1
|
Shen X, Yan S, Zeng T, Xia F, Jiang D, Wan G, Cao D, Wu R. TarIKGC: A Target Identification Tool Using Semantics-Enhanced Knowledge Graph Completion with Application to CDK2 Inhibitor Discovery. J Med Chem 2025; 68:1793-1809. [PMID: 39745279 DOI: 10.1021/acs.jmedchem.4c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Target identification is a critical stage in the drug discovery pipeline. Various computational methodologies have been dedicated to enhancing the classification performance of compound-target interactions, yet significant room remains for improving the recommendation performance. To address this challenge, we developed TarIKGC, a tool for target prioritization that leverages semantics enhanced knowledge graph (KG) completion. This method harnesses knowledge representation learning within a heterogeneous compound-target-disease network. Specifically, TarIKGC combines an attention-based aggregation graph neural network with a multimodal feature extractor network to simultaneously learn internal semantic features from biomedical entities and topological features from the KG. Furthermore, a KG embedding model is employed to identify missing relationships among compounds and targets. In silico evaluations highlighted the superior performance of TarIKGC in drug repositioning tasks. In addition, TarIKGC successfully identified two potential cyclin-dependent kinase 2 (CDK2) inhibitors with novel scaffolds through reverse target fishing. Both compounds exhibited antiproliferative activities across multiple therapeutic indications targeting CDK2.
Collapse
Affiliation(s)
- Xiaojuan Shen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shijia Yan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dejun Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Guohui Wan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ruibo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
El-Emam NA, El-Ashmawy MB, Mohamed AAB, Habib ESE, Thamotharan S, Abdelbaky MSM, Garcia-Granda S, Moustafa MAA. Thiophene-Linked 1,2,4-Triazoles: Synthesis, Structural Insights and Antimicrobial and Chemotherapeutic Profiles. Pharmaceuticals (Basel) 2024; 17:1123. [PMID: 39338288 PMCID: PMC11435084 DOI: 10.3390/ph17091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different secondary amines and formaldehyde solution to yield the corresponding 2-aminomethyl-4-haloaryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 6a-e, 7a-e, 8, 9, 10a and 10b in good yields. The in vitro antimicrobial activity of compounds 5a-e, 6a-e, 7a-d, 8, 9, 10a and 10b was evaluated against a panel of standard pathogenic bacterial and fungal strains. Compounds 5a, 5b, 5e, 5f, 6a-e, 7a-d, 8, 9, 10a and 10b showed marked activity, particularly against the tested Gram-positive bacteria and the Gram-negative bacteria Escherichia coli, and all the tested compounds were almost inactive against all the tested fungal strains. In addition, compounds 5e, 6a-e, 7a-d and 10a exhibited potent anti-proliferative activity, particularly against HepG-2 and MCF-7 cancer cell lines (IC50 < 25 μM). A detailed structural insight study based on the single crystals of compounds 5a, 5b, 6a, 6d and 10a is also reported. Molecular docking studies of the highly active antibacterial compounds 5e, 6b, 6d, 7a and 7d showed a high affinity for DNA gyrase. Meanwhile, the potent anti-proliferative activity of compounds 6d, 6e and 7d may be attributed to their high affinity for cyclin-dependent kinase 2 (CDK2).
Collapse
Affiliation(s)
- Nada A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud B El-Ashmawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory and DBT-Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Mohammed S M Abdelbaky
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo-CINN (CSIC), 33006 Oviedo, Spain
| | - Mohamed A A Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Davison JR, Hadjithomas M, Romeril SP, Choi YJ, Bentley KW, Biggins JB, Chacko N, Castaldi MP, Chan LK, Cumming JN, Downes TD, Eisenhauer EL, Fei F, Fontaine BM, Endalur Gopinarayanan V, Gurnani S, Hecht A, Hosford CJ, Ibrahim A, Jagels A, Joubran C, Kim JN, Lisher JP, Liu DD, Lyles JT, Mannara MN, Murray GJ, Musial E, Niu M, Olivares-Amaya R, Percuoco M, Saalau S, Sharpe K, Sheahan AV, Thevakumaran N, Thompson JE, Thompson DA, Wiest A, Wyka SA, Yano J, Verdine GL. Genomic Discovery and Structure-Activity Exploration of a Novel Family of Enzyme-Activated Covalent Cyclin-Dependent Kinase Inhibitors. J Med Chem 2024; 67:13147-13173. [PMID: 39078366 PMCID: PMC11320645 DOI: 10.1021/acs.jmedchem.4c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Fungi have historically been the source of numerous important medicinal compounds, but full exploitation of their genetic potential for drug development has been hampered in traditional discovery paradigms. Here we describe a radically different approach, top-down drug discovery (TD3), starting with a massive digital search through a database of over 100,000 fully genomicized fungi to identify loci encoding molecules with a predetermined human target. We exemplify TD3 by the selection of cyclin-dependent kinases (CDKs) as targets and the discovery of two molecules, 1 and 2, which inhibit therapeutically important human CDKs. 1 and 2 exhibit a remarkable mechanism, forming a site-selective covalent bond to the CDK active site Lys. We explored the structure-activity relationship via semi- and total synthesis, generating an analog, 43, with improved kinase selectivity, bioavailability, and efficacy. This work highlights the power of TD3 to identify mechanistically and structurally novel molecules for the development of new medicines.
Collapse
Affiliation(s)
- Jack R. Davison
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michalis Hadjithomas
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stuart P. Romeril
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yoon Jong Choi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Keith W. Bentley
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John B. Biggins
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Nadia Chacko
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - M. Paola Castaldi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lawrence K. Chan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jared N. Cumming
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Thomas D. Downes
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Eric L. Eisenhauer
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Fan Fei
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Benjamin M. Fontaine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | | | - Srishti Gurnani
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Audrey Hecht
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher J. Hosford
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ashraf Ibrahim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Annika Jagels
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Camil Joubran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ji-Nu Kim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John P. Lisher
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Daniel D. Liu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James T. Lyles
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Matteo N. Mannara
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gordon J. Murray
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Emilia Musial
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mengyao Niu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Roberto Olivares-Amaya
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Marielle Percuoco
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Susanne Saalau
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kristen Sharpe
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Anjali V. Sheahan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Neroshan Thevakumaran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James E. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Dawn A. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Aric Wiest
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stephen A. Wyka
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jason Yano
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gregory L. Verdine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
- Departments
of Chemistry and Chemical Biology, and Stem Cell and Regenerative
Biology, Harvard University and Harvard
Medical School, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Ma Y, Li Q, Tang Y, Zhang Z, Liu R, Luo Q, Wang Y, Hu J, Chen Y, Li Z, Zhao C, Ran Y, Mu Y, Li Y, Xu X, Gong Y, He Z, Ba Y, Guo K, Dong K, Li X, Tan W, Zhu Y, Xiang Z, Xu H. The architecture of silk-secreting organs during the final larval stage of silkworms revealed by single-nucleus and spatial transcriptomics. Cell Rep 2024; 43:114460. [PMID: 38996068 DOI: 10.1016/j.celrep.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Natural silks are renewable proteins with impressive mechanical properties and biocompatibility that are useful in various fields. However, the cellular and spatial organization of silk-secreting organs remains unclear. Here, we combined single-nucleus and spatially resolved transcriptomics to systematically map the cellular and spatial composition of the silk glands (SGs) of mulberry silkworms late in larval development. This approach allowed us to profile SG cell types and cell state dynamics and identify regulatory networks and cell-cell communication related to efficient silk protein synthesis; key markers were validated via transgenic approaches. Notably, we demonstrated the indispensable role of the ecdysone receptor (ultraspiracle) in regulating endoreplication in SG cells. Our atlas presents the results of spatiotemporal analysis of silk-secreting organ architecture late in larval development; this atlas provides a valuable reference for elucidating the mechanism of efficient silk protein synthesis and developing sustainable products made from natural silk.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qingjun Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yiyun Tang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyong Zhang
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Rongpeng Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuting Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jie Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuqin Chen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiwei Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chen Zhao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yiting Ran
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Mu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yinghao Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoqing Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuyan Gong
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Zihan He
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai 201212, China
| | - Kaiqi Guo
- Shanghai OE Biotech. Co., Ltd., Shanghai 201212, China
| | - Keshu Dong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Wei Tan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yumeng Zhu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Ji Q, Xiang H, Wang WG, Matsuda Y. Mechanism Behind the Programmed Biosynthesis of Heterotrimeric Fungal Depside Thielavin A. Angew Chem Int Ed Engl 2024; 63:e202402663. [PMID: 38467568 DOI: 10.1002/anie.202402663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Thielavin A (1) is a fungal depside composed of one 3-methylorsellinic acid and two 3,5-dimethylorsellinic acid units. It displays diverse biological activities. However, the mechanism underlying the assembly of the heterotrimeric structure of 1 remains to be clarified. In this study, we identified the polyketide synthase (PKS) involved in the biosynthesis of 1. This PKS, designated as ThiA, possesses an unusual domain organization with the C-methyltransferase (MT) domain situated at the C-terminus following the thioesterase (TE) domain. Our findings indicated that the TE domain is solely responsible for two rounds of ester bond formation, along with subsequent chain hydrolysis. We identified a plausible mechanism for TE-catalyzed reactions and obtained insights into how a single PKS can selectively yield a specific heterotrimeric product. In particular, the tandem acyl carrier protein domains of ThiA are critical for programmed methylation by the MT domain. Overall, this study highlighted the occurrence of highly optimized domain-domain communication within ThiA for the selective synthesis of 1, which can advance our understanding of the programming rules of fungal PKSs.
Collapse
Affiliation(s)
- Qiaolin Ji
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hao Xiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, 650031, Yunnan, China
| | - Wei-Guang Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, 650031, Yunnan, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|