1
|
Wu H, Li Z, Yang L, He L, Liu H, Yang S, Xu Q, Li Y, Li W, Li Y, Gong Z, Shen Y, Yang X, Huang J, Yu F, Li L, Zhu J, Sun L, Fu Y, Kong W. ANK Deficiency-Mediated Cytosolic Citrate Accumulation Promotes Aortic Aneurysm. Circ Res 2024; 135:1175-1192. [PMID: 39513269 DOI: 10.1161/circresaha.124.325152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Disturbed metabolism and transport of citrate play significant roles in various pathologies. However, vascular citrate regulation and its potential role in aortic aneurysm (AA) development remain poorly understood. METHODS Untargeted metabolomics by mass spectrometry was applied to identify upregulated metabolites of the tricarboxylic acid cycle in AA tissues of mice. To investigate the role of citrate and its transporter ANK (progressive ankylosis protein) in AA development, vascular smooth muscle cell (VSMC)-specific Ank-knockout mice were used in both Ang II (angiotensin II)- and CaPO4-induced AA models. RESULTS Citrate was abnormally increased in both human and murine aneurysmal tissues, which was associated with downregulation of ANK, a citrate membrane transporter, in VSMCs. The knockout of Ank in VSMCs promoted AA formation in both Ang II- and CaPO4-induced AA models, while its overexpression inhibited the development of aneurysms. Mechanistically, ANK deficiency in VSMCs caused abnormal cytosolic accumulation of citrate, which was cleaved into acetyl coenzyme A and thus intensified histone acetylation at H3K23, H3K27, and H4K5. Cleavage under target and tagmentation analysis further identified that ANK deficiency-induced histone acetylation activated the transcription of inflammatory genes in VSMCs and thus promoted a citrate-related proinflammatory VSMC phenotype during aneurysm diseases. Accordingly, suppressing citrate cleavage to acetyl coenzyme A downregulated inflammatory gene expression in VSMCs and restricted ANK deficiency-aggravated AA formation. CONCLUSIONS Our studies define the pathogenic role of ANK deficiency-induced cytosolic citrate accumulation in AA pathogenesis and an undescribed citrate-related proinflammatory VSMC phenotype. Targeting ANK-mediated citrate transport may emerge as a novel diagnostic and therapeutic strategy in AA.
Collapse
MESH Headings
- Animals
- Mice
- Citric Acid/metabolism
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/genetics
- Aortic Aneurysm/pathology
- Aortic Aneurysm/etiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Cytosol/metabolism
- Male
- Cells, Cultured
- Acetylation
- Acetyl Coenzyme A/metabolism
- Disease Models, Animal
- Histones/metabolism
Collapse
Affiliation(s)
- Hao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China (L.Y.)
| | - Lin He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, China (H.L., Q.X., J.Z.)
| | - Shiyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinfeng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanjie Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenqiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yiran Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo, China (Z.G.)
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (L.L.)
| | - Junming Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Luyang Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | | |
Collapse
|
2
|
Li J, Zhang X, Peng ZX, Chen JH, Liang JH, Ke LQ, Huang D, Cheng WX, Lin S, Li G, Hou R, Zhong WZ, Lin ZJ, Qin L, Chen GQ, Zhang P. Metabolically activated energetic materials mediate cellular anabolism for bone regeneration. Trends Biotechnol 2024; 42:1745-1776. [PMID: 39237385 DOI: 10.1016/j.tibtech.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation. Additionally, it raises citrate levels in the tricarboxylic acid (TCA) cycle, facilitating the synthesis of citrate-containing apatite during hBMSCs osteogenesis. Furthermore, 3HB administration significantly increased bone mass in rats with osteoporosis induced by ovariectomy. The findings also showed that P(3HB-co-4HB) scaffold substantially enhances long-term vascularized bone regeneration in rat cranial defect models. These findings reveal a previously unknown role of 3HB in promoting osteogenesis of hBMSCs and highlight the metabolic activation of P(3HB-co-4HB) scaffold for bone regeneration.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China.
| | - Xu Zhang
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Zi-Xin Peng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Hai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Hui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Li-Qing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Dan Huang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wen-Xiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rui Hou
- Nam Yue Natural Medicine Co., Ltd., Macau, China
| | | | - Zheng-Jie Lin
- Department of Stomatology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, 518067, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Guo-Qiang Chen
- School of Life Sciences, Center of Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Pei L, Yao Z, Liang D, Yang K, Tao L. Mitochondria in skeletal system-related diseases. Biomed Pharmacother 2024; 181:117505. [PMID: 39499974 DOI: 10.1016/j.biopha.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal system-related diseases, such as osteoporosis, arthritis, osteosarcoma and sarcopenia, are becoming major public health concerns. These diseases are characterized by insidious progression, which seriously threatens patients' health and quality of life. Early diagnosis and prevention in high-risk populations can effectively prevent the deterioration of these patients. Mitochondria are essential organelles for maintaining the physiological activity of the skeletal system. Mitochondrial functions include contributing to the energy supply, modulating the Ca2+ concentration, maintaining redox balance and resisting the inflammatory response. They participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes and myocytes to external stimuli. In this review, we describe the pathogenesis of skeletal system diseases, focusing on mitochondrial function. In addition to osteosarcoma, a characteristic of which is active mitochondrial metabolism, mitochondrial damage occurs during the development of other diseases. Impairment of mitochondria leads to an imbalance in osteogenesis and osteoclastogenesis in osteoporosis, cartilage degeneration and inflammatory infiltration in arthritis, and muscle atrophy and excitationcontraction coupling blockade in sarcopenia. Overactive mitochondrial metabolism promotes the proliferation and migration of osteosarcoma cells. The copy number of mitochondrial DNA and mitochondria-derived peptides can be potential biomarkers for the diagnosis of these disorders. High-risk factor detection combined with mitochondrial component detection contributes to the early detection of these diseases. Targeted mitochondrial intervention is an effective method for treating these patients. We analyzed skeletal system-related diseases from the perspective of mitochondria and provided new insights for their diagnosis, prevention and treatment by demonstrating the relationship between mitochondria and the skeletal system.
Collapse
Affiliation(s)
- Liang Pei
- Department of Pediatrics, Shengjing Hospital of China Medical University, China
| | - Zhuo Yao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Dong Liang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| |
Collapse
|
4
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Shapiro IM, Risbud MV, Landis WJ. Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria. Bone 2024; 185:117112. [PMID: 38697384 PMCID: PMC11251007 DOI: 10.1016/j.bone.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
6
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol 2024; 20:399-413. [PMID: 38499689 DOI: 10.1038/s41574-024-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
9
|
Robin M, Djediat C, Bardouil A, Baccile N, Chareyron C, Zizak I, Fratzl P, Selmane M, Haye B, Genois I, Krafft J, Costentin G, Azaïs T, Artzner F, Giraud‐Guille M, Zaslansky P, Nassif N. Acidic Osteoid Templates the Plywood Structure of Bone Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304454. [PMID: 38115757 PMCID: PMC10916609 DOI: 10.1002/advs.202304454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.
Collapse
Affiliation(s)
- Marc Robin
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Chakib Djediat
- Muséum National d'Histoire NaturelleUMR CNRS 7245, Bâtiment 39, CP 39, 57 rue CuvierParis75231France
| | - Arnaud Bardouil
- Université de Rennes, CNRSInstitut de Physique de Rennes (IPR)RennesF‐35000France
| | - Niki Baccile
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Camille Chareyron
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Ivo Zizak
- Helmholtz‐Zentrum Berlin für Materialien und Energie – Speicherring BESSY IIAlbert‐Einstein Str. 15D‐12349BerlinGermany
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and Interfacesam Mühlenberg 114476PotsdamGermany
| | - Mohamed Selmane
- Institut des Matériaux de Paris CentreSorbonne UniversitéParisF‐75005France
| | - Bernard Haye
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Isabelle Genois
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Jean‐Marc Krafft
- Sorbonne Université, CNRSLaboratoire Réactivité de Surface (LRS)ParisF‐75005France
| | - Guylène Costentin
- Sorbonne Université, CNRSLaboratoire Réactivité de Surface (LRS)ParisF‐75005France
| | - Thierry Azaïs
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Franck Artzner
- Université de Rennes, CNRSInstitut de Physique de Rennes (IPR)RennesF‐35000France
| | - Marie‐Madeleine Giraud‐Guille
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Paul Zaslansky
- Department for OperativePreventive and Pediatric DentistryCharité – Universitätsmedizin BerlinAßmannshauser Str. 4–614197BerlinGermany
| | - Nadine Nassif
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| |
Collapse
|
10
|
Brown TL, Bainbridge MN, Zahn G, Nye KL, Porter BE. The growing research toolbox for SLC13A5 citrate transporter disorder: a rare disease with animal models, cell lines, an ongoing Natural History Study and an engaged patient advocacy organization. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241263972. [PMID: 39091896 PMCID: PMC11292725 DOI: 10.1177/26330040241263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024]
Abstract
TESS Research Foundation (TESS) is a patient-led nonprofit organization seeking to understand the basic biology and clinical impact of pathogenic variants in the SLC13A5 gene. TESS aims to improve the fundamental understanding of citrate's role in the brain, and ultimately identify treatments and cures for the associated disease. TESS identifies, organizes, and develops collaboration between researchers, patients, clinicians, and the pharmaceutical industry to improve the lives of those suffering from SLC13A5 citrate transport disorder. TESS and its partners have developed multiple molecular tools, cellular and animal models, and taken the first steps toward drug discovery and development for this disease. However, much remains to be done to improve our understanding of the disorder associated with SLC13A5 variants and identify effective treatments for this devastating disease. Here, we describe the available SLC13A5 resources from the community of experts, to foundational tools, to in vivo and in vitro tools, and discuss unanswered research questions needed to move closer to a cure.
Collapse
Affiliation(s)
| | | | | | - Kim L. Nye
- TESS Research Foundation, Menlo Park, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Zahn G, Baukmann HA, Wu J, Jordan J, Birkenfeld AL, Dirckx N, Schmidt MF. Targeting Longevity Gene SLC13A5: A Novel Approach to Prevent Age-Related Bone Fragility and Osteoporosis. Metabolites 2023; 13:1186. [PMID: 38132868 PMCID: PMC10744747 DOI: 10.3390/metabo13121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reduced expression of the plasma membrane citrate transporter SLC13A5, also known as INDY, has been linked to increased longevity and mitigated age-related cardiovascular and metabolic diseases. Citrate, a vital component of the tricarboxylic acid cycle, constitutes 1-5% of bone weight, binding to mineral apatite surfaces. Our previous research highlighted osteoblasts' specialized metabolic pathway facilitated by SLC13A5 regulating citrate uptake, production, and deposition within bones. Disrupting this pathway impairs bone mineralization in young mice. New Mendelian randomization analysis using UK Biobank data indicated that SNPs linked to reduced SLC13A5 function lowered osteoporosis risk. Comparative studies of young (10 weeks) and middle-aged (52 weeks) osteocalcin-cre-driven osteoblast-specific Slc13a5 knockout mice (Slc13a5cKO) showed a sexual dimorphism: while middle-aged females exhibited improved elasticity, middle-aged males demonstrated enhanced bone strength due to reduced SLC13A5 function. These findings suggest reduced SLC13A5 function could attenuate age-related bone fragility, advocating for SLC13A5 inhibition as a potential osteoporosis treatment.
Collapse
Affiliation(s)
- Grit Zahn
- Eternygen GmbH, Westhafenstrasse 1, 13353 Berlin, Germany
| | | | - Jasmine Wu
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147 Cologne, Germany;
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Department of Diabetes, Life Sciences and Medicine, Cardiovascular Medicine and Sciences, Kings College London, London WC2R 2LS, UK
| | - Naomi Dirckx
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Marco F. Schmidt
- biotx.ai GmbH, Am Mühlenberg 11, 14476 Potsdam, Germany (M.F.S.)
| |
Collapse
|
12
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Lee Y, Tjeerdema E, Kling S, Chang N, Hamdoun A. Solute carrier (SLC) expression reveals skeletogenic cell diversity. Dev Biol 2023; 503:68-82. [PMID: 37611888 DOI: 10.1016/j.ydbio.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Within the developing embryo is a microcosm of cell type diversity. Single cell RNA-sequencing (scRNA-seq) is used to reveal cell types, typically by grouping cells according to their gene regulatory states. However, both across and within these regulatory states are additional layers of cellular diversity represented by the differential expression of genes that govern cell function. Here, we analyzed scRNA-seq data representing the late gastrula stage of Strongylocentrotus purpuratus (purple sea urchin) to understand the patterning of transporters belonging to the ABC and SLC families. These transporters handle diverse substrates from amino acids to signaling molecules, nutrients and xenobiotics. Using transporter-based clustering, we identified unique transporter patterns that are both shared across cell lineages, as well as those that were unique to known cell types. We further explored three patterns of transporter expression in mesodermal cells including secondary mesenchyme cells (pigment cells and blastocoelar cells) and skeletogenic cells (primary mesenchyme cells). The results revealed the enrichment of SMTs potentially involved in nutrient absorption (SLC5A9, SLC7A11, SLC35F3, and SLC52A3) and skeletogenesis (SLC9A3, SLC13A2/3/5, and SLC39A13) in pigment cells and blastocoelar cells respectively. The results indicated that the strategy of clustering by cellular activity can be useful for discovering cellular populations that would otherwise remain obscured.
Collapse
Affiliation(s)
- Yoon Lee
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Evan Tjeerdema
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Svenja Kling
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Nathan Chang
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Amro Hamdoun
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Mapping the Metabolic Niche of Citrate Metabolism and SLC13A5. Metabolites 2023; 13:metabo13030331. [PMID: 36984771 PMCID: PMC10054676 DOI: 10.3390/metabo13030331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The small molecule citrate is a key molecule that is synthesized de novo and involved in diverse biochemical pathways influencing cell metabolism and function. Citrate is highly abundant in the circulation, and cells take up extracellular citrate via the sodium-dependent plasma membrane transporter NaCT encoded by the SLC13A5 gene. Citrate is critical to maintaining metabolic homeostasis and impaired NaCT activity is implicated in metabolic disorders. Though citrate is one of the best known and most studied metabolites in humans, little is known about the consequences of altered citrate uptake and metabolism. Here, we review recent findings on SLC13A5, NaCT, and citrate metabolism and discuss the effects on metabolic homeostasis and SLC13A5-dependent phenotypes. We discuss the “multiple-hit theory” and how stress factors induce metabolic reprogramming that may synergize with impaired NaCT activity to alter cell fate and function. Furthermore, we underline how citrate metabolism and compartmentalization can be quantified by combining mass spectrometry and tracing approaches. We also discuss species-specific differences and potential therapeutic implications of SLC13A5 and NaCT. Understanding the synergistic impact of multiple stress factors on citrate metabolism may help to decipher the disease mechanisms associated with SLC13A5 citrate transport disorders.
Collapse
|
15
|
Spelbrink EM, Brown TL, Brimble E, Blanco KA, Nye KL, Porter BE. Characterizing a rare neurogenetic disease, SLC13A5 citrate transporter disorder, utilizing clinical data in a cloud-based medical record collection system. Front Genet 2023; 14:1109547. [PMID: 37025451 PMCID: PMC10072280 DOI: 10.3389/fgene.2023.1109547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: SLC13A5 citrate transporter disorder is a rare autosomal recessive genetic disease that has a constellation of neurologic symptoms. To better characterize the neurologic and clinical laboratory phenotype, we utilized patient medical records collected by Ciitizen, an Invitae company, with support from the TESS Research Foundation. Methods: Medical records for 15 patients with a suspected genetic and clinical diagnosis of SLC13A5 citrate transporter disorder were collected by Ciitizen, an Invitae company. Genotype, clinical phenotypes, and laboratory data were extracted and analyzed. Results: The 15 patients reported all had epilepsy and global developmental delay. Patients continued to attain motor milestones, though much later than their typically developing peers. Clinical diagnoses support abnormalities in communication, and low or mixed tone with several movement disorders, including, ataxia and dystonia. Serum citrate was elevated in the 3 patients in whom it was measured; other routine laboratory studies assessing renal, liver and blood function had normal values or no consistent abnormalities. Many electroencephalograms (EEGs) were performed (1 to 35 per patient), and most but not all were abnormal, with slowing and/or epileptiform activity. Fourteen of the patients had one or more brain magnetic resonance imaging (MRI) reports: 7 patients had at least one normal brain MRI, but not with any consistent findings except white matter signal changes. Discussion: These results show that in addition to the epilepsy phenotype, SLC13A5 citrate transporter disorder impacts global development, with marked abnormalities in motor abilities, tone, coordination, and communication skills. Further, utilizing cloud-based medical records allows industry, academic, and patient advocacy group collaboration to provide preliminary characterization of a rare genetic disorder. Additional characterization of the neurologic phenotype will be critical to future study and developing treatment for this and related rare genetic disorders.
Collapse
Affiliation(s)
- Emily M. Spelbrink
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Palo Alto, CA, United States
| | - Tanya L. Brown
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA, United States
| | | | - Kirsten A. Blanco
- Invitae, San Francisco, CA, United States
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Kimberly L. Nye
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA, United States
| | - Brenda E. Porter
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Palo Alto, CA, United States
- *Correspondence: Brenda E. Porter,
| |
Collapse
|