1
|
Huettemann P, Mahadevan P, Lempart J, Tse E, Dehury B, Edwards BFP, Southworth DR, Sahoo BR, Jakob U. Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils. PLoS Biol 2024; 22:e3002650. [PMID: 39480879 PMCID: PMC11527176 DOI: 10.1371/journal.pbio.3002650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here, we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the 2 critical lysine residues K43 and K45 with alanine residues leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.
Collapse
Affiliation(s)
- Philipp Huettemann
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pavithra Mahadevan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Justine Lempart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Brian F. P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, Michigan, United States of America
| | - Daniel R. Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Bikash R. Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Srivastava T, Tyagi D, Fatima S, Sathyan MTV, Raj R, Sharma A, Chaturvedi M, Sinha M, Shishodia SK, Kumar D, Sharma SK, Shankar J, Satish A, Priya S. A natural small molecule-mediated inhibition of alpha-synuclein aggregation leads to neuroprotection in Caenorhabditis elegans. J Neurochem 2024; 168:1640-1654. [PMID: 37429595 DOI: 10.1111/jnc.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Small molecules are being explored intensively for their applications as therapeutic molecules in the management of metabolic and neurological disorders. The natural small molecules can inhibit protein aggregation and underlying cellular pathogenesis of neurodegenerative diseases involving multi-factorial mechanisms of action. Certain natural small molecular inhibitors of pathogenic protein aggregation are highly efficient and have shown promising therapeutic potential. In the present study, Shikonin (SHK), a natural plant-based naphthoquinone has been investigated for its aggregation inhibition activity against α-synuclein (α-syn) and the neuroprotective potential in Caenorhabditis elegans (C. elegans). SHK significantly inhibited aggregation of α-syn at sub-stochiometric concentrations, delayed the linear lag phase and growth kinetics of seeded and unseeded α-syn aggregation. The binding of SHK to the C-terminus of α-syn maintained α-helical and disordered secondary structures with reduced beta-sheet content and complexity of aggregates. Further, in C. elegans transgenic PD models, SHK significantly reduced α-syn aggregation, improved locomotor activity and prevented dopaminergic (DA) neuronal degeneration, indicating the neuroprotective role of SHK. The present study highlights the potential of natural small molecules in the prevention of protein aggregation that may further be explored for their therapeutic efficacy in the management of protein aggregation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tulika Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Malur Thirumalesh Vishnu Sathyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ritu Raj
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Aniket Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Animal Science, College of Agriculture and Natural Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, Lucknow, India
| | - Sonia Kumari Shishodia
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Aruna Satish
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Rose C, Tomas-Grau RH, Zabala B, Michel PP, Brunel JM, Chehín R, Raisman-Vozari R, Ferrié L, Figadère B. C9-Functionalized Doxycycline Analogs as Drug Candidates to Prevent Pathological α-Synuclein Aggregation and Neuroinflammation in Parkinson's Disease Degeneration. ChemMedChem 2024; 19:e202300597. [PMID: 38526011 DOI: 10.1002/cmdc.202300597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Doxycycline, a semi-synthetic tetracycline, is a widely used antibiotic for treating mild-to-moderate infections, including skin problems. However, its anti-inflammatory and antioxidant properties, combined with its ability to interfere with α-synuclein aggregation, make it an attractive candidate for repositioning in Parkinson's disease. Nevertheless, the antibiotic activity of doxycycline restricts its potential use for long-term treatment of Parkinsonian patients. In the search for non-antibiotic tetracyclines that could operate against Parkinson's disease pathomechanisms, eighteen novel doxycycline derivatives were designed. Specifically, the dimethyl-amino group at C4 was reduced, resulting in limited antimicrobial activity, and several coupling reactions were performed at position C9 of the aromatic D ring, this position being one of the most reactive for introducing substituents. Using the Thioflavin-T assay, we found seven compounds were more effective than doxycycline in inhibiting α-synuclein aggregation. Furthermore, two of these derivatives exhibited better anti-inflammatory effects than doxycycline in a culture system of microglial cells used to model Parkinson's disease neuroinflammatory processes. Overall, through structure-activity relationship studies, we identified two newly designed tetracyclines as promising drug candidates for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Clémence Rose
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | | | - Brenda Zabala
- Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Hôpital Pitié Salpêtrière, 75013, Paris, France
| | - Patrick Pierre Michel
- Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Hôpital Pitié Salpêtrière, 75013, Paris, France
| | - Jean-Michel Brunel
- UMR_MD1 Membranes et Cibles Thérapeutiques, U1261 INSERM, Aix-Marseille Université, 13385, Marseille, France
| | - Rosana Chehín
- IMMCA, CONICET-UNT-SIPROSA, Tucumán, 4000, Argentina
| | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Hôpital Pitié Salpêtrière, 75013, Paris, France
| | - Laurent Ferrié
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Bruno Figadère
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
4
|
Gotte G. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Genes (Basel) 2024; 15:738. [PMID: 38927674 PMCID: PMC11202570 DOI: 10.3390/genes15060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the motoneurons. More than 40 genes are related with ALS, and amyloidogenic proteins like SOD1 and/or TDP-43 mutants are directly involved in the onset of ALS through the formation of polymorphic fibrillogenic aggregates. However, efficacious therapeutic approaches are still lacking. Notably, heterozygous missense mutations affecting the gene coding for RNase 5, an enzyme also called angiogenin (ANG), were found to favor ALS onset. This is also true for the less-studied but angiogenic RNase 4. This review reports the substrate targets and illustrates the neuroprotective role of native ANG in the neo-vascularization of motoneurons. Then, it discusses the molecular determinants of many pathogenic ANG mutants, which almost always cause loss of function related to ALS, resulting in failures in angiogenesis and motoneuron protection. In addition, ANG mutations are sometimes combined with variants of other factors, thereby potentiating ALS effects. However, the activity of the native ANG enzyme should be finely balanced, and not excessive, to avoid possible harmful effects. Considering the interplay of these angiogenic RNases in many cellular processes, this review aims to stimulate further investigations to better elucidate the consequences of mutations in ANG and/or RNase 4 genes, in order to achieve early diagnosis and, possibly, successful therapies against ALS.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
5
|
Vaidya B, Gupta P, Biswas S, Laha JK, Roy I, Sharma SS. Effect of Clemizole on Alpha-Synuclein-Preformed Fibrils-Induced Parkinson's Disease Pathology: A Pharmacological Investigation. Neuromolecular Med 2024; 26:19. [PMID: 38703217 DOI: 10.1007/s12017-024-08785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Pankaj Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
6
|
Hou K, Pan H, Shahpasand-Kroner H, Hu C, Abskharon R, Seidler P, Mekkittikul M, Balbirnie M, Lantz C, Sawaya MR, Dolinsky JL, Jones M, Zuo X, Loo JA, Frautschy S, Cole G, Eisenberg DS. D-peptide-magnetic nanoparticles fragment tau fibrils and rescue behavioral deficits in a mouse model of Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eadl2991. [PMID: 38691615 PMCID: PMC11062580 DOI: 10.1126/sciadv.adl2991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.
Collapse
Affiliation(s)
- Ke Hou
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Hope Pan
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Hedieh Shahpasand-Kroner
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research and Clinical Core, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Carolyn Hu
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Romany Abskharon
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Paul Seidler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Marisa Mekkittikul
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research and Clinical Core, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Melinda Balbirnie
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Joshua L. Dolinsky
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Mychica Jones
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research and Clinical Core, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Xiaohong Zuo
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research and Clinical Core, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Sally Frautschy
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research and Clinical Core, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Greg Cole
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research and Clinical Core, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - David S. Eisenberg
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| |
Collapse
|
7
|
Gima S, Oe K, Nishimura K, Ohgita T, Ito H, Kimura H, Saito H, Takata K. Host-to-graft propagation of inoculated α-synuclein into transplanted human induced pluripotent stem cell-derived midbrain dopaminergic neurons. Regen Ther 2024; 25:229-237. [PMID: 38283940 PMCID: PMC10818157 DOI: 10.1016/j.reth.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Cell therapeutic clinical trials using fetal mesencephalic tissue provided a proof-of-concept for regenerative therapy in patients with Parkinson's disease. Postmortem studies of patients with fetal grafts revealed that α-synuclein+ Lewy body (LB)-like inclusions emerged in long-term transplantation and might worsen clinical outcomes even if the grafts survived and innervated in the recipients. Various studies aimed at addressing whether host-derived α-synuclein could be transferred to the grafted neurons to assess α-synuclein+ inclusion appearance in the grafts. However, determining whether α-synuclein in the grafted neurons has been propagated from the host is difficult due to the intrinsic α-synuclein expression. Methods We induced midbrain dopaminergic (mDA) neurons from human induced pluripotent stem cells (hiPSCs) and transplanted them into the striatum of immunodeficient rats. The recombinant human α-synuclein preformed fibrils (PFFs) were inoculated into the cerebral cortex after transplantation of SNCA-/- hiPSC-derived mDA neural progenitors into the striatum of immunodeficient rats to evaluate the host-to-graft propagation of human α-synuclein PFFs. Additionally, we examined the incorporation of human α-synuclein PFFs into SNCA-/- hiPSC-derived mDA neurons using in vitro culture system. Results We detected human α-synuclein-immunoreactivity in SNCA-/- hiPSC-derived mDA neurons that lacked endogenous α-synuclein expression in vitro. Additionally, we observed host-to-graft α-synuclein propagation into the grafted SNCA-/- hiPSC-derived mDA neurons. Conclusion We have successfully proven that intracerebral inoculated α-synuclein PFFs are propagated and incorporated from the host into grafted SNCA-/- hiPSC-derived mDA neurons. Our results contribute toward the basic understanding of the molecular mechanisms related to LB-like α-synuclein deposit formation in grafted mDA neurons.
Collapse
Affiliation(s)
- Serina Gima
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kazuya Oe
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kaneyasu Nishimura
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Takashi Ohgita
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Haruka Ito
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Division of Probe Chemistry for Disease Analysis/Central Institute for Radioisotope Science, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kazuyuki Takata
- Joint Research Laboratory, Division of Integrated Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
8
|
Tarutani A, Hasegawa M. Ultrastructures of α-Synuclein Filaments in Synucleinopathy Brains and Experimental Models. J Mov Disord 2024; 17:15-29. [PMID: 37990381 PMCID: PMC10846975 DOI: 10.14802/jmd.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023] Open
Abstract
Intracellular α-synuclein (α-syn) inclusions are a neuropathological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA), both of which are termed synucleinopathies. LBD is defined by Lewy bodies and Lewy neurites in neurons, while MSA displays glial cytoplasmic inclusions in oligodendrocytes. Pathological α-syn adopts an ordered filamentous structure with a 5-10 nm filament diameter, and this conformational change has been suggested to be involved in the disease onset and progression. Synucleinopathies also exhibit characteristic ultrastructural and biochemical properties of α-syn filaments, and α-syn strains with distinct conformations have been identified. Numerous experimental studies have supported the idea that pathological α-syn self-amplifies and spreads throughout the brain, during which processes the conformation of α-syn filaments may drive the disease specificity. In this review, we summarize the ultrastructural features and heterogeneity of α-syn filaments in the brains of patients with synucleinopathy and in experimental models of seeded α-syn aggregation.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Diaw SH, Borsche M, Streubel-Gallasch L, Dulovic-Mahlow M, Hermes J, Lenz I, Seibler P, Klein C, Brüggemann N, Vos M, Lohmann K. Characterization of the pathogenic α-Synuclein Variant V15A in Parkinson´s disease. NPJ Parkinsons Dis 2023; 9:148. [PMID: 37903765 PMCID: PMC10616187 DOI: 10.1038/s41531-023-00584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
Despite being a major component of Lewy bodies and Lewy neurites, pathogenic variants in the gene encoding alpha-Synuclein (α-Syn) are rare. To date, only four missense variants in the SNCA gene, encoding α-Syn have unequivocally been shown to be disease-causing. We here describe a Parkinson´s disease patient with early cognitive decline carrying an as yet not fully characterized variant in SNCA (NM_001146055: c.44T > C, p.V15A). We used different cellular models, including stably transfected neuroblastoma (SH-SY5Y) cell cultures, induced pluripotent stem cell (iPSC)-derived neuronal cultures, and generated a Drosophila model to elucidate the impact of the p.V15A variant on α-Syn function and aggregation properties compared to other known pathogenic variants. We demonstrate that p.V15A increased the aggregation potential of α-Syn and the levels of apoptotic markers, and impaired the mitochondrial network. Moreover, p.V15A affects the flying ability and survival of mutant flies. Thus, we provide supporting evidence for the pathogenicity of the p.V15A variant, suggesting its inclusion in genetic testing approaches.
Collapse
Affiliation(s)
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | | | - Julia Hermes
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Insa Lenz
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Melissa Vos
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
10
|
Horne R, Metrick MA, Man W, Rinauro DJ, Brotzakis ZF, Chia S, Meisl G, Vendruscolo M. Secondary Processes Dominate the Quiescent, Spontaneous Aggregation of α-Synuclein at Physiological pH with Sodium Salts. ACS Chem Neurosci 2023; 14:3125-3131. [PMID: 37578897 PMCID: PMC10485892 DOI: 10.1021/acschemneuro.3c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
The accurate recapitulation in an in vitro assay of the aggregation process of α-synuclein in Parkinson's disease has been a significant challenge. As α-synuclein does not aggregate spontaneously in most currently used in vitro assays, primary nucleation is triggered by the presence of surfaces such as lipid membranes or interfaces created by shaking, to achieve aggregation on accessible time scales. In addition, secondary nucleation is typically only observed by lowering the pH below 5.8. Here we investigated assay conditions that enables spontaneous primary nucleation and secondary nucleation at pH 7.4. Using 400 mM sodium phosphate, we observed quiescent spontaneous aggregation of α-synuclein and established that this aggregation is dominated by secondary processes. Furthermore, the presence of potassium ions enhanced the reproducibility of quiescent α-synuclein aggregation. This work provides a framework for the study of spontaneous α-synuclein aggregation at physiological pH.
Collapse
Affiliation(s)
- Robert
I. Horne
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michael A. Metrick
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- College
of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wing Man
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dillon J. Rinauro
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Bioprocessing
Technology Institute, Agency of Science, Technology and Research (A*STAR), 138668, Singapore
| | - Georg Meisl
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Naskar A, Nayak A, Salaikumaran MR, Vishal SS, Gopal PP. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders. Front Mol Neurosci 2023; 16:1242925. [PMID: 37720552 PMCID: PMC10502346 DOI: 10.3389/fnmol.2023.1242925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Liquid-liquid phase separation results in the formation of dynamic biomolecular condensates, also known as membrane-less organelles, that allow for the assembly of functional compartments and higher order structures within cells. Multivalent, reversible interactions between RNA-binding proteins (RBPs), including FUS, TDP-43, and hnRNPA1, and/or RNA (e.g., RBP-RBP, RBP-RNA, RNA-RNA), result in the formation of ribonucleoprotein (RNP) condensates, which are critical for RNA processing, mRNA transport, stability, stress granule assembly, and translation. Stress granules, neuronal transport granules, and processing bodies are examples of cytoplasmic RNP condensates, while the nucleolus and Cajal bodies are representative nuclear RNP condensates. In neurons, RNP condensates promote long-range mRNA transport and local translation in the dendrites and axon, and are essential for spatiotemporal regulation of gene expression, axonal integrity and synaptic function. Mutations of RBPs and/or pathologic mislocalization and aggregation of RBPs are hallmarks of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. ALS/FTD-linked mutations of RBPs alter the strength and reversibility of multivalent interactions with other RBPs and RNAs, resulting in aberrant phase transitions. These aberrant RNP condensates have detrimental functional consequences on mRNA stability, localization, and translation, and ultimately lead to compromised axonal integrity and synaptic function in disease. Pathogenic protein aggregation is dependent on various factors, and aberrant dynamically arrested RNP condensates may serve as an initial nucleation step for pathologic aggregate formation. Recent studies have focused on identifying mechanisms by which neurons resolve phase transitioned condensates to prevent the formation of pathogenic inclusions/aggregates. The present review focuses on the phase separation of neurodegenerative disease-linked RBPs, physiological functions of RNP condensates, and the pathologic role of aberrant phase transitions in neurodegenerative disease, particularly ALS/FTD. We also examine cellular mechanisms that contribute to the resolution of aberrant condensates in neurons, and potential therapeutic approaches to resolve aberrantly phase transitioned condensates at a molecular level.
Collapse
Affiliation(s)
- Aditi Naskar
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | - Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
12
|
Huang D, Guo C. E46K Mutation of α-Synuclein Preorganizes the Intramolecular Interactions Crucial for Aggregation. J Chem Inf Model 2023; 63:4803-4813. [PMID: 37489886 DOI: 10.1021/acs.jcim.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aggregation of α-synuclein is central to the pathogenesis of Parkinson's disease. The most toxic familial mutation E46K accelerates the aggregation process by an unknown mechanism. Herein, we provide a clue by investigating the influence of E46K on monomeric α-synuclein and its relation to aggregation with molecular dynamics simulations. The E46K mutation suppresses β-sheet structures in the N-terminus while promoting those at the key fibrillization region named NACore. Even though WT and E46K monomers share conserved intramolecular interactions with fibrils, E46K abolishes intramolecular contacts within the N-terminus which are present in the WT monomer but absent in fibrils. Network analysis identifies residues 36-53 as the interaction core of the WT monomer. Upon mutation, residues 36-46 are expelled to water due to aggravated electrostatic repulsion in the 43KTKK46 segment. Instead, NACore (residues 68-78) becomes the interaction hub and connects preceding residues 47-56 and the C-terminus. Consequently, residues 47-95 which belong to the fibril core form more compact β-sheets. Overall, the interaction network of E46K is more like fibrils than WT, stabilizing the fibril-like conformations. Our work provides mechanistic insights into the faster aggregation of the E46K mutant. It implies a close link between monomeric conformations and fibrils, which would spur the development of therapeutic strategies.
Collapse
Affiliation(s)
- Defa Huang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
14
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
15
|
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal AK, Bera K, Maiti NC. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7231-7248. [PMID: 37094111 DOI: 10.1021/acs.langmuir.2c03259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Misfolding and self-assembly of several intrinsically disordered proteins into ordered β-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-β-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.
Collapse
Affiliation(s)
- Anupam Maity
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aakriti Singh
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Kaushik Bera
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Department of Chemistry, The Heritage School, 994 Chowbaga Road, Anandapur, East Kolkata Twp, Kolkata 700107, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
16
|
Wu S, Hernandez Villegas NC, Schekman R. Chemical disaggregation of alpha-synuclein fibrils as a therapy for synucleinopathies. Proc Natl Acad Sci U S A 2023; 120:e2300965120. [PMID: 36888654 PMCID: PMC10242719 DOI: 10.1073/pnas.2300965120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Affiliation(s)
- Shenjie Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| | | | - Randy Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| |
Collapse
|
17
|
Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023; 13:biom13030478. [PMID: 36979413 PMCID: PMC10046667 DOI: 10.3390/biom13030478] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent years, advances in science and technology have improved our quality of life, enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden, with pervasive social impact for human societies. The cost of managing such chronic disorders and the lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings, in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly malleable genetic model that allows the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional conservation of neuronal processes, along with the high homology between nematode and human genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders. This review describes nematode models used to study neurodegeneration and underscores their contribution in the effort to dissect the molecular basis of human diseases and identify novel gene targets with therapeutic potential.
Collapse
|