1
|
Rudyi V, Gordó-Vilaseca C. First record of leopard-spotted goby Thorogobiusephippiatus (Gobiiformes, Gobiidae) above the Arctic circle. Biodivers Data J 2024; 12:e127963. [PMID: 39104381 PMCID: PMC11299170 DOI: 10.3897/bdj.12.e127963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/23/2024] [Indexed: 08/07/2024] Open
|
2
|
Bas M, Ouled-Cheikh J, Julià L, Fuster-Alonso A, March D, Ramírez F, Cardona L, Coll M. Fish and tips: Historical and projected changes in commercial fish species' habitat suitability in the Southern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174752. [PMID: 39004360 DOI: 10.1016/j.scitotenv.2024.174752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Global warming has significantly altered fish distribution patterns in the ocean, shifting towards higher latitudes and deeper waters. This is particularly relevant in high-latitude marine ecosystems, where climate-driven environmental changes are occurring at higher rates than the global average. Species Distribution Models (SDMs) are increasingly being used for predicting distributional shifts in habitat suitability for marine species as a response to climate change. Here, we used SDMs to project habitat suitability changes for a range of high-latitude, pelagic and benthopelagic commercial fish species and crustaceans (10 species); from 1850 to two future climate change scenarios (SSP1-2.6: low climate forcing; and SSP5-8.5: high climate forcing). The study includes 11 Large Marine Ecosystems (LME) spanning South America, Southern Africa, Australia, and New Zealand. We identified declining and southward-shifting patterns in suitable habitat areas for most species, particularly under the SSP5-8.5 scenario and for some species such as Argentine hake (Merluccius hubbsi) in South America, or snoek (Thyrsites atun) off Southern Africa. Geographical constraints will likely result in species from Southern Africa, Australia, and New Zealand facing the most pronounced habitat losses due to rising sea surface temperatures (SST). In contrast, South American species might encounter greater opportunities for migrating southward. Additionally, the SSP5-8.5 scenario predicts that South America will be more environmentally stable compared to other regions. Overall, our findings suggest that the Patagonian shelf could serve as a climate refuge, due to higher environmental stability highlighting the importance of proactive management strategies in this area for species conservation. This study significantly contributes to fisheries and conservation management, providing valuable insights for future protection efforts in the Southern Hemisphere.
Collapse
Affiliation(s)
- Maria Bas
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Jazel Ouled-Cheikh
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Julià
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Alba Fuster-Alonso
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - David March
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Carrer del Catedràtic José Beltrán Martinez, 2, 46980 Paterna, Valencia, Spain; Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, TR10 9FE Penryn, Cornwall, United Kingdom
| | - Francisco Ramírez
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Luis Cardona
- Institut de Recerca de la Biodiversitat (IRBio), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Marta Coll
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain; Ecopath International Initiative (EII), Barcelona, Spain
| |
Collapse
|
3
|
Gordó-Vilaseca C, Costello MJ, Coll M, Jüterbock A, Reiss H, Stephenson F. Future trends of marine fish biomass distributions from the North Sea to the Barents Sea. Nat Commun 2024; 15:5637. [PMID: 38965212 PMCID: PMC11224334 DOI: 10.1038/s41467-024-49911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Climate warming is one of the facets of anthropogenic global change predicted to increase in the future, its magnitude depending on present-day decisions. The north Atlantic and Arctic Oceans are already undergoing community changes, with warmer-water species expanding northwards, and colder-water species retracting. However, the future extent and implications of these shifts remain unclear. Here, we fitted a joint species distribution model to occurrence data of 107, and biomass data of 61 marine fish species from 16,345 fishery independent trawls sampled between 2004 and 2022 in the northeast Atlantic Ocean, including the Barents Sea. We project overall increases in richness and declines in relative dominance in the community, and generalised increases in species' ranges and biomass across three different future scenarios in 2050 and 2100. The projected decline of capelin and the practical extirpation of polar cod from the system, the two most abundant species in the Barents Sea, drove an overall reduction in fish biomass at Arctic latitudes that is not replaced by expanding species. Furthermore, our projections suggest that Arctic demersal fish will be at high risk of extinction by the end of the century if no climate refugia is available at eastern latitudes.
Collapse
Affiliation(s)
| | | | - Marta Coll
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
- Ecopath International Initiative (EII), Barcelona, Spain
| | | | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Fabrice Stephenson
- School of Natural and Environment Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
4
|
Chust G, Villarino E, McLean M, Mieszkowska N, Benedetti-Cecchi L, Bulleri F, Ravaglioli C, Borja A, Muxika I, Fernandes-Salvador JA, Ibaibarriaga L, Uriarte A, Revilla M, Villate F, Iriarte A, Uriarte I, Zervoudaki S, Carstensen J, Somerfield PJ, Queirós AM, McEvoy AJ, Auber A, Hidalgo M, Coll M, Garrabou J, Gómez-Gras D, Linares C, Ramírez F, Margarit N, Lepage M, Dambrine C, Lobry J, Peck MA, de la Barra P, van Leeuwen A, Rilov G, Yeruham E, Brind'Amour A, Lindegren M. Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas. Nat Commun 2024; 15:2126. [PMID: 38459105 PMCID: PMC10923825 DOI: 10.1038/s41467-024-46526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.
Collapse
Affiliation(s)
- Guillem Chust
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.
| | - Ernesto Villarino
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
- Oregon State University, College of Earth, Ocean and Atmospheric Science, Corvallis, USA
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Nova Mieszkowska
- Marine Biological Association, Citadel hill, Plymouth, Devon, PL1 2PB, UK
- University of Liverpool, Liverpool, UK
| | | | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Angel Borja
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Iñigo Muxika
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - José A Fernandes-Salvador
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Leire Ibaibarriaga
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Ainhize Uriarte
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Marta Revilla
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Fernando Villate
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
| | - Arantza Iriarte
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain
| | - Ibon Uriarte
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain
| | - Soultana Zervoudaki
- Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece
| | - Jacob Carstensen
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Paul J Somerfield
- Plymouth Marine Laboratory, Plymouth, UK
- University of Plymouth, Plymouth, UK
| | - Ana M Queirós
- Plymouth Marine Laboratory, Plymouth, UK
- University of Exeter, Exeter, UK
| | | | - Arnaud Auber
- IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, 150 quai Gambetta, BP699, 62321, Boulogne-sur-Mer, France
| | - Manuel Hidalgo
- Spanish Institute of Oceanography (IEO, CSIC), Balearic Oceanographic Center (COB), Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n, 07015, Palma, Spain
| | - Marta Coll
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Joaquim Garrabou
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Daniel Gómez-Gras
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, Hawaii, USA
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Francisco Ramírez
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Núria Margarit
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mario Lepage
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Chloé Dambrine
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Jérémy Lobry
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Paula de la Barra
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Anieke van Leeuwen
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Erez Yeruham
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Anik Brind'Amour
- Ecosystem Dynamics and Sustainability (UMR DECOD), IFREMER, Institut Agro, INRAE, Rue de l'Ile d'Yeu, Nantes, France
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
5
|
Ouled-Cheikh J, March D, Borras-Chavez R, Drago M, Goebel ME, Fariña JM, Gazo M, Coll M, Cardona L. Future climate-induced distribution shifts in a sexually dimorphic key predator of the Southern Ocean. GLOBAL CHANGE BIOLOGY 2024; 30:e17191. [PMID: 38433338 DOI: 10.1111/gcb.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
The response to climate change in highly dimorphic species can be hindered by differences between sexes in habitat preferences and movement patterns. The Antarctic fur seal, Arctocephalus gazella, is the most abundant pinniped in the Southern Hemisphere, and one of the main consumers of Antarctic krill, Euphausia superba, in the Southern Ocean. However, the populations breeding in the Atlantic Southern Ocean are decreasing, partly due to global warming. Male and female Antarctic fur seals differ greatly in body size and foraging ecology, and little is known about their sex-specific responses to climate change. We used satellite tracking data and Earth System Models to predict changes in habitat suitability for male and female Antarctic fur seals from the Western Antarctic Peninsula under different climate change scenarios. Under the most extreme scenario (SSP5-8.5; global average temperature +4.4°C projected by 2100), suitable habitat patches will shift southward during the non-breeding season, leading to a minor overall habitat loss. The impact will be more pronounced for females than for males. The reduction of winter foraging grounds might decrease the survival of post-weaned females, reducing recruitment and jeopardizing population viability. During the breeding season, when males fast on land, suitable foraging grounds for females off the South Shetland Islands will remain largely unmodified, and new ones will emerge in the Bellingshausen Sea. As Antarctic fur seals are income breeders, the foraging grounds of females should be reasonably close to the breeding colony. As a result, the new suitable foraging grounds will be useful for females only if nearby beaches currently covered by sea ice emerge by the end of the century. Furthermore, the colonization of these new, ice-free breeding locations might be limited by strong female philopatry. These results should be considered when managing the fisheries of Antarctic krill in the Southern Ocean.
Collapse
Affiliation(s)
- Jazel Ouled-Cheikh
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- iMARES group, Departament de Recursos Marins Renovables, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - David March
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Paterna, València, Spain
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, UK
| | - Renato Borras-Chavez
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Massimiliano Drago
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Michael E Goebel
- Institute of Marine Sciences, University of California Santa Cruz (UCSC), Santa Cruz, California, USA
- Antarctic Ecosystem Research Division, SWFSC, NMFS, NOAA, La Jolla, California, USA
| | - José M Fariña
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manel Gazo
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Coll
- iMARES group, Departament de Recursos Marins Renovables, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
- Ecopath International Initiative (EII), Barcelona, Spain
| | - Luis Cardona
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Penn JL, Deutsch C. Geographical and taxonomic patterns in aerobic traits of marine ectotherms. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220487. [PMID: 38186276 PMCID: PMC10772604 DOI: 10.1098/rstb.2022.0487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/24/2023] [Indexed: 01/09/2024] Open
Abstract
The metabolism and hypoxia tolerance of marine ectotherms play key roles in limiting species geographical ranges, but underlying traits have only been directly measured for a small fraction of biodiversity. Here we diagnose and analyse spatial and phylogenetic patterns in hypoxia tolerance and its temperature sensitivity at ecologically active metabolic rates, by combining a model of organismal oxygen (O2) balance with global climate and biogeographic data for approximately 25 000 animal species from 13 phyla. Large-scale spatial trait patterns reveal that active hypoxia tolerance is greater and less temperature sensitive among tropical species compared to polar ones, consistent with sparse experimental data. Species energetic demands for activity vary less with temperature than resting costs, an inference confirmed by available rate measurements. Across the tree of life, closely related species share similar hypoxia traits, indicating that evolutionary history shapes physiological tolerances to O2 and temperature. Trait frequencies are highly conserved across phyla, suggesting the breadth of global aerobic conditions selects for convergent trait diversity. Our results support aerobic limitation as a constraint on marine habitat distributions and their responses to climate change and highlight the under-sampling of aerobic traits among species living in the ocean's tropical and polar oxythermal extremes. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Justin L. Penn
- Department of Geosciences, Princeton University, Princeton 08544, NJ, USA
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton 08544, NJ, USA
- High Meadows Environmental Institute, Princeton University, Princeton 08544, NJ, USA
| |
Collapse
|
7
|
Zhu Y, Cui X, Kang B, Liu C, Reygondeau G, Wang Y, Cheung WWL, Chu J. Comparative analysis of climate-induced changes in distribution of representative fish species in the Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168699. [PMID: 38008324 DOI: 10.1016/j.scitotenv.2023.168699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Climate changes are posing remarkable impacts on marine fish and fisheries. Although many studies have addressed the distributional effects of climate change on single fish species or taxa in recent years, comparative studies focusing on different types of fish are still lacking. In this study, we applied dynamic bioclimate envelop models (DBEM), based on three earth system models, to predict sea surface and bottom temperature, as well as the spatial and temporal distribution of nine representative fishes in the Yellow Sea, contain two habitats, i.e., continental shelf benthopelagic (CBD) and continental shelf pelagic-neritic (CPN) fishes, and two thermophilies, i.e., warm temperate (WT) and warm water (WW) fishes. Under a low emissions scenario (RCP 2.6) and a high emissions scenario (RCP 8.5) between 1970 and 2060, results reveal that: a) CPN fishes show a distinct tendency to move to higher latitudes than CBD fishes, and WW fishes show a significant tendency to migrate more widely to the north than WT fishes; b) The relative abundance of CPN fishes is expected to be higher than that of CBD fishes, while there is no apparent difference in relative abundance between WW fishes and WT fishes. The main reasons for this difference are presumed to be: variance of temperature rise between the sea surface and bottom layers, divergent adaptations of the species, and disparate degrees of anthropogenic influence.
Collapse
Affiliation(s)
- Yugui Zhu
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao 266003, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Xiaoyue Cui
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chunlong Liu
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver V5K0A1, BC, Canada; Department of Ecology and Evolutionary Biology Max Planck, Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven 06501, CT, USA
| | - Yunfeng Wang
- Institute of Oceanology, Chinese Academy of Sciences, Shandong, Qingdao 266071, China
| | - William W L Cheung
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver V5K0A1, BC, Canada
| | - Jiansong Chu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
8
|
Coulon N, Elliott S, Teichert N, Auber A, McLean M, Barreau T, Feunteun E, Carpentier A. Northeast Atlantic elasmobranch community on the move: Functional reorganization in response to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17157. [PMID: 38273525 DOI: 10.1111/gcb.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
While spatial distribution shifts have been documented in many marine fishes under global change, the responses of elasmobranchs have rarely been studied, which may have led to an underestimation of their potential additional threats. Given their irreplaceable role in ecosystems and their high extinction risk, we used a 24-year time series (1997-2020) of scientific bottom trawl surveys to examine the effects of climate change on the spatial distribution of nine elasmobranch species within Northeast Atlantic waters. Using a hierarchical modeling of species communities, belonging to the joint species distribution models, we found that suitable habitats for four species increased on average by a factor of 1.6 and, for six species, shifted north-eastwards and/or to deeper waters over the past two decades. By integrating species traits, we showed changes in habitat suitability led to changes in the elasmobranchs trait composition. Moreover, communities shifted to deeper waters and their mean trophic level decreased. We also note an increase in the mean community size at maturity concurrent with a decrease in fecundity. Because skates and sharks are functionally unique and dangerously vulnerable to both climate change and fishing, we advocate for urgent considerations of species traits in management measures. Their use would make it better to identify species whose loss could have irreversible impacts in face of the myriad of anthropogenic threats.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Sophie Elliott
- Salmon & Trout Research Centre, Game & Wildlife Conservation Trust, Wareham, UK
| | - Nils Teichert
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Arnaud Auber
- Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, IFREMER, Boulogne-sur-Mer, France
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Thomas Barreau
- Service des Stations Marine, Station Marine de Dinard, Dinard, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Alexandre Carpentier
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Université de Rennes, Rennes, France
| |
Collapse
|
9
|
Lavin CP, Pauly D, Dimarchopoulou D, Liang C, Costello MJ. Fishery catch is affected by geographic expansion, fishing down food webs and climate change in Aotearoa, New Zealand. PeerJ 2023; 11:e16070. [PMID: 37750081 PMCID: PMC10518166 DOI: 10.7717/peerj.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/20/2023] [Indexed: 09/27/2023] Open
Abstract
Historical fishing effort has resulted, in many parts of the ocean, in increasing catches of smaller, lower trophic level species once larger higher trophic level species have been depleted. Concurrently, changes in the geographic distribution of marine species have been observed as species track their thermal affinity in line with ocean warming. However, geographic shifts in fisheries, including to deeper waters, may conceal the phenomenon of fishing down the food web and effects of climate warming on fish stocks. Fisheries-catch weighted metrics such as the Mean Trophic Level (MTL) and Mean Temperature of the Catch (MTC) are used to investigate these phenomena, although apparent trends of these metrics can be masked by the aforementioned geographic expansion and deepening of fisheries catch across large areas and time periods. We investigated instances of both fishing down trophic levels and climate-driven changes in the geographic distribution of fished species in New Zealand waters from 1950-2019, using the MTL and MTC. Thereafter, we corrected for the masking effect of the geographic expansion of fisheries within these indices by using the Fishing-in-Balance (FiB) index and the adapted Mean Trophic Level (aMTL) index. Our results document the offshore expansion of fisheries across the New Zealand Exclusive Economic Zone (EEZ) from 1950-2019, as well as the pervasiveness of fishing down within nearshore fishing stock assemblages. We also revealed the warming of the MTC for pelagic-associated fisheries, trends that were otherwise masked by the depth- and geographic expansion of New Zealand fisheries across the study period.
Collapse
Affiliation(s)
| | - Daniel Pauly
- Sea Around Us, Institute for the Ocean and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donna Dimarchopoulou
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States
| | - Cui Liang
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | |
Collapse
|
10
|
Gordó-Vilaseca C, Pecuchet L, Coll M, Reiss H, Jüterbock A, Costello MJ. Over 20% of marine fishes shifting in the North and Barents Seas, but not in the Norwegian Sea. PeerJ 2023; 11:e15801. [PMID: 37667749 PMCID: PMC10475276 DOI: 10.7717/peerj.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/06/2023] [Indexed: 09/06/2023] Open
Abstract
Climate warming generally induces poleward range expansions and equatorward range contractions of species' environmental niches on a global scale. Here, we examined the direction and magnitude of species biomass centroid geographic shifts in relation to temperature and depth for 83 fish species in 9,522 standardised research trawls from the North Sea (1998-2020) to the Norwegian (2000-2020) and Barents Sea (2004-2020). We detected an overall significant northward shift of the marine fish community biomass in the North Sea, and individual species northward shifts in the Barents and North Seas, in 20% and 25% of the species' biomass centroids in each respective region. We did not detect overall community shifts in the Norwegian Sea, where two species (8%) shifted in each direction (northwards and southwards). Among 9 biological traits, species biogeographic assignation, preferred temperature, age at maturity and maximum depth were significant explanatory variables for species latitudinal shifts in some of the study areas, and Arctic species shifted significantly faster than boreal species in the Barents Sea. Overall, our results suggest a strong influence of other factors, such as biological interactions, in determining several species' recent geographic shifts.
Collapse
Affiliation(s)
| | - Laurene Pecuchet
- The Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Marta Coll
- Institut de Ciències del Mar (ICM-CSIC) & Ecopath International Initiative (EII), Barcelona, Spain
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | |
Collapse
|
11
|
Alabia ID, García Molinos J, Hirata T, Mueter FJ, David CL. Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate. Sci Rep 2023; 13:4076. [PMID: 36906705 PMCID: PMC10008629 DOI: 10.1038/s41598-023-30943-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
The Arctic region is experiencing drastic climatic changes bringing about potential ecological shifts. Here, we explored marine biodiversity and potential species associations across eight Arctic marine areas between 2000 and 2019. We compiled species occurrences for a subset of 69 marine taxa (i.e., 26 apex predators and 43 mesopredators) and environmental factors to predict taxon-specific distributions using a multi-model ensemble approach. Arctic-wide temporal trends of species richness increased in the last 20 years and highlighted potential emerging areas of species accrual due to climate-driven species redistribution. Further, regional species associations were dominated by positive co-occurrences among species pairs with high frequencies in the Pacific and Atlantic Arctic areas. Comparative analyses of species richness, community composition, and co-occurrence between high and low summer sea ice concentrations revealed contrasting impacts of and detected areas vulnerable to sea ice changes. In particular, low (high) summer sea ice generally resulted in species gains (loss) in the inflow and loss (gains) in the outflow shelves, accompanied by substantial changes in community composition and therefore potential species associations. Overall, the recent changes in biodiversity and species co-occurrences in the Arctic were driven by pervasive poleward range shifts, especially for wide-ranging apex predators. Our findings highlight the varying regional impacts of warming and sea ice loss on Arctic marine communities and provide important insights into the vulnerability of Arctic marine areas to climate change.
Collapse
Affiliation(s)
- Irene D Alabia
- Arctic Research Center, Hokkaido University, N21 W11, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Jorge García Molinos
- Arctic Research Center, Hokkaido University, N21 W11, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Takafumi Hirata
- Arctic Research Center, Hokkaido University, N21 W11, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Franz J Mueter
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd, 315 Lena Point Bldg, Juneau, AK, 99801-8344, USA
| | - Carmen L David
- Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|