1
|
Elhanafy E, Akbari Ahangar A, Roth R, Gamal El-Din TM, Bankston JR, Li J. The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels. J Gen Physiol 2025; 157:e202413669. [PMID: 39820972 PMCID: PMC11740781 DOI: 10.1085/jgp.202413669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025] Open
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating property impacts in electrophysiology measurements. We conducted molecular dynamics (MD) simulations on wild-type channels and six mutants to elucidate the structural basis of their differential impacts. Our 120-µs MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis revealed how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study advances our understanding of structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
2
|
Kulichik OE, Zaytseva AK, Kostareva AA, Zhorov BS. Charge Reversal of the Uppermost Arginine in Sliding Helix S4-I Affects Gating of Cardiac Sodium Channel. Int J Mol Sci 2025; 26:712. [PMID: 39859426 PMCID: PMC11766011 DOI: 10.3390/ijms26020712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4I of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4I in the R219C VUS. Analogous downshift S4I, upon its in silico deactivation, resulted in a salt bridge between R219 and the uppermost glutamate, E161, in helix S2I. To understand how salt bridge elimination affects biophysical characteristics, we generated mutant channel R219E, expressed it in the HEK293-T cells, and employed the patch-clamp method in a whole-cell configuration. Mutation R219E did not change the peak current density but shortened time to the peak current at several potentials, significantly enhanced activation, enhanced steady-state inactivation and steady-state fast inactivation, and slowed recovery from inactivation. Taken together, these data suggest that mutation R219E destabilized the resting state of Nav1.5. Cardiac syndromes associated with mutations R219P/H/C/P or E161Q/K are consistent with the observed changes of biophysical characteristics of mutant channel R219E suggesting pathogenicity of the respective VUSs, as well as ClinVar-reported VUSs involving arginine or glutamate in homologous positions of several Nav1.5 paralogs.
Collapse
Affiliation(s)
- Olga E. Kulichik
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (O.E.K.); (A.K.Z.); (A.A.K.)
| | - Anastasia K. Zaytseva
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (O.E.K.); (A.K.Z.); (A.A.K.)
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Anna A. Kostareva
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (O.E.K.); (A.K.Z.); (A.A.K.)
- Department of Women’s and Children’s Health and Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Boris S. Zhorov
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (O.E.K.); (A.K.Z.); (A.A.K.)
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
Liu Y, Bezanilla F. A sodium channel mutant removes fast inactivation with the inactivation particle bound. J Gen Physiol 2025; 157:e202413667. [PMID: 39601860 PMCID: PMC11602646 DOI: 10.1085/jgp.202413667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Fast inactivation is a key feature of voltage-gated sodium channels and is pivotal for countless physiological functions. Despite the prevalence of the canonical ball-and-chain model, more recent structural results suggest that fast inactivation requires multiple conformational changes beyond the binding of the inactivation particle, the IFM motif. Combining ionic current, gating current, and fluorescent measurements, here we showed that a double mutant at the bottom of the pore domain (CW) removes fast inactivation by interrupting the communication of the IFM motif and the pore. Instead of triggering fast inactivation, the IFM motif binding in CW allows the channel to enter an alternative open state. This alternative open state severely influenced the voltage sensor movements and was not accessible to wild type or other fast inactivation-deficient channels. Our results highlight the multistep nature of the fast inactivation process in mammalian voltage-gated sodium channels and demonstrate that CW modifies the channel behaviors more profoundly than simple removal of fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
4
|
Wang H, Huang J, Zang J, Jin X, Yan N. Drug discovery targeting Na v1.8: Structural insights and therapeutic potential. Curr Opin Chem Biol 2024; 83:102538. [PMID: 39418835 DOI: 10.1016/j.cbpa.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Voltage-gated sodium (Nav) channels are crucial in transmitting action potentials in neurons. The tetrodotoxin-resistant subtype Nav1.8 is predominantly expressed in the peripheral nervous system, offering a unique opportunity to design selective inhibitors for pain relief. A number of compounds have been reported to specifically block Nav1.8. Among these, VX-548 is already in regulatory review for the treatment of moderate-to-severe acute pain and holds the promise to be the first non-opioid pain killer over the past twenty years. Recent structural studies using cryogenic electron microscopy (cryo-EM) and structure-based predictive modeling have provided unprecedented insights into the structural pharmacology of Nav1.8. In this review, we summarize the latest developments in Nav1.8-selective inhibitors, focusing on the druggable sites and mechanisms that confer subtype specificity. These structural insights highlight the potential for Nav1.8 inhibitors to deliver non-addictive pain management, thus illuminating the avenue to next-generation analgesic development.
Collapse
Affiliation(s)
- Huan Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Jie Zang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Guangming District, Shenzhen 518132, Guangdong Province, China.
| |
Collapse
|
5
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
6
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Albani S, Eswaran VSB, Piergentili A, de Souza PCT, Lampert A, Rossetti G. Depletion of membrane cholesterol modifies structure, dynamic and activation of Na v1.7. Int J Biol Macromol 2024; 278:134219. [PMID: 39097041 DOI: 10.1016/j.ijbiomac.2024.134219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Cholesterol is a major component of plasma membranes and plays a significant role in actively regulating the functioning of several membrane proteins in humans. In this study, we focus on the role of cholesterol depletion on the voltage-gated sodium channel Nav1.7, which is primarily expressed in the peripheral sensory neurons and linked to various chronic inherited pain syndromes. Coarse-grained molecular dynamics simulations revealed key dynamic changes of Nav1.7 upon membrane cholesterol depletion: A loss of rigidity in the structural motifs linked to activation and fast-inactivation is observed, suggesting an easier transition of the channel between different gating states. In-vitro whole-cell patch clamp experiments on HEK293t cells expressing Nav1.7 validated these predictions at the functional level: Hyperpolarizing shifts in the voltage-dependence of activation and fast-inactivation were observed along with an acceleration of the time to peak and onset kinetics of fast inactivation. These results underline the critical role of membrane composition, and of cholesterol in particular, in influencing Nav1.7 gating characteristics. Furthermore, our results also point to cholesterol-driven changes of the geometry of drug-binding regions, hinting to a key role of the membrane environment in the regulation of drug effects.
Collapse
Affiliation(s)
- Simone Albani
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany
| | | | - Alessia Piergentili
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Paulo Cesar Telles de Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale, Supérieure de Lyon, 46 All'ee d'Italie, 69364 Lyon, France
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Akbari Ahangar A, Elhanafy E, Blanton H, Li J. Mapping structural distribution and gating-property impacts of disease-associated mutations in voltage-gated sodium channels. iScience 2024; 27:110678. [PMID: 39286500 PMCID: PMC11404175 DOI: 10.1016/j.isci.2024.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Thousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, cardiac arrhythmia, and pain disorders. Yet, the effects of more variants remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications are frequently employed to interpret mutations' effects and guide therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar GoF/LoF effects can stem from unique molecular mechanisms. Utilizing UniProt data, we mapped over 2,400 disease-associated missense mutations across Nav channels. This analysis pinpoints key mutation hotspots and maps patterns of gating-property impacts for the mutations, respectively, located around the selectivity filter, activation gate, fast inactivation region, and voltage-sensing domains. This study shows great potential to enhance prediction accuracy for mutational effects based on the structural context, paving the way for targeted drug design in precision medicine.
Collapse
Affiliation(s)
- Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Hayden Blanton
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
9
|
Todorovic J, Swapna I, Suma A, Carnevale V, Zakon H. Dual mechanisms contribute to enhanced voltage dependence of an electric fish potassium channel. Biophys J 2024; 123:2097-2109. [PMID: 38429925 PMCID: PMC11309972 DOI: 10.1016/j.bpj.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The voltage dependence of different voltage-gated potassium channels, described by the voltage at which half of the channels are open (V1/2), varies over a range of 80 mV and is influenced by factors such as the number of positive gating charges and the identity of the hydrophobic amino acids in the channel's voltage sensor (S4). Here we explore by experimental manipulations and molecular dynamics simulation the contributions of two derived features of an electric fish potassium channel (Kv1.7a) that is among the most voltage-sensitive Shaker family potassium channels known. These are a patch of four contiguous negatively charged glutamates in the S3-S4 extracellular loop and a glutamate in the S3b helix. We find that these negative charges affect V1/2 by separate, complementary mechanisms. In the closed state, the S3-S4 linker negative patch reduces the membrane surface charge biasing the channel to enter the open state while, upon opening, the negative amino acid in the S3b helix faces the second (R2) gating charge of the voltage sensor electrostatically biasing the channel to remain in the open state. This work highlights two evolutionary novelties that illustrate the potential influence of negatively charged amino acids in extracellular loops and adjacent helices to voltage dependence.
Collapse
Affiliation(s)
- Jelena Todorovic
- Department of Neuroscience, The University of Texas, Austin, Texas
| | - Immani Swapna
- Department of Neuroscience, The University of Texas, Austin, Texas
| | - Antonio Suma
- Institute for Computational Molecular Science, College of Science and Technology & Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology & Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Harold Zakon
- Department of Neuroscience, The University of Texas, Austin, Texas; Department of Integrative Biology, The University of Texas, Austin, Texas.
| |
Collapse
|
10
|
Burtscher V, Mount J, Huang J, Cowgill J, Chang Y, Bickel K, Chen J, Yuan P, Chanda B. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Nat Commun 2024; 15:5216. [PMID: 38890331 PMCID: PMC11189445 DOI: 10.1038/s41467-024-49599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Mount
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
11
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Lin Y, Tao E, Champion JP, Corry B. A binding site for phosphoinositides described by multiscale simulations explains their modulation of voltage-gated sodium channels. eLife 2024; 12:RP91218. [PMID: 38465747 DOI: 10.7554/elife.91218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Voltage-gated sodium channels (Naᵥ) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naᵥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naᵥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naᵥ1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naᵥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naᵥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naᵥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naᵥ-related diseases.
Collapse
Affiliation(s)
- Yiechang Lin
- Research School of Biology, Australian National University, Canberra, Australia
| | - Elaine Tao
- Research School of Biology, Australian National University, Canberra, Australia
| | - James P Champion
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
13
|
Li Z, Wu Q, Huang G, Jin X, Li J, Pan X, Yan N. Dissection of the structure-function relationship of Na v channels. Proc Natl Acad Sci U S A 2024; 121:e2322899121. [PMID: 38381792 PMCID: PMC10907234 DOI: 10.1073/pnas.2322899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Voltage-gated sodium channels (Nav) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Nav channels, we have performed systematic structural analysis using human Nav1.7 as a prototype. Guided by the structural differences between wild-type (WT) Nav1.7 and an eleven mutation-containing variant, designated Nav1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 Å. The mutant with nine-point mutations in the pore domain (PD), named Nav1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Nav1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Nav1.7-M2, or even in combination with two additional mutations in the VSDs, named Nav1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Jiaao Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen518107, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen518107, China
| |
Collapse
|
14
|
Stary-Weinzinger A. In silico models of the macromolecular Na V1.5-K IR2.1 complex. Front Physiol 2024; 15:1362964. [PMID: 38468705 PMCID: PMC10925717 DOI: 10.3389/fphys.2024.1362964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
In cardiac cells, the expression of the cardiac voltage-gated Na+ channel (NaV1.5) is reciprocally regulated with the inward rectifying K+ channel (KIR2.1). These channels can form macromolecular complexes that pre-assemble early during forward trafficking (transport to the cell membrane). In this study, we present in silico 3D models of NaV1.5-KIR2.1, generated by rigid-body protein-protein docking programs and deep learning-based AlphaFold-Multimer software. Modeling revealed that the two channels could physically interact with each other along the entire transmembrane region. Structural mapping of disease-associated mutations revealed a hotspot at this interface with several trafficking-deficient variants in close proximity. Thus, examining the role of disease-causing variants is important not only in isolated channels but also in the context of macromolecular complexes. These findings may contribute to a better understanding of the life-threatening cardiovascular diseases underlying KIR2.1 and NaV1.5 malfunctions.
Collapse
Affiliation(s)
- Anna Stary-Weinzinger
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Sumino A, Sumikama T, Shibata M, Irie K. Voltage sensors of a Na + channel dissociate from the pore domain and form inter-channel dimers in the resting state. Nat Commun 2023; 14:7835. [PMID: 38114487 PMCID: PMC10730821 DOI: 10.1038/s41467-023-43347-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Understanding voltage-gated sodium (Nav) channels is significant since they generate action potential. Nav channels consist of a pore domain (PD) and a voltage sensor domain (VSD). All resolved Nav structures in different gating states have VSDs that tightly interact with PDs; however, it is unclear whether VSDs attach to PDs during gating under physiological conditions. Here, we reconstituted three different voltage-dependent NavAb, which is cloned from Arcobacter butzleri, into a lipid membrane and observed their structural dynamics by high-speed atomic force microscopy on a sub-second timescale in the steady state. Surprisingly, VSDs dissociated from PDs in the mutant in the resting state and further dimerized to form cross-links between channels. This dimerization would occur at a realistic channel density, offering a potential explanation for the facilitation of positive cooperativity of channel activity in the rising phase of the action potential.
Collapse
Affiliation(s)
- Ayumi Sumino
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Takashi Sumikama
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Mikihiro Shibata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsumasa Irie
- Department of Biophysical chemistry School of Pharmaceutical Science, Wakayama Medical University, Wakayama, 640-8156, Japan.
| |
Collapse
|
16
|
Yuan JH, Cheng X, Matsuura E, Higuchi Y, Ando M, Hashiguchi A, Yoshimura A, Nakachi R, Mine J, Taketani T, Maeda K, Kawakami S, Kira R, Tanaka S, Kanai K, Dib-Hajj F, Dib-Hajj SD, Waxman SG, Takashima H. Genetic, electrophysiological, and pathological studies on patients with SCN9A-related pain disorders. J Peripher Nerv Syst 2023; 28:597-607. [PMID: 37555797 DOI: 10.1111/jns.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND AND AIMS Voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, has been linked to diverse painful peripheral neuropathies, represented by the inherited erythromelalgia (EM) and paroxysmal extreme pain disorder (PEPD). The aim of this study was to determine the genetic etiology of patients experiencing neuropathic pain, and shed light on the underlying pathogenesis. METHODS We enrolled eight patients presenting with early-onset painful peripheral neuropathies, consisting of six cases exhibiting EM/EM-like disorders and two cases clinically diagnosed with PEPD. We conducted a gene-panel sequencing targeting 18 genes associated with hereditary sensory and/or autonomic neuropathy. We introduced novel SCN9A mutation (F1624S) into a GFP-2A-Nav1.7rNS plasmid, and the constructs were then transiently transfected into HEK293 cells. We characterized both wild-type and F1624S Nav1.7 channels using an automated high-throughput patch-clamp system. RESULTS From two patients displaying EM-like/EM phenotypes, we identified two SCN9A mutations, I136V and P1308L. Among two patients diagnosed with PEPD, we found two additional mutations in SCN9A, F1624S (novel) and A1632E. Patch-clamp analysis of Nav1.7-F1624S revealed depolarizing shifts in both steady-state fast inactivation (17.4 mV, p < .001) and slow inactivation (5.5 mV, p < .001), but no effect on channel activation was observed. INTERPRETATION Clinical features observed in our patients broaden the phenotypic spectrum of SCN9A-related pain disorders, and the electrophysiological analysis enriches the understanding of genotype-phenotype association caused by Nav1.7 gain-of-function mutations.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Xiaoyang Cheng
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryo Nakachi
- Department of Neurology, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Jun Mine
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Kenichi Maeda
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Saori Kawakami
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Shoko Tanaka
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Kazuaki Kanai
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Fadia Dib-Hajj
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
17
|
Gao S, Yao X, Chen J, Huang G, Fan X, Xue L, Li Z, Wu T, Zheng Y, Huang J, Jin X, Wang Y, Wang Z, Yu Y, Liu L, Pan X, Song C, Yan N. Structural basis for human Ca v1.2 inhibition by multiple drugs and the neurotoxin calciseptine. Cell 2023; 186:5363-5374.e16. [PMID: 37972591 DOI: 10.1016/j.cell.2023.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/16/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Cav1.2 channels play crucial roles in various neuronal and physiological processes. Here, we present cryo-EM structures of human Cav1.2, both in its apo form and in complex with several drugs, as well as the peptide neurotoxin calciseptine. Most structures, apo or bound to calciseptine, amlodipine, or a combination of amiodarone and sofosbuvir, exhibit a consistent inactivated conformation with a sealed gate, three up voltage-sensing domains (VSDs), and a down VSDII. Calciseptine sits on the shoulder of the pore domain, away from the permeation path. In contrast, when pinaverium bromide, an antispasmodic drug, is inserted into a cavity reminiscent of the IFM-binding site in Nav channels, a series of structural changes occur, including upward movement of VSDII coupled with dilation of the selectivity filter and its surrounding segments in repeat III. Meanwhile, S4-5III merges with S5III to become a single helix, resulting in a widened but still non-conductive intracellular gate.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Urology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Xia Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jiaofeng Chen
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lingfeng Xue
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Wu
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yupeng Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong 518107, China
| | - Chen Song
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
18
|
Yeo H, Mehta V, Gulati A, Drew D. Structure and electromechanical coupling of a voltage-gated Na +/H + exchanger. Nature 2023; 623:193-201. [PMID: 37880360 PMCID: PMC10620092 DOI: 10.1038/s41586-023-06518-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/04/2023] [Indexed: 10/27/2023]
Abstract
Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.
Collapse
Affiliation(s)
- Hyunku Yeo
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ved Mehta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
19
|
Ahangar AA, Elhanafy E, Blanton H, Li J. Mapping Structural Distribution and Gating-Property Impacts of Disease-Associated Missense Mutations in Voltage-Gated Sodium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558623. [PMID: 37781633 PMCID: PMC10541146 DOI: 10.1101/2023.09.20.558623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Thousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, autism, cardiac arrhythmia, and pain disorders. Yet variant effects of more mutations remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications is frequently employed to interpret of variant effects on function and guide precision therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar phenotypic effects can stem from unique molecular mechanisms. Our results show a high biophysical agreement (86%) between homologous disease-associated variants in different Nav genes, significantly surpassing the 60% phenotype (GoFo/LoFo) agreement among homologous mutants, suggesting the need for more nuanced disease categorization and treatment based on specific gating-property changes. Using UniProt data, we mapped over 2,400 disease-associated missense variants across nine human Nav channels and identified three clusters of mutation hotspots. Our findings indicate that mutations near the selectivity filter generally diminish the maximal current amplitude, while those in the fast inactivation region lean towards a depolarizing shift in half-inactivation voltage in steady-state activation, and mutations in the activation gate commonly enhance persistent current. In contrast to mutations in the PD, those within the VSD exhibit diverse impacts and subtle preferences on channel activity. This study shows great potential to enhance prediction accuracy for variant effects based on the structural context, laying the groundwork for targeted drug design in precision medicine.
Collapse
Affiliation(s)
- Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Hayden Blanton
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| |
Collapse
|
20
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A mechanistic reinterpretation of fast inactivation in voltage-gated Na + channels. Nat Commun 2023; 14:5072. [PMID: 37604801 PMCID: PMC10442390 DOI: 10.1038/s41467-023-40514-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
The hinged-lid model was long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif is located far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive, leaky inactivated state and decreases the selectivity for Na+ ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
21
|
Wu Q, Huang J, Fan X, Wang K, Jin X, Huang G, Li J, Pan X, Yan N. Structural mapping of Na v1.7 antagonists. Nat Commun 2023; 14:3224. [PMID: 37270609 DOI: 10.1038/s41467-023-38942-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Voltage-gated sodium (Nav) channels are targeted by a number of widely used and investigational drugs for the treatment of epilepsy, arrhythmia, pain, and other disorders. Despite recent advances in structural elucidation of Nav channels, the binding mode of most Nav-targeting drugs remains unknown. Here we report high-resolution cryo-EM structures of human Nav1.7 treated with drugs and lead compounds with representative chemical backbones at resolutions of 2.6-3.2 Å. A binding site beneath the intracellular gate (site BIG) accommodates carbamazepine, bupivacaine, and lacosamide. Unexpectedly, a second molecule of lacosamide plugs into the selectivity filter from the central cavity. Fenestrations are popular sites for various state-dependent drugs. We show that vinpocetine, a synthetic derivative of a vinca alkaloid, and hardwickiic acid, a natural product with antinociceptive effect, bind to the III-IV fenestration, while vixotrigine, an analgesic candidate, penetrates the IV-I fenestration of the pore domain. Our results permit building a 3D structural map for known drug-binding sites on Nav channels summarized from the present and previous structures.
Collapse
Affiliation(s)
- Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Kan Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiaao Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
22
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A Mechanistic Reinterpretation of Fast Inactivation in Voltage-Gated Na+ Channels. RESEARCH SQUARE 2023:rs.3.rs-2924505. [PMID: 37292679 PMCID: PMC10246267 DOI: 10.21203/rs.3.rs-2924505/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hinged-lid model is long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif locates far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive "leaky" inactivated state and decreases the selectivity for Na + ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
23
|
Kostritskii AY, Machtens JP. Domain- and state-specific shape of the electric field tunes voltage sensing in voltage-gated sodium channels. Biophys J 2023; 122:1807-1821. [PMID: 37077046 PMCID: PMC10209041 DOI: 10.1016/j.bpj.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
The ability to sense transmembrane voltage underlies most physiological roles of voltage-gated sodium (Nav) channels. Whereas the key role of their voltage-sensing domains (VSDs) in channel activation is well established, the molecular underpinnings of voltage coupling remain incompletely understood. Voltage-dependent energetics of the activation process can be described in terms of the gating charge that is defined by coupling of charged residues to the external electric field. The shape of the electric field within VSDs is therefore crucial for the activation of voltage-gated ion channels. Here, we employed molecular dynamics simulations of cardiac Nav1.5 and bacterial NavAb, together with our recently developed tool g_elpot, to gain insights into the voltage-sensing mechanisms of Nav channels via high-resolution quantification of VSD electrostatics. In contrast to earlier low-resolution studies, we found that the electric field within VSDs of Nav channels has a complex isoform- and domain-specific shape, which prominently depends on the activation state of a VSD. Different VSDs vary not only in the length of the region where the electric field is focused but also differ in their overall electrostatics, with possible implications in the diverse ion selectivity of their gating pores. Due to state-dependent field reshaping, not only translocated basic but also relatively immobile acidic residues contribute significantly to the gating charge. In the case of NavAb, we found that the transition between structurally resolved activated and resting states results in a gating charge of 8e, which is noticeably lower than experimental estimates. Based on the analysis of VSD electrostatics in the two activation states, we propose that the VSD likely adopts a deeper resting state upon hyperpolarization. In conclusion, our results provide an atomic-level description of the gating charge, demonstrate diversity in VSD electrostatics, and reveal the importance of electric-field reshaping for voltage sensing in Nav channels.
Collapse
Affiliation(s)
- Andrei Y Kostritskii
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany; Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany; Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
24
|
Wisedchaisri G, Gamal El-Din TM, Zheng N, Catterall WA. Structural basis for severe pain caused by mutations in the S4-S5 linkers of voltage-gated sodium channel Na V1.7. Proc Natl Acad Sci U S A 2023; 120:e2219624120. [PMID: 36996107 PMCID: PMC10083536 DOI: 10.1073/pnas.2219624120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
Gain-of-function mutations in voltage-gated sodium channel NaV1.7 cause severe inherited pain syndromes, including inherited erythromelalgia (IEM). The structural basis of these disease mutations, however, remains elusive. Here, we focused on three mutations that all substitute threonine residues in the alpha-helical S4-S5 intracellular linker that connects the voltage sensor to the pore: NaV1.7/I234T, NaV1.7/I848T, and NaV1.7/S241T in order of their positions in the amino acid sequence within the S4-S5 linkers. Introduction of these IEM mutations into the ancestral bacterial sodium channel NaVAb recapitulated the pathogenic gain-of-function of these mutants by inducing a negative shift in the voltage dependence of activation and slowing the kinetics of inactivation. Remarkably, our structural analysis reveals a common mechanism of action among the three mutations, in which the mutant threonine residues create new hydrogen bonds between the S4-S5 linker and the pore-lining S5 or S6 segment in the pore module. Because the S4-S5 linkers couple voltage sensor movements to pore opening, these newly formed hydrogen bonds would stabilize the activated state substantially and thereby promote the 8 to 18 mV negative shift in the voltage dependence of activation that is characteristic of the NaV1.7 IEM mutants. Our results provide key structural insights into how IEM mutations in the S4-S5 linkers may cause hyperexcitability of NaV1.7 and lead to severe pain in this debilitating disease.
Collapse
Affiliation(s)
| | | | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | | |
Collapse
|
25
|
Kimball IH, Nguyen PT, Olivera BM, Sack JT, Yarov-Yarovoy V. Molecular determinants of μ-conotoxin KIIIA interaction with the human voltage-gated sodium channel Na V1.7. Front Pharmacol 2023; 14:1156855. [PMID: 37007002 PMCID: PMC10060530 DOI: 10.3389/fphar.2023.1156855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The voltage-gated sodium (NaV) channel subtype NaV1.7 plays a critical role in pain signaling, making it an important drug target. Here we studied the molecular interactions between μ-Conotoxin KIIIA (KIIIA) and the human NaV1.7 channel (hNaV1.7). We developed a structural model of hNaV1.7 using Rosetta computational modeling and performed in silico docking of KIIIA using RosettaDock to predict residues forming specific pairwise contacts between KIIIA and hNaV1.7. We experimentally validated these contacts using mutant cycle analysis. Comparison between our KIIIA-hNaV1.7 model and the cryo-EM structure of KIIIA-hNaV1.2 revealed key similarities and differences between NaV channel subtypes with potential implications for the molecular mechanism of toxin block. The accuracy of our integrative approach, combining structural data with computational modeling, experimental validation, and molecular dynamics simulations, suggests that Rosetta structural predictions will be useful for rational design of novel biologics targeting specific NaV channels.
Collapse
Affiliation(s)
- Ian H. Kimball
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | | | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
The sensor for animal electricity. Proc Natl Acad Sci U S A 2023; 120:e2218703120. [PMID: 36574669 PMCID: PMC9910495 DOI: 10.1073/pnas.2218703120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
27
|
Profile of Nieng Yan. Proc Natl Acad Sci U S A 2022; 119:e2210772119. [PMID: 35905326 PMCID: PMC9388112 DOI: 10.1073/pnas.2210772119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|