1
|
Islam S, Maldarelli F, Nikolaitchik OA, Cheng Z, Gorelick R, Nikolaitchik MA, Pathak VK, Hu WS. HIV-1 transcription start sites usage and its impact on unspliced RNA functions in people living with HIV. mBio 2024:e0357624. [PMID: 39727416 DOI: 10.1128/mbio.03576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
HIV-1 unspliced RNA serves two distinct functions during viral replication: it is packaged into particles as the viral genome, and it is translated to generate Gag/Gag-Pol polyproteins required for virus assembly. Recent studies have demonstrated that in cultured cells, HIV-1 uses multiple transcription start sites to generate several unspliced RNA species, including two major transcripts with three and one 5' guanosine, referred to as 3G and 1G RNA, respectively. Although nearly identical, 1G RNA is selected over 3G RNA to be packaged as the virion genome, indicating that these RNA species are functionally distinct. Currently, our understanding of HIV-1 transcription start site usage and the functions of RNA species is based on studies using cultured cells. Here, we examined samples from people living with HIV to investigate HIV-1 transcription start site usage and its impact on RNA function. Using paired samples collected from the same participants on the same date, we examined the HIV-1 unspliced RNA species in infected cells (PBMC) and in viruses (plasma). Our findings demonstrate that in people living with HIV, the virus uses multiple transcription start sites to generate several unspliced transcripts, including 3G and 1G RNA. Furthermore, we observed an enrichment of 1G RNA in the paired plasma samples, indicating a preferential packaging of 1G RNA in vivo. Our study illustrates the complex regulation of HIV-1 unspliced RNA in people living with HIV and provides valuable insights into how HIV-1 unspliced RNAs serve their functions in vivo.IMPORTANCEHIV-1 virions must contain unspliced RNA and its translation products to maintain infectivity. How HIV-1 unspliced RNA fulfills these two essential and yet distinct roles in viral replication has been a long-standing question in the field. In this report, we demonstrate that in people living with HIV, the virus uses multiple transcription start sites to generate several unspliced RNA species that are 99% identical in sequence but differ functionally. One of the RNA species, 1G RNA, is selected over other HIV-1 unspliced RNAs to be packaged into viral particles. These findings are consistent with previous cell-culture-based observations and provide insights into how HIV-1 regulates its unspliced RNA function in people living with HIV.
Collapse
Affiliation(s)
- Saiful Islam
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Frank Maldarelli
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Zetao Cheng
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Robert Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Maria A Nikolaitchik
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
2
|
Nuwagaba J, Li JA, Ngo B, Sutton RE. 30 years of HIV therapy: Current and future antiviral drug targets. Virology 2024; 603:110362. [PMID: 39705895 DOI: 10.1016/j.virol.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation. Challenges of HAART include lifelong adherence, toxicity, drug interactions, and drug resistance. Future therapeutic strategies may focus on underexplored antiviral targets. HIV-1 Tat and Rev proteins have essential HIV-1 regulatory functions of transcriptional elongation of the viral long terminal repeat and nuclear export of intron-containing HIV-1 RNA, respectively. These non-enzymatic proteins should thus be investigated to identify small molecules that inhibit HIV-1 replication, without causing undue toxicity. Continued innovation is essential to address therapeutic gaps and bring us closer to a potential HIV-1 cure.
Collapse
Affiliation(s)
- Julius Nuwagaba
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Jessica A Li
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Brandon Ngo
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
3
|
GC K, Lesko S, Emery A, Burnett C, Gopal K, Clark S, Swanstrom R, Sherer N, Telesnitsky A, Kharytonchyk S. HIV-1 single transcription start site mutants display complementary replication functions that are restored by reversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626847. [PMID: 39677600 PMCID: PMC11643096 DOI: 10.1101/2024.12.04.626847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
HIV-1 transcription initiates at two positions, generating RNAs with either cap1G or cap3G 5' ends. The replication fates of these RNAs di\er, with viral particles encapsidating almost exclusively cap1G RNAs and cap3G RNAs retained in cells where they are enriched on polysomes and among spliced viral RNAs. Here, we studied replication properties of virus promoter mutants that produced only one RNA 5' isoform or the other: separately, in combination, and during spreading infection. Results showed that either single start RNA could serve as both mRNA and genomic RNA when present as the only form in cells, although cap3G RNA was more efficiently translated and spliced while cap1G RNA was packaged into nascent virions slightly better than RNAs from the parental virus. When co-expressed from separate vectors, cap1G RNA was preferentially packaged into virions. During spreading infection cap1G-only virus displayed only minor defects but cap3G-only virus showed severe replication delays in both the highly permissive MT-4 cell line and in primary human CD4+ T cells. Passage of cap3G-only virus yielded revertants that replicated as well as the twinned (cap1G+ cap3G) transcription start site parent. These revertants displayed restored packaging and splicing levels and had regained multiple transcription start site use.
Collapse
Affiliation(s)
- K. GC
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S. Lesko
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - A. Emery
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C. Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Gopal
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S. Clark
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - R. Swanstrom
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - N.M. Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - A. Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S. Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Cheng Z, Islam S, Kanlong JG, Sheppard M, Seo H, Nikolaitchik OA, Kearse MG, Pathak VK, Musier-Forsyth K, Hu WS. Translation of HIV-1 unspliced RNA is regulated by 5' untranslated region structure. J Virol 2024; 98:e0116024. [PMID: 39315813 PMCID: PMC11494990 DOI: 10.1128/jvi.01160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
HIV-1 must generate infectious virions to spread to new hosts and HIV-1 unspliced RNA (HIV-1 RNA) plays two central roles in this process. HIV-1 RNA serves as an mRNA that is translated to generate proteins essential for particle production and replication, and it is packaged into particles as the viral genome. HIV-1 uses several transcription start sites to generate multiple RNAs that differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. The virus relies on host machinery to translate its RNAs in a cap-dependent manner. Here, we demonstrate that the 5' context of HIV-1 RNA affects the efficiency of translation both in vitro and in cells. Although both RNAs are competent for translation, 3G RNA is translated more efficiently than 1G RNA. The 5' untranslated region (UTR) of 1G and 3G RNAs has previously been shown to fold into distinct structural ensembles. We show that HIV-1 mutants in which the 5' UTR of 1G and 3G RNAs fold into similar structures were translated at similar efficiencies. Thus, the host machinery translates two 99.9% identical HIV-1 RNAs with different efficiencies, and the translation efficiency is regulated by the 5' UTR structure.IMPORTANCEHIV-1 unspliced RNA contains all the viral genetic information and encodes virion structural proteins and enzymes. Thus, the unspliced RNA serves distinct roles as viral genome and translation template, both critical for viral replication. HIV-1 generates two major unspliced RNAs with a 2-nt difference at the 5' end (3G RNA and 1G RNA). The 1G transcript is known to be preferentially packaged over the 3G transcript. Here, we showed that 3G RNA is favorably translated over 1G RNA based on its 5' untranslated region (UTR) RNA structure. In HIV-1 mutants in which the two major transcripts have similar 5' UTR structures, 1G and 3G RNAs are translated similarly. Therefore, HIV-1 generates two 9-kb RNAs with a 2-nt difference, each serving a distinct role dictated by differential 5' UTR structures.
Collapse
Affiliation(s)
- Zetao Cheng
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Saiful Islam
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Joseph G Kanlong
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Madeline Sheppard
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Heewon Seo
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Michael G Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
5
|
Hofmann N, Bartkuhn M, Becker S, Biedenkopf N, Böttcher-Friebertshäuser E, Brinkrolf K, Dietzel E, Fehling SK, Goesmann A, Heindl MR, Hoffmann S, Karl N, Maisner A, Mostafa A, Kornecki L, Müller-Kräuter H, Müller-Ruttloff C, Nist A, Pleschka S, Sauerhering L, Stiewe T, Strecker T, Wilhelm J, Wuerth JD, Ziebuhr J, Weber F, Schmitz ML. Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network. J Virol 2024; 98:e0093524. [PMID: 39283124 PMCID: PMC11494938 DOI: 10.1128/jvi.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.
Collapse
Affiliation(s)
- Nina Hofmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Simone Hoffmann
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Kornecki
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Jennifer D. Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Musier-Forsyth K, Rein A, Hu WS. Transcription start site choice regulates HIV-1 RNA conformation and function. Curr Opin Struct Biol 2024; 88:102896. [PMID: 39146887 DOI: 10.1016/j.sbi.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
HIV-1, the causative agent of AIDS, is a retrovirus that packages two copies of unspliced viral RNA as a dimer into newly budding virions. The unspliced viral RNA also serves as an mRNA template for translation of two polyproteins. Recent studies suggest that the fate of the viral RNA (genome or mRNA) is determined at the level of transcription. RNA polymerase II uses heterogeneous transcription start sites to generate major transcripts that differ in only two guanosines at the 5' end. Remarkably, this two-nucleotide difference is sufficient to alter the structure of the 5'-untranslated region and generate two pools of RNA with distinct functions. The presence of both RNA species is needed for optimal viral replication and fitness.
Collapse
Affiliation(s)
- Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA.
| | - Alan Rein
- Retrovirus Assembly Section, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Yasin S, Lesko SL, Kharytonchyk S, Brown JD, Chaudry I, Geleta SA, Tadzong NF, Zheng MY, Patel HB, Kengni G, Neubert E, Quiambao JMC, Becker G, Ghinger FG, Thapa S, Williams A, Radov MH, Boehlert KX, Hollmann NM, Singh K, Bruce JW, Marchant J, Telesnitsky A, Sherer NM, Summers MF. Role of RNA structural plasticity in modulating HIV-1 genome packaging and translation. Proc Natl Acad Sci U S A 2024; 121:e2407400121. [PMID: 39110735 PMCID: PMC11331132 DOI: 10.1073/pnas.2407400121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
HIV-1 transcript function is controlled in part by twinned transcriptional start site usage, where 5' capped RNAs beginning with a single guanosine (1G) are preferentially packaged into progeny virions as genomic RNA (gRNA) whereas those beginning with three sequential guanosines (3G) are retained in cells as mRNAs. In 3G transcripts, one of the additional guanosines base pairs with a cytosine located within a conserved 5' polyA element, resulting in formation of an extended 5' polyA structure as opposed to the hairpin structure formed in 1G RNAs. To understand how this remodeling influences overall transcript function, we applied in vitro biophysical studies with in-cell genome packaging and competitive translation assays to native and 5' polyA mutant transcripts generated with promoters that differentially produce 1G or 3G RNAs. We identified mutations that stabilize the 5' polyA hairpin structure in 3G RNAs, which promote RNA dimerization and Gag binding without sequestering the 5' cap. None of these 3G transcripts were competitively packaged, confirming that cap exposure is a dominant negative determinant of viral genome packaging. For all RNAs examined, conformations that favored 5' cap exposure were both poorly packaged and more efficiently translated than those that favored 5' cap sequestration. We propose that structural plasticity of 5' polyA and other conserved RNA elements place the 5' leader on a thermodynamic tipping point for low-energetic (~3 kcal/mol) control of global transcript structure and function.
Collapse
Affiliation(s)
- Saif Yasin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Sydney L. Lesko
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI53705
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109-5620
| | - Joshua D. Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Issac Chaudry
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Samuel A. Geleta
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Ndeh F. Tadzong
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Mei Y. Zheng
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Heer B. Patel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Gabriel Kengni
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Emma Neubert
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | | | - Ghazal Becker
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Frances Grace Ghinger
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Sreeyasha Thapa
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - A’Lyssa Williams
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Michelle H. Radov
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Kellie X. Boehlert
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Nele M. Hollmann
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
- HHMI, University of Maryland, Baltimore County, MD21250
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, MD21250
| | - Karndeep Singh
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - James W. Bruce
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI53705
| | - Jan Marchant
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109-5620
| | - Nathan M. Sherer
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI53705
| | - Michael F. Summers
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
- HHMI, University of Maryland, Baltimore County, MD21250
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, MD21250
| |
Collapse
|
8
|
Martin J, Chen X, Jia X, Shao Q, Liu B. The Disassociation of A3G-Related HIV-1 cDNA G-to-A Hypermutation to Viral Infectivity. Viruses 2024; 16:728. [PMID: 38793610 PMCID: PMC11126051 DOI: 10.3390/v16050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
APOBEC3G (A3G) restricts HIV-1 replication primarily by reducing viral cDNA and inducing G-to-A hypermutations in viral cDNA. HIV-1 encodes virion infectivity factor (Vif) to counteract A3G primarily by excluding A3G viral encapsidation. Even though the Vif-induced exclusion is robust, studies suggest that A3G is still detectable in the virion. The impact of encapsidated A3G in the HIV-1 replication is unclear. Using a highly sensitive next-generation sequencing (NGS)-based G-to-A hypermutation detecting assay, we found that wild-type HIV-1 produced from A3G-expressing T-cells induced higher G-to-A hypermutation frequency in viral cDNA than HIV-1 from non-A3G-expressing T-cells. Interestingly, although the virus produced from A3G-expressing T-cells induced higher hypermutation frequency, there was no significant difference in viral infectivity, revealing a disassociation of cDNA G-to-A hypermutation to viral infectivity. We also measured G-to-A hypermutation in the viral RNA genome. Surprisingly, our data showed that hypermutation frequency in the viral RNA genome was significantly lower than in the integrated DNA, suggesting a mechanism exists to preferentially select intact genomic RNA for viral packing. This study revealed a new insight into the mechanism of HIV-1 counteracting A3G antiviral function and might lay a foundation for new antiviral strategies.
Collapse
Affiliation(s)
- Joanie Martin
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
- School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA
| | - Xin Chen
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| | - Xiangxu Jia
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| |
Collapse
|
9
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
10
|
Vanegas-Torres CA, Schindler M. HIV-1 Vpr Functions in Primary CD4 + T Cells. Viruses 2024; 16:420. [PMID: 38543785 PMCID: PMC10975730 DOI: 10.3390/v16030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo. Although HIV infects various cell types in the host organism, CD4+ T cells are preferentially targeted since they are highly permissive towards productive infection, concomitantly bringing about the hallmark immune dysfunction that accompanies HIV-1 spread. The last several decades have seen unprecedented progress in unraveling the activities Vpr possesses in the host cell at the molecular scale, increasingly underscoring the importance of this viral component. Nevertheless, it remains controversial whether some of these advances bear in vivo relevance, since commonly employed cellular models significantly differ from primary T lymphocytes. One prominent example is the "established" ability of Vpr to induce G2 cell cycle arrest, with enigmatic physiological relevance in infected primary T lymphocytes. The objective of this review is to present these discoveries in their biological context to illustrate the mechanisms whereby Vpr supports HIV-1 infection in CD4+ T cells, whilst identifying findings that require validation in physiologically relevant models.
Collapse
Affiliation(s)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| |
Collapse
|