challenge in the food industry, and this bacterium has been suggested as a target microbe in the design of the pasteurization process. However, the response mechanisms of A. acidoterrestris to acid stress still remain unknown. In this study, integrative transcriptomic, metabolomic, and physiological approaches were used to uncover the global responses of A. acidoterrestris to acid stress for the first time. The obtained results can provide new insights into the acid stress responses of A. acidoterrestris, which will point out future possible directions for the effective control and application of A. acidoterrestris.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Food Engineering, Luohe Vocational College of Food, Luohe, Henan, China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruoyun Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Food Engineering, Luohe Vocational College of Food, Luohe, Henan, China
| |
Collapse
|
11
|
Wang C, Yu C, Chang H, Song J, Zhang S, Zhao J, Wang J, Wang T, Qi Q, Shan C. Glucose-6-phosphate dehydrogenase: a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2023; 27:733-743. [PMID: 37571851 DOI: 10.1080/14728222.2023.2247558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jiaqi Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianguo Zhao
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Tao Wang
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Wei X, Kixmoeller K, Baltrusaitis E, Yang X, Marmorstein R. Allosteric role of a structural NADP + molecule in glucose-6-phosphate dehydrogenase activity. Proc Natl Acad Sci U S A 2022; 119:e2119695119. [PMID: 35858355 PMCID: PMC9303983 DOI: 10.1073/pnas.2119695119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/20/2022] [Indexed: 01/14/2023] Open
Abstract
Human glucose-6-phosphate dehydrogenase (G6PD) is the main cellular source of NADPH, and thus plays a key role in maintaining reduced glutathione to protect cells from oxidative stress disorders such as hemolytic anemia. G6PD is a multimeric enzyme that uses the cofactors β-D-glucose 6-phosphate (G6P) and "catalytic" NADP+ (NADP+c), as well as a "structural" NADP+ (NADP+s) located ∼25 Å from the active site, to generate NADPH. While X-ray crystallographic and biochemical studies have revealed a role for NADP+s in maintaining the catalytic activity by stabilizing the multimeric G6PD conformation, other potential roles for NADP+s have not been evaluated. Here, we determined the high resolution cryo-electron microscopy structures of human wild-type G6PD in the absence of bound ligands and a catalytic G6PD-D200N mutant bound to NADP+c and NADP+s in the absence or presence of G6P. A comparison of these structures, together with previously reported structures, reveals that the unliganded human G6PD forms a mixture of dimers and tetramers with similar overall folds, and binding of NADP+s induces a structural ordering of a C-terminal extension region and allosterically regulates G6P binding and catalysis. These studies have implications for understanding G6PD deficiencies and for therapy of G6PD-mediated disorders.
Collapse
Affiliation(s)
- Xuepeng Wei
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104
| | - Kathryn Kixmoeller
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Elana Baltrusaitis
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Xiaolu Yang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|