1
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
2
|
Liu J, Lu Y, Bhuiyan P, Gruttner J, Louis LS, Yi Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit lipopolysaccharide-induced depression and anxiety behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611461. [PMID: 39314481 PMCID: PMC11418943 DOI: 10.1101/2024.09.06.611461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study investigates the therapeutic effectiveness of intranasal dantrolene nanoparticles pretreatment to inhibit lipopolysaccharide (LPS)-induced pathological inflammation and synapse destruction and depressive and anxiety behavior in mice. Both wild-type (WT) B6SJLF1/J and 5XFAD adult mice (5-10 months old) were pretreated with intranasal dantrolene nanoparticles (dantrolene: 5mg/kg), daily, Monday to Friday, 5 days per week, for 4 weeks. Then, mice were treated with intraperitoneal injection of LPS (5mg/kg) for one time. Behavioral tests for depression, anxiety and side effects were performed 24 hours after a one-time LPS injection. Biomarkers for pyroptosis-related inflammation cytokines (IL-1β and IL-18) in blood and brains were measured using enzyme-linked immunosorbent assay (ELISA) and immunoblotting, respectively. The changes of primary proteins activation inflammatory pyroptosis (NLRP3: NLR family pyrin domain containing 3, Caspase-1, N-GSDMD: N terminal protein gasdermin D) and synapse proteins (PSD-95 and synpatin-1) in brains were measured using immunoblotting. Intranasal dantrolene nanoparticles robustly inhibited LPS-induced depression and anxiety behavior in both WT and 5XFAD mice, without obvious side effects. Intranasal dantrolene nanoparticles significantly inhibited LPS-induced pathological elevation of IL-1β and IL-18 in the blood and synapse loss in the brain. Intranasal dantrolene nanoparticles trended to inhibit LPS-induced elevation of IL1β and IL-18 and the pyroptosis activation proteins in the brain in both type of mice. In conclusion, intranasal dantrolene nanoparticles demonstrated neuroprotection against inflammation mediated depression and anxiety behaviors and should be studied furthermore as a future effective drug treatment of major depression disorder or anxiety psychiatric disorder, especially in AD patients.
Collapse
|
3
|
Nie R, Zhou X, Fu J, Hu S, Zhang Q, Jiang W, Yan Y, Cao X, Yuan D, Long Y, Hong H, Tang S. GPR17 modulates anxiety-like behaviors via basolateral amygdala to ventral hippocampal CA1 glutamatergic projection. Acta Pharm Sin B 2024; 14:4789-4805. [PMID: 39664418 PMCID: PMC11628806 DOI: 10.1016/j.apsb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
Anxiety disorders are one of the most epidemic and chronic psychiatric disorders. An incomplete understanding of anxiety pathophysiology has limited the development of highly effective drugs against these disorders. GPR17 has been shown to be involved in multiple sclerosis and some acute brain injury disorders. However, no study has investigated the role of GPR17 in psychiatric disorders. In a well-established chronic restraint stress (CRS) mouse model, using a combination of pharmacological and molecular biology techniques, viral tracing, in vitro electrophysiology recordings, in vivo fiber photometry, chemogenetic manipulations and behavioral tests, we demonstrated that CRS induced anxiety-like behaviors and increased the expression of GPR17 in basolateral amygdala (BLA) glutamatergic neurons. Inhibition of GPR17 by cangrelor or knockdown of GPR17 by adeno-associated virus in BLA glutamatergic neurons effectively improved anxiety-like behaviors. Overexpression of GPR17 in BLA glutamatergic neurons increased the susceptibility to anxiety-like behaviors. What's more, BLA glutamatergic neuronal activity was required for anxiolytic-like effects of GPR17 antagonist and GPR17 modulated anxiety-like behaviors via BLA to ventral hippocampal CA1 glutamatergic projection. Our study finds for the first and highlights the new role of GPR17 in regulating anxiety-like behaviors and it might be a novel potential target for therapy of anxiety disorders.
Collapse
Affiliation(s)
- Ruizhe Nie
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinting Zhou
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaru Fu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shanshan Hu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qilu Zhang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weikai Jiang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yizi Yan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xian Cao
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Hong
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Bai H, Zuo X, Zhao C, Zhang S, Feng X. Non-nutritive Sweetener Aspartame Disrupts Circadian Behavior and Causes Memory Impairment in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23478-23492. [PMID: 39382230 DOI: 10.1021/acs.jafc.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a non-nutritive sweetener, aspartame is widely used in everyday life. However, its safety is highly controversial, especially its effects on neurobehavior. We evaluated the effects of chronic daily oral administration of aspartame-containing drinking water (at doses equivalent to 7-28% of the FDA-recommended human DIV) on memory and rhythm behaviors in mice and further investigated changes at the molecular level in the brains. Our results demonstrated that mice exposed to aspartame exhibited memory impairment. Disorders of hippocampal neurotransmitter metabolism and pathological damage may be responsible for the aspartame-induced memory impairment via inhibition of the BDNF/TrkB pathway. Furthermore, our findings suggested that disturbed clock gene expression in the hypothalamus after aspartame exposure led to altered rest-activity behavior, and this disruption of the circadian rhythm may exacerbate memory impairment. This study highlights the negative neurobehavioral effects of aspartame and provides valuable insights into its rational and safe use.
Collapse
Affiliation(s)
- Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Li M, Zhang R, Wu S, Cheng L, Fu H, Qu L. Isoflurane anesthesia decreases excitability of inhibitory neurons in the basolateral amygdala leading to anxiety‑like behavior in aged mice. Exp Ther Med 2024; 28:399. [PMID: 39171147 PMCID: PMC11336806 DOI: 10.3892/etm.2024.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Anxiety after surgery can be a major factor leading to postoperative cognitive dysfunction, particularly in elderly patients. The role of inhibitory neurons in the basolateral amygdala (BLA) in anxiety-like behaviors in aged mice following isoflurane anesthesia remains unclear. Therefore, the present study aimed to investigate the role of inhibitory neurons in isoflurane-treated mice. A total of 30 C57BL/6 mice (age, 13 months) were allocated into the control and isoflurane anesthesia groups (15 mice/group) and were then subjected to several neurological assessments. Behavioral testing using an elevated plus maze test showed that aged mice in the isoflurane anesthesia group displayed significant anxiety-like behavior, since they spent more time in the closed arm, exhibited more wall climbing behavior and covered more distance. In addition, whole-cell patch-clamp recording revealed that the excitability of the BLA excitatory neurons was notably increased following mice anesthesia with isoflurane, while that of inhibitory neurons was markedly reduced. Following mice treatment with diazepam, the excitability of the BLA inhibitory neurons was notably increased compared with that of the excitatory neurons, which was significantly attenuated. Overall, the results of the current study indicated that anxiety-like behavior could occur in aged mice after isoflurane anesthesia, which could be caused by a reduced excitability of the inhibitory neurons in the BLA area. This process could enhance excitatory neuronal activity in aged mice, thus ultimately promoting the onset of anxiety-like behaviors.
Collapse
Affiliation(s)
- Mengyuan Li
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Ruijiao Zhang
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shiyin Wu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liqin Cheng
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Huan Fu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liangchao Qu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
- Department of Anesthesia and Surgery, People's Hospital of Ganjiang New District, Nanchang, Jiangxi 341099, P.R. China
| |
Collapse
|
6
|
Yin X, Shi Y, Sheng T, Ji C. Early-Life Gut Microbiota: A Possible Link Between Maternal Exposure to Non-Nutritive Sweeteners and Metabolic Syndrome in Offspring. Nutr Rev 2024:nuae140. [PMID: 39348276 DOI: 10.1093/nutrit/nuae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Metabolic syndrome (MetS) is recognized as a group of metabolic abnormalities, characterized by clustered interconnected traits that elevate the risks of obesity, cardiovascular and atherosclerotic diseases, hyperlipidemia, and type 2 diabetes mellitus. Non-nutritive sweeteners (NNS) are commonly consumed by those with imbalanced calorie intake, especially in the perinatal period. In the past, accumulating evidence showed the transgenerational and mediated roles of human microbiota in the development of early-life MetS. Maternal exposure to NNS has been recognized as a risk factor for filial metabolic disturbance through various mechanisms, among which gut microbiota and derived metabolites function as nodes linking NNS and MetS in early life. Despite the widespread consumption of NNS, there remain growing concerns about their transgenerational impact on metabolic health. There is growing evidence of NNS being implicated in the development of metabolic abnormalities. Intricate complexities exist and a comprehensive understanding of how the gut microbiota interacts with mechanisms related to maternal NNS intake and disrupts metabolic homeostasis of offspring is critical to realize its full potential in preventing early-life MetS. This review aims to elucidate the effects of early-life gut microbiota and links to maternal NNS exposure and imbalanced offspring metabolic homeostasis and discusses potential perspectives and challenges, which may provide enlightenment and understanding into optimal perinatal nutritional management.
Collapse
Affiliation(s)
- Xiaoxiao Yin
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yujie Shi
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Tongtong Sheng
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenbo Ji
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
7
|
Pan J, Zhang L, Liu J, Liang Y. Jiannao pills mitigate chronic restraint stress-induced anxiety in mice through the regulation of intestinal microflora. Am J Transl Res 2024; 16:4549-4563. [PMID: 39398613 PMCID: PMC11470306 DOI: 10.62347/geew4432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To investigate the effects of Jiannao pills on mice with chronic restraint stress-induced anxiety and its mechanisms. METHODS Anxiety-like behaviors were induced in mice by exposing them to chronic restraint stress (8 h/day for 21 days). Subsequently, Jiannao pills were given to these mice for the treatment of the induced anxiety. Following treatment, the intestinal microflora of the mice were analyzed using the 16S rRNA sequencing method. RESULTS Under positive electrospray ionization mode, a total of 68 chemical compositions were found in Jiannao pills, and under negative electrospray ionization mode, the number was 18. With these chemical compositions in effect, it was observed that Jiannao pills alleviated chronic restraint induced anxiety-like behaviors in mice by extending their dwelling time, standing time, and grooming time in the central area, as well as the percentage of entries and time spent in the open arms. This effect was similar to that of alprazolam. In addition, Jiannao pills significantly improved neural functions in mice with chronic restraint-induced anxiety, diminished the levels of 5-hydroxytryptamine and glutamate, and increased the levels of γ-aminobutyric acid. Furthermore, Jiannao pills decreased the expressions of the corticotropin-releasing factor and cholecystokinin protein, while elevating neuropeptide Y protein levels. The results of 16S rRNA sequencing analysis revealed both Jiannao pills and alprazolam altered the composition of intestinal microflora in mice, with Jiannao pills exhibiting a more pronounced effect. Specifically, there was a significant increase in the abundance of S24-7 in mice following treatment. Besides, significant differences were observed in a total of 632 operational taxonomic units in mice after Jiannao pill treatment. The functions of the intestinal microflora of mice were primarily associated with their betalain biosynthesis and classification levels. CONCLUSION Jiannao pills effectively ameliorated chronic restraint anxiety-like behaviors in mice and enhanced their neural functions potentially through the regulation of their intestinal microflora.
Collapse
Affiliation(s)
- Jia Pan
- Institute of Pharmacology and Toxicology of Chinese Materia Medica, Sichuan Academy of Chinese Medicine SciencesNo. 51, Section 4, Renmin South Road, Chengdu 610041, Sichuan, China
| | - Lihan Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese MedicineNo. 37, Shierqiao Road, Chengdu 610075, Sichuan, China
| | - Jie Liu
- Institute of Pharmacology and Toxicology of Chinese Materia Medica, Sichuan Academy of Chinese Medicine SciencesNo. 51, Section 4, Renmin South Road, Chengdu 610041, Sichuan, China
| | - Yuanyuan Liang
- Institute of Clinical Basis and Literature Information of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine SciencesNo. 51, Section 4, Renmin South Road, Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
9
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
10
|
Liu GY, Yan MD, Mai YY, Fu FJ, Pan L, Zhu JM, Ji WJ, Hu J, Li WP, Xie W. Frontiers and hotspots in anxiety disorders: A bibliometric analysis from 2004 to 2024. Heliyon 2024; 10:e35701. [PMID: 39220967 PMCID: PMC11365340 DOI: 10.1016/j.heliyon.2024.e35701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to analyze research on anxiety disorders using VOSviewer and CiteSpace to identify research hotspots and future directions. Methods We conduct ed a comprehensive search on the Web of Science Core Collection (WoSCC) for relevant studies about anxiety disorders published within the past two decades (from 2004 to 2024). VOSviewer and CiteSpace were mainly used to analyze the authors, institutions, countries, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and other aspects to construct a knowledge atlas. Results A total of 22,267 publications related to anxiety disorders were retrieved. The number of publications about anxiety disorders has generally increased over time, with some fluctuations. The United States emerged as the most productive country, with Harvard University identified as the most prolific institution and Brenda W. J. H. Penninx as the most prolific author in the field. Conclusion This research identified the most influential publications, authors, journals, institutions, and countries in the field of anxiety research. Future research directions are involved advanced treatments based on pharmacotherapy, psychotherapy and digital interventions, mechanism exploration to anxiety disorders based on neurobiological and genetic basis, influence of social and environmental factors on the onset of anxiety disorders.
Collapse
Affiliation(s)
- Gui-Yu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Ming-De Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Yi-Yin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fan-Jia Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Lei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Jun-Ming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Wen-Juan Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Jiao Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Wei-Peng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Hwang DJ, Kim TK. The influence of exercise intensity on comorbid anxious behavior in psychiatric conditions. J Physiol Sci 2024; 74:39. [PMID: 39090547 PMCID: PMC11295499 DOI: 10.1186/s12576-024-00930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Many experts have extensively studied the potential of exercise as a treatment option for psychiatric conditions, including depression and autism spectrum disorder (ASD). Despite their core symptoms, these conditions exhibits comparable component traits, an anxiety. In this study, we explored the effect of exercise on behavioral abnormalities in psychiatric conditions, focusing on its intensity and emotional resilience. Shank3B knockout (KOSED) mice displaying self-injurious repetitive behavior and C57BL/6J mice, susceptible to stress as ASD and depression model, respectively, were subjected to moderate-intensity exercise (ME) for 2 weeks. ME mitigated the core symptoms (excessive grooming traits and behavioral despair) but did not exert a significant anxiolytic effect. Notably, exercise intensity has emerged as a critical determinant of its efficacy, as evidenced by a lower ventilation threshold and anxiolytic effect mediated by low-intensity exercise. The findings substantiate the notion that exercise is promising as a disease-modifying treatment, but intensity matters for emotional resilience.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239, Yangjae-ro, Songpa-gu, Seoul, 05541, Korea
- Sport Science Institute, Korea National Sport University, 1239, Yangjae-ro, Songpa-gu, Seoul, 05541, Korea
| | - Tae-Kyung Kim
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239, Yangjae-ro, Songpa-gu, Seoul, 05541, Korea.
- Sport Science Institute, Korea National Sport University, 1239, Yangjae-ro, Songpa-gu, Seoul, 05541, Korea.
- Department of Physical Education, Korea National Sport University, 1239, Yangjae-ro, Songpa-gu, Seoul, 05541, Korea.
| |
Collapse
|
12
|
Xia TJ, Jin SW, Liu YG, Zhang SS, Wang Z, Liu XM, Pan RL, Jiang N, Liao YH, Yan MZ, Chang Q. Shen Yuan extract exerts a hypnotic effect via the tryptophan/5-hydroxytryptamine/melatonin pathway in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117992. [PMID: 38428654 DOI: 10.1016/j.jep.2024.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sleep plays a critical role in several physiologic processes, and sleep disorders increase the risk of depression, dementia, stroke, cancer, and other diseases. Stress is one of the main causes of sleep disorders. Ginseng Radix et Rhizoma and Polygalae Radix have been reported to have effects of calming the mind and intensifying intelligence in Chinese Pharmacopoeia. Traditional Chinese medicine prescriptions composed of Ginseng Radix et Rhizoma and Polygalae Radix (Shen Yuan, SY) are commonly used to treat insomnia, depression, and other psychiatric disorders in clinical practice. Unfortunately, the underlying mechanisms of the SY extract's effect on sleep are still unknown. AIM OF THE STUDY This study aimed to investigate the hypnotic effect of the SY extract in normal mice and mice with chronic restraint stress (CRS)-induced sleep disorders and elucidate the underlying mechanisms. MATERIALS AND METHODS The SY extract (0.5 and 1.0 g/kg) was intragastrically administered to normal mice for 1, 14, and 28 days and to CRS-treated mice for 28 days. The open field test (OFT) and pentobarbital sodium-induced sleep test (PST) were used to evaluate the hypnotic effect of the SY extract. Liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay were utilized to detect the levels of neurotransmitters and hormones. Molecular changes at the mRNA and protein levels were determined using real-time quantitative polymerase chain reaction and Western blot analysis to identify the mechanisms by which SY improves sleep disorders. RESULTS The SY extract decreased sleep latency and increased sleep duration in normal mice. Similarly, the sleep duration of mice subjected to CRS was increased by administering SY. The SY extract increased the levels of tryptophan (Trp) and 5-hydroxytryptamine (5-HT) and the expression of tryptophan hydroxylase 2 (TPH2) in the cortex of normal mice. The SY extract increased the Trp level, transcription and expression of estrogen receptor beta and TPH2 in the cortex in mice with sleep disorders by decreasing the serum corticosterone level, which promoted the synthesis of 5-HT. Additionally, the SY extract enhanced the expression of arylalkylamine N-acetyltransferase, which increased the melatonin level and upregulated the expressions of melatonin receptor-2 (MT2) and Cryptochrome 1 (Cry1) in the hypothalamus of mice with sleep disorders. CONCLUSIONS The SY extract exerted a hypnotic effect via the Trp/5-HT/melatonin pathway, which augmented the synthesis of 5-HT and melatonin and further increased the expressions of MT2 and Cry1.
Collapse
Affiliation(s)
- Tian-Ji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Su-Wei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Yong-Guang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Shan-Shan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Xin-Min Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Tesfaye M, Jaholkowski P, Shadrin AA, van der Meer D, Hindley GF, Holen B, Parker N, Parekh P, Birkenæs V, Rahman Z, Bahrami S, Kutrolli G, Frei O, Djurovic S, Dale AM, Smeland OB, O’Connell KS, Andreassen OA. Identification of Novel Genomic Loci for Anxiety and Extensive Genetic Overlap with Psychiatric Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.01.23294920. [PMID: 37693403 PMCID: PMC10491354 DOI: 10.1101/2023.09.01.23294920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Anxiety disorders are prevalent and anxiety symptoms co-occur with many psychiatric disorders. We aimed to identify genomic risk loci associated with anxiety, characterize its genetic architecture, and genetic overlap with psychiatric disorders. Methods We used the GWAS of anxiety symptoms, schizophrenia, bipolar disorder, major depression, and attention deficit hyperactivity disorder (ADHD). We employed MiXeR and LAVA to characterize the genetic architecture and genetic overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of genomic loci associated with anxiety and those shared with psychiatric disorders. Gene annotation and gene set analyses were conducted using OpenTargets and FUMA, respectively. Results Anxiety was polygenic with 12.9k estimated genetic risk variants and overlapped extensively with psychiatric disorders (4.1-11.4k variants). MiXeR and LAVA revealed predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 114 novel loci for anxiety by conditioning on the psychiatric disorders. We also identified loci shared between anxiety and major depression (n = 47), bipolar disorder (n = 33), schizophrenia (n = 71), and ADHD (n = 20). Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways and differential tissue expression in more diverse tissues than those annotated to the shared loci. Conclusions Anxiety is a highly polygenic phenotype with extensive genetic overlap with psychiatric disorders. These genetic overlaps enabled the identification of novel loci for anxiety. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified genetic loci implicate molecular pathways that may lead to potential drug targets.
Collapse
Affiliation(s)
- Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A. Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F.L. Hindley
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Børge Holen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pravesh Parekh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Viktoria Birkenæs
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Zillur Rahman
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gleda Kutrolli
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Clinical Science, University of Bergen, Bergen, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Olav B. Smeland
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S. O’Connell
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Cheng J, Sun J, Niu R, Wang X, Hu G, Li F, Gu K, Wu H, Pu Y, Shen F, Hu H, Shen Z. Chronic exposure to PM 10 induces anxiety-like behavior via exacerbating hippocampal oxidative stress. Free Radic Biol Med 2024; 216:12-22. [PMID: 38458393 DOI: 10.1016/j.freeradbiomed.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Niu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Medical College, Xi'an Peihua University, Xi'an, 710125, China
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Guilin Hu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kunrong Gu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanchun Pu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710049, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
15
|
Jiang L, Yu Z, Zhao Y, Yin D. Obesogenic potentials of environmental artificial sweeteners with disturbances on both lipid metabolism and neural responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170755. [PMID: 38340820 DOI: 10.1016/j.scitotenv.2024.170755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Artificial sweeteners (ASs) entered the environments after application and emissions. Recent studies showed that some ASs had obesogenic risks. However, it remained unclear whether such risks are common and how they provoke such effects. Presently, the effects of 8 widely used ASs on lipid accumulation were measured in Caenorhabditis elegans. Potential mechanisms were explored with feeding and locomotion behavior, lipid metabolism and neural regulation. Results showed that acesulfame (ACE), aspartame (ASP), saccharin sodium (SOD), sucralose (SUC) and cyclamate (CYC) stimulated lipid accumulation at μg/L levels, showing obesogenic potentials. Behavior investigation showed that ACE, ASP, SOD, SUC and CYC biased more feeding in the energy intake aspect against the locomotion in the energy consumption one. Neotame (NEO), saccharin (SAC) and alitame (ALT) reduced the lipid accumulation without significant obesogenic potentials in the present study. However, all 8 ASs commonly disturbed enzymes (e.g., acetyl-CoA carboxylase) in lipogenesis and those (e.g., carnitine palmitoyl transferase) in lipolysis. In addition, ASs disturbed PPARγ (via expressions of nhr-49), TGF-β/DAF-7 (daf-7) and SREBP (sbp-1) pathways. Moreover, they also interfered neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh), with influences in Gsα (e.g., via expressions of gsα-1, ser-7), glutamate (e.g., mgl-1), and cGMP-dependent signaling pathways (e.g., egl-4). In summary, environmental ASs commonly disturbed neural regulation connecting behavior and lipid metabolism, and 5 out of 8 showed clear obesogenic potentials. ENVIRONMENTAL IMPLICATION: Artificial sweeteners (ASs) are become emerging pollutants after wide application and continuous emission. Recent studies showed that some environmental ASs had obesogenic risks. The present study employed Caenorhabditis elegans to explore the influences of 8 commonly used ASs on lipid metabolisms and also the underlying mechanisms. Five out of 8 ASs stimulated lipid accumulation at μg/L levels, and they biased energy intake against energy consumption. The other three ASs reduced the lipid accumulation. ASs commonly disturbed lipogenesis and lipolysis via PPARγ, TGF-β and SREBP pathways, and also influenced neurotransmitters with Gsα, glutamate and cGMP-dependent signaling pathways.
Collapse
Affiliation(s)
- Linhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yanbin Zhao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
16
|
Guo L, Zhang M, Fei Y, Zhao W. Natural Sweetener, Glycyrrhetinic Acid 3- O-Mono-beta-d-glucuronide, for Postprandial Hyperglycemia Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4747-4756. [PMID: 38335161 DOI: 10.1021/acs.jafc.3c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
This study examines the inhibitory effects of a range of sweeteners on α-glucosidase. Our findings revealed that only one natural sweetener, namely, glycyrrhetinic acid 3-O-mono-beta-d-glucuronide (GAMG), derived from licorice, exhibited a mixed-type inhibition against α-glucosidase with a IC50 value of 0.73 ± 0.05 mg/mL. The fluorescence intensity of α-glucosidase was quenched by GAMG in the formation of an α-glucosidase-GAMG complex. GAMG has been shown to induce conformational changes in α-glucosidase, likely through hydrogen bonding, van der Waals force, and alkyl-alkyl interactions with amino acid residues, including Arg 281, Leu 283, Trp 376, Asp 404, Asp 443, Trp 481, Asp 518, Phe 525, Ala 555, and Asp 616. Additional animal validation experiments demonstrated that GAMG slowed starch digestion, thereby attenuating the postprandial glycemic response. Taken together, these findings provide evidence that GAMG is a natural sweetener with potent inhibitory activity that selectively targets α-glucosidase. This study supports the use of GAMG as a natural sweetener, which holds a high biological value and may be beneficial for managing postprandial hyperglycemia.
Collapse
Affiliation(s)
- Lichun Guo
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Mengqing Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ying Fei
- Wuxi Langke/Suzhou Langbang Biotechnological Co., Ltd., Wuxi, Jiangsu 214122, PR China
| | - Wei Zhao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
17
|
Prescott SL, Logan AC, D’Adamo CR, Holton KF, Lowry CA, Marks J, Moodie R, Poland B. Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:120. [PMID: 38397611 PMCID: PMC10888116 DOI: 10.3390/ijerph21020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
There is mounting concern over the potential harms associated with ultra-processed foods, including poor mental health and antisocial behavior. Cutting-edge research provides an enhanced understanding of biophysiological mechanisms, including microbiome pathways, and invites a historical reexamination of earlier work that investigated the relationship between nutrition and criminal behavior. Here, in this perspective article, we explore how this emergent research casts new light and greater significance on previous key observations. Despite expanding interest in the field dubbed 'nutritional psychiatry', there has been relatively little attention paid to its relevancy within criminology and the criminal justice system. Since public health practitioners, allied mental health professionals, and policymakers play key roles throughout criminal justice systems, a holistic perspective on both historical and emergent research is critical. While there are many questions to be resolved, the available evidence suggests that nutrition might be an underappreciated factor in prevention and treatment along the criminal justice spectrum. The intersection of nutrition and biopsychosocial health requires transdisciplinary discussions of power structures, industry influence, and marketing issues associated with widespread food and social inequalities. Some of these discussions are already occurring under the banner of 'food crime'. Given the vast societal implications, it is our contention that the subject of nutrition in the multidisciplinary field of criminology-referred to here as nutritional criminology-deserves increased scrutiny. Through combining historical findings and cutting-edge research, we aim to increase awareness of this topic among the broad readership of the journal, with the hopes of generating new hypotheses and collaborations.
Collapse
Affiliation(s)
- Susan L. Prescott
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia;
- Nova Institute for Health, Baltimore, MD 21231, USA;
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- The ORIGINS Project, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Alan C. Logan
- Nova Institute for Health, Baltimore, MD 21231, USA;
| | - Christopher R. D’Adamo
- Nova Institute for Health, Baltimore, MD 21231, USA;
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Kathleen F. Holton
- Departments of Health Studies and Neuroscience, Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA;
| | - Christopher A. Lowry
- Department of Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - John Marks
- Department of Criminal Justice, Louisiana State University of Alexandria, Alexandria, LA 71302, USA;
| | - Rob Moodie
- School of Population and Global Health (MSPGH), University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Blake Poland
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5R 0A3, Canada;
| |
Collapse
|
18
|
Silva-Almeida C, Muniz SCA, Jobim CMN, Laureano-Melo R, Lau RS, Costa CRM, Côrtes WS, Malvar DC, Reis LC, Mecawi AS, Rocha FF. Perinatal environmental enrichment changes anxiety-like behaviours in mice and produces similar intergenerational benefits in offspring. Behav Brain Res 2024; 456:114700. [PMID: 37802391 DOI: 10.1016/j.bbr.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Environmental enrichment implemented in early life is able to induce long-term changes in gene expression, synaptic function and behavioural responses. In this study, we evaluated the adult behavioural effects of perinatal environment enrichment in male and female mice (PEE), as well as the males and females of PEE male offspring (OPEE). For this purpose, animals were submitted to the following battery of behavioural analyses: elevated plus maze, open field test, light-dark box and novelty suppression feeding test. The frontal cortex and ventral hippocampus of PEE mice were collected for the evaluation of the expression of gamma-aminobutyric acid (GABA)-related genes. The PEE animals showed an increase in exploratory activity, associated with a reduction in anxiety-like behaviours on the elevated plus maze; this effect was mainly observed in males. Additionally, the male OPEE showed a reduction in anxiety-like behaviours on the elevated plus maze, mainly observed in a reduction of risk assessment-related behaviours. The PEE male mice also showed reduced expression of Gabra3 in the ventral hippocampus when compared to the control group. These results demonstrate that perinatal environmental enrichment promotes a reduction in anxiety-like behaviour that can be transferred intergenerationally.
Collapse
Affiliation(s)
- C Silva-Almeida
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Veterinary Medicine of State University of Maringá, Umuarama, Brazil
| | - S C A Muniz
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - C M N Jobim
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - R Laureano-Melo
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Behavioral Physiopharmacology Laboratory, Barra Mansa Center University, Barra Mansa, Brazil
| | - R S Lau
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - C R M Costa
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - W S Côrtes
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - D C Malvar
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - L C Reis
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - A S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics of Federal University of São Paulo, São Paulo, Brazil
| | - F F Rocha
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil.
| |
Collapse
|
19
|
Song X, Porter ME, Whitaker VM, Lee S, Wang Y. Identification of ethyl vanillin in strawberry (Fragaria × ananassa) using a targeted metabolomics strategy: From artificial to natural. Food Chem X 2023; 20:100944. [PMID: 38022735 PMCID: PMC10663669 DOI: 10.1016/j.fochx.2023.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Improving flavor can be an important goal of strawberry through breeding that is enhanced through the accurate identification and quantification of flavor compounds. Herein, a targeted metabolomics strategy was developed using liquid-liquid extraction, an in-house standard database, and GC-MS/MS analysis. The database consisted of key food odorants (KFOs), artificial flavor compounds (AFCs) and volatiles. A total of 131 flavor compounds were accurately identified in Medallion® 'FL 16.30-128' strawberry. Importantly, ethyl vanillin was identified for the first time in natural food. Multiple techniques, including GC-MS, GC-MS/MS and UPLC-MS/MS were applied to ensure the identification. The ethyl vanillin in the Medallion® samples were determined in a range of concentrations from 0.070 ± 0.0006 µg/kg to 0.1372 ± 0.0014 µg/kg by using stable isotope dilution analysis. The identification of ethyl vanillin in strawberry implys the future commercial use a natural flavor compound and the potential to identify genes and proteins associated with its biosynthesis.
Collapse
Affiliation(s)
- Xuebo Song
- Citrus Research & Education Center, Food Science and Huamn Nutrition Department, University of Florida, Lake Alfred, Florida 33850, United States
| | - Mark E. Porter
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, United States
| | - Vance M. Whitaker
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, United States
| | - Seonghee Lee
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, United States
| | - Yu Wang
- Citrus Research & Education Center, Food Science and Huamn Nutrition Department, University of Florida, Lake Alfred, Florida 33850, United States
| |
Collapse
|
20
|
Gillespie KM, White MJ, Kemps E, Moore H, Dymond A, Bartlett SE. The Impact of Free and Added Sugars on Cognitive Function: A Systematic Review and Meta-Analysis. Nutrients 2023; 16:75. [PMID: 38201905 PMCID: PMC10780393 DOI: 10.3390/nu16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
A relationship between excessive sugar consumption and cognitive function has been described in animal models, but the specific effects of sugars in humans remains unclear. This systematic review and meta-analysis aimed to evaluate the current knowledge, research characteristics, and quality of evidence of studies investigating the impacts of free and added sugars on human cognition in healthy participants. The review identified 77 studies (65 experimental trials, n = 3831; 9 cross-sectional studies, n = 11,456; and 3 cohort studies, n = 2059). All cohort studies and eight of the nine cross-sectional studies found significant positive correlations between added sugar consumption and risk of cognitive impairment. Four studies identified reduced risk of cognitive impairment associated with natural fructose-containing foods. The majority of randomised control trials assessed short-term glucose facilitation effects on cognitive outcomes. The results from these studies suggest the need for a tightly regulated blood glucose level, dependent on individualised physiological factors, for optimal cognitive function. A meta-analysis of a subset of studies that assessed the impact of glucose on recall found improvements in immediate free recall compared to controls (p = 0.002). The findings highlight the potentially detrimental effect of excessive, long-term, or prenatal added sugar consumption on cognitive function. Further research is needed to examine the specific effects of free and added sugars on cognitive function.
Collapse
Affiliation(s)
- Kerri M. Gillespie
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Melanie J. White
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Eva Kemps
- College of Education, Psychology and Social Work, Flinders University, Bedford Park, SA 5042, Australia;
| | - Halim Moore
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, 63170 Clermont-Ferrand, France;
| | - Alexander Dymond
- Mental Health and Specialist Services, Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia;
| | - Selena E. Bartlett
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| |
Collapse
|
21
|
Zhao H, Zhou M, Liu Y, Jiang J, Wang Y. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms. Animal Model Exp Med 2023; 6:559-572. [PMID: 38013621 PMCID: PMC10757213 DOI: 10.1002/ame2.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders have become one of the most severe psychiatric disorders, and the incidence is increasing every year. They impose an extraordinary personal and socioeconomic burden. Anxiety disorders are influenced by multiple complex and interacting genetic, psychological, social, and environmental factors, which contribute to disruption or imbalance in homeostasis and eventually cause pathologic anxiety. The selection of a suitable animal model is important for the exploration of disease etiology and pathophysiology, and the development of new drugs. Therefore, a more comprehensive understanding of the advantages and limitations of existing animal models of anxiety disorders is helpful to further study the underlying pathological mechanisms of the disease. This review summarizes animal models and the pathogenesis of anxiety disorders, and discusses the current research status to provide insights for further study of anxiety disorders.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Mi Zhou
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yang Liu
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Jiaqi Jiang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yuhong Wang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| |
Collapse
|
22
|
Jones SK, McCarthy DM, Stanwood GD, Schatschneider C, Bhide PG. Learning and memory deficits produced by aspartame are heritable via the paternal lineage. Sci Rep 2023; 13:14326. [PMID: 37652922 PMCID: PMC10471780 DOI: 10.1038/s41598-023-41213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Environmental exposures produce heritable traits that can linger in the population for one or two generations. Millions of individuals consume substances such as artificial sweeteners daily that are declared safe by regulatory agencies without evaluation of their potential heritable effects. We show that consumption of aspartame, an FDA-approved artificial sweetener, daily for up to 16-weeks at doses equivalent to only 7-15% of the FDA recommended maximum daily intake value (equivalent to 2-4 small, 8 oz diet soda drinks per day) produces significant spatial learning and memory deficits in mice. Moreover, the cognitive deficits are transmitted to male and female descendants along the paternal lineage suggesting that aspartame's adverse cognitive effects are heritable, and that they are more pervasive than current estimates, which consider effects in the directly exposed individuals only. Traditionally, deleterious environmental exposures of pregnant and nursing women are viewed as risk factors for the health of future generations. Environmental exposures of men are not considered to pose similar risks. Our findings suggest that environmental exposures of men can produce adverse impact on cognitive function in future generations and demonstrate the need for considering heritable effects via the paternal lineage as part of the regulatory evaluations of artificial sweeteners.
Collapse
Affiliation(s)
- Sara K Jones
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
| | - Deirdre M McCarthy
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA.
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
| |
Collapse
|
23
|
Du K, Zhai C, Li X, Gang H, Gao X. Feature-Based Molecular Networking Facilitates the Comprehensive Identification of Differential Metabolites in Diabetic Cognitive Dysfunction Rats. Metabolites 2023; 13:metabo13040538. [PMID: 37110195 PMCID: PMC10142102 DOI: 10.3390/metabo13040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Cognitive dysfunction is a frequent complication of type 2 diabetes mellitus (T2DM), usually accompanied by metabolic disorders. However, the metabolic changes in diabetic cognitive dysfunction (DCD) patients, especially compared to T2DM groups, are not fully understood. Due to the subtle differences in metabolic alterations between DCD groups and T2DM groups, the comprehensive detection of the untargeted metabolic profiles of hippocampus and urine samples of rats was conducted by LC-MS, considering the different ionization modes and polarities of the examined compounds, and feature-based molecular networking (FBMN) was performed to help identify differential metabolites from a comprehensive perspective in this study. In addition, an association analysis of the differential metabolites in hippocampus and urine was conducted by the O2PLS model. Finally, a total of 71 hippocampal tissue differential metabolites and 179 urine differential metabolites were identified. The pathway enrichment results showed that glutamine and glutamate metabolism, alanine, aspartate, and glutamate metabolism, glycerol phospholipid metabolism, TCA cycle, and arginine biosynthesis in the hippocampus of DCD animals were changed. Seven metabolites (AUC > 0.9) in urine appeared as key differential metabolites that might reflect metabolic changes in the target tissue of DCD rats. This study showed that FBMN facilitated the comprehensive identification of differential metabolites in DCD rats. The differential metabolites may suggest an underlying DCD and be considered as potential biomarkers for DCD. Large samples and clinical experiments are needed for the subsequent elucidation of the possible mechanisms leading to these alterations and the verification of potential biomarkers.
Collapse
Affiliation(s)
- Ke Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Hongchuan Gang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| |
Collapse
|