1
|
Yang Y, Xiong D, Zhao D, Huang H, Tian C. Genome sequencing of Elaeocarpus spp. stem blight pathogen Pseudocryphonectria elaeocarpicola reveals potential adaptations to colonize woody bark. BMC Genomics 2024; 25:714. [PMID: 39048950 PMCID: PMC11267912 DOI: 10.1186/s12864-024-10615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| | - Danyang Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Huayi Huang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China.
| | - Chengming Tian
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
2
|
Zhu L, Wu Z, Fang W, Wang Y. High-Quality Genome and Annotation Resource of Orange Pink Rot Pathogen Trichothecium roseum Strain YXFP-22015 Isolated from Hubei, China. PLANT DISEASE 2023:PDIS10222403A. [PMID: 36471473 DOI: 10.1094/pdis-10-22-2403-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Trichothecium roseum is widely distributed throughout the world and forms pink powdery molds on various fruits and vegetables, lowering their quality and leading to great economic losses. Due to the limited availability of high-quality genomic and annotation resources, little is known about the pathogenesis of T. roseum at the molecular level. In this study, we reported a high-quality genome assembly of strain YXFP-22015 using Oxford Nanopore Technologies (ONT) for long read sequencing and MGISEQ-2000 for short read sequencing. The genome was also well-annotated based on the combination of RNA-seq by MGISEQ-2000 and in silico prediction. Further analysis on this will contribute to a better understanding of T. roseum infection mechanisms.
Collapse
Affiliation(s)
- Lei Zhu
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, P.R. China
| | - Zhaoyuan Wu
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, P.R. China
| | - Wei Fang
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, P.R. China
| | - Yueying Wang
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, P.R. China
| |
Collapse
|
3
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
4
|
Abstract
Anaerobic gut fungi are important members of the gut microbiome of herbivores, yet they exist in small numbers relative to bacteria. Here, we show that these early-branching fungi produce a wealth of secondary metabolites (natural products) that may act to regulate the gut microbiome. We use an integrated 'omics'-based approach to classify the biosynthetic genes predicted from fungal genomes, determine transcriptionally active genes, and verify the presence of their enzymatic products. Our analysis reveals that anaerobic gut fungi are an untapped reservoir of bioactive compounds that could be harnessed for biotechnology. Anaerobic fungi (class Neocallimastigomycetes) thrive as low-abundance members of the herbivore digestive tract. The genomes of anaerobic gut fungi are poorly characterized and have not been extensively mined for the biosynthetic enzymes of natural products such as antibiotics. Here, we investigate the potential of anaerobic gut fungi to synthesize natural products that could regulate membership within the gut microbiome. Complementary 'omics' approaches were combined to catalog the natural products of anaerobic gut fungi from four different representative species: Anaeromyces robustus (A. robustus), Caecomyces churrovis (C. churrovis), Neocallimastix californiae (N. californiae), and Piromyces finnis (P. finnis). In total, 146 genes were identified that encode biosynthetic enzymes for diverse types of natural products, including nonribosomal peptide synthetases and polyketide synthases. In addition, N. californiae and C. churrovis genomes encoded seven putative bacteriocins, a class of antimicrobial peptides typically produced by bacteria. During standard laboratory growth on plant biomass or soluble substrates, 26% of total core biosynthetic genes in all four strains were transcribed. Across all four fungal strains, 30% of total biosynthetic gene products were detected via proteomics when grown on cellobiose. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of fungal supernatants detected 72 likely natural products from A. robustus alone. A compound produced by all four strains of anaerobic fungi was putatively identified as the polyketide-related styrylpyrone baumin. Molecular networking quantified similarities between tandem mass spectrometry (MS/MS) spectra among these fungi, enabling three groups of natural products to be identified that are unique to anaerobic fungi. Overall, these results support the finding that anaerobic gut fungi synthesize natural products, which could be harnessed as a source of antimicrobials, therapeutics, and other bioactive compounds.
Collapse
|
5
|
Alam B, Lǐ J, Gě Q, Khan MA, Gōng J, Mehmood S, Yuán Y, Gǒng W. Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? FRONTIERS IN PLANT SCIENCE 2021; 12:791033. [PMID: 34975976 PMCID: PMC8718612 DOI: 10.3389/fpls.2021.791033] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Endophytic fungi (EF) are a group of fascinating host-associated fungal communities that colonize the intercellular or intracellular spaces of host tissues, providing beneficial effects to their hosts while gaining advantages. In recent decades, accumulated research on endophytic fungi has revealed their biodiversity, wide-ranging ecological distribution, and multidimensional interactions with host plants and other microbiomes in the symbiotic continuum. In this review, we highlight the role of secondary metabolites (SMs) as effectors in these multidimensional interactions, and the biosynthesis of SMs in symbiosis via complex gene expression regulation mechanisms in the symbiotic continuum and via the mimicry or alteration of phytochemical production in host plants. Alternative biological applications of SMs in modern medicine, agriculture, and industry and their major classes are also discussed. This review recapitulates an introduction to the research background, progress, and prospects of endophytic biology, and discusses problems and substantive challenges that need further study.
Collapse
Affiliation(s)
- Beena Alam
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mueen Alam Khan
- Department of Plant Breeding & Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur (IUB), Bahawalpur, Pakistan
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shahid Mehmood
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Wànkuí Gǒng,
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Yǒulù Yuán,
| |
Collapse
|
6
|
Lyu HN, Liu HW, Keller NP, Yin WB. Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat Prod Rep 2020; 37:6-16. [DOI: 10.1039/c8np00027a] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers diverse transcriptional regulators for the activation of secondary metabolism and novel natural product discovery in fungi.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology and Bacteriology
- University of Wisconsin–Madison
- Madison
- USA
| | - Wen-Bing Yin
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
7
|
A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun 2019; 10:922. [PMID: 30804501 PMCID: PMC6389888 DOI: 10.1038/s41467-019-08726-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/17/2019] [Indexed: 01/07/2023] Open
Abstract
Fusarium graminearum is a destructive wheat pathogen. No fully resistant cultivars are available. Knowledge concerning the molecular weapons of F. graminearum to achieve infection remains limited. Here, we report that deletion of the putative secondary metabolite biosynthesis gene cluster fg3_54 compromises the pathogen’s ability to infect wheat through cell-to-cell penetration. Ectopic expression of fgm4, a pathway-specific bANK-like regulatory gene, activates the transcription of the fg3_54 cluster in vitro. We identify a linear, C- terminally reduced and d-amino acid residue-rich octapeptide, fusaoctaxin A, as the product of the two nonribosomal peptide synthetases encoded by fg3_54. Chemically-synthesized fusaoctaxin A restores cell-to-cell invasiveness in fg3_54-deleted F. graminearum, and enables colonization of wheat coleoptiles by two Fusarium strains that lack the fg3_54 homolog and are nonpathogenic to wheat. In conclusion, our results identify fusaoctaxin A as a virulence factor required for cell-to-cell invasion of wheat by F. graminearum. Fusarium graminearum is a fungal pathogen of wheat and other cereals. Here the authors identify a gene cluster in F. graminearum encoding the production of a non-ribosomal peptide that is required for infection of wheat through cell-to-cell penetration.
Collapse
|
8
|
Lebar MD, Cary JW, Majumdar R, Carter-Wientjes CH, Mack BM, Wei Q, Uka V, De Saeger S, Diana Di Mavungu J. Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus. Fungal Genet Biol 2018; 116:14-23. [PMID: 29674152 DOI: 10.1016/j.fgb.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
Aspergillus flavus can colonize important food staples and produce aflatoxins, a group of toxic and carcinogenic secondary metabolites. Previous in silico analysis of the A. flavus genome revealed 56 gene clusters predicted to be involved in the biosynthesis of secondary metabolites. A. flavus secondary metabolites produced during infection of maize seed are of particular interest, especially with respect to their roles in the biology of the fungus. A predicted nonribosomal peptide synthetase-like (NRPS-like) gene, designated asaC (AFLA_023020), present in the uncharacterized A. flavus secondary metabolite gene cluster 11 was previously shown to be expressed during the earliest stages of maize kernel infection. Cluster 11 is composed of six additional genes encoding a number of putative decorating enzymes as well as a transporter and transcription factor. We generated knock-out mutants of the seven predicted cluster 11 genes. LC-MS analysis of extracts from knockout mutants of these genes showed that they were responsible for the synthesis of the previously characterized antimicrobial mycotoxin aspergillic acid. Extracts of the asaC mutant showed no production of aspergillic acid or its precursors. Knockout of the cluster 11 P450 oxidoreductase afforded a pyrazinone metabolite, the aspergillic acid precursor deoxyaspergillic acid. The formation of hydroxyaspergillic acid was abolished in a desaturase/hydroxylase mutant. The hydroxamic acid functional group in aspergillic acid allows the molecule to bind to iron resulting in the production of a red pigment in A. flavus identified previously as ferriaspergillin. A reduction of aflatoxin B1 and cyclopiazonic acid that correlated with reduced fungal growth was observed in maize kernel infection assays when aspergillic acid biosynthesis in A. flavus is halted.
Collapse
Affiliation(s)
- Matthew D Lebar
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA.
| | - Jeffrey W Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA
| | | | | | - Brian M Mack
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA
| | - Qijian Wei
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA
| | - Valdet Uka
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - José Diana Di Mavungu
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Deepika VB, Murali TS, Satyamoorthy K. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiol Res 2015; 182:125-40. [PMID: 26686621 DOI: 10.1016/j.micres.2015.10.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
Novel drugs with unique and targeted mode of action are very much need of the hour to treat and manage severe multidrug infections and other life-threatening complications. Though natural molecules have proved to be effective and environmentally safe, the relative paucity of discovery of new drugs has forced us to lean towards synthetic chemistry for developing novel drug molecules. Plants and microbes are the major resources that we rely upon in our pursuit towards discovery of novel compounds of pharmacological importance with less toxicity. Endophytes, an eclectic group of microbes having the potential to chemically bridge the gap between plants and microbes, have attracted the most attention due to their relatively high metabolic versatility. Since continuous large scale supply of major metabolites from microfungi and especially endophytes is severely impeded by the phenomenon of attenuation in axenic cultures, the major challenge is to understand the regulatory mechanisms in operation that drive the expression of metabolic gene clusters of pharmaceutical importance. This review is focused on the major regulatory elements that operate in filamentous fungi and various combinatorial multi-disciplinary approaches involving bioinformatics, molecular biology, and metabolomics that could aid in large scale synthesis of important lead molecules.
Collapse
Affiliation(s)
- V B Deepika
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - T S Murali
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India.
| | - K Satyamoorthy
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| |
Collapse
|
10
|
Pham CD, Reiss E, Hagen F, Meis JF, Lockhart SR. Passive surveillance for azole-resistant Aspergillus fumigatus, United States, 2011-2013. Emerg Infect Dis 2015; 20:1498-503. [PMID: 25148217 PMCID: PMC4178384 DOI: 10.3201/eid2009.140142] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A. fumigatus cyp51A–mediated resistance to azole drugs is rare in the United States. Emergence of Aspergillus fumigatus strains containing mutations that lead to azole resistance has become a serious public health threat in many countries. Nucleotide polymorphisms leading to amino acid substitutions in the lanosterol demethylase gene (cyp51A) are associated with reduced susceptibility to azole drugs. The most widely recognized mutation is a lysine to histidine substitution at aa 98 (L98H) and a duplication of the untranscribed promoter region, together known as TR34/L98H. This mechanism of resistance has been reported in Europe, Asia, and the Middle East, and is associated with resistance to all azole drugs and subsequent treatment failures. To determine whether isolates with this mutation are spreading into the United States, we conducted a passive surveillance–based study of 1,026 clinical isolates of A. fumigatus from 22 US states during 2011–2013. No isolates harboring the TR34/L98H mutation were detected, and MICs of itraconazole were generally low.
Collapse
|
11
|
|
12
|
The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One 2014; 9:e110311. [PMID: 25333987 PMCID: PMC4198257 DOI: 10.1371/journal.pone.0110311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination.
Collapse
|
13
|
Niehaus EM, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf HU, Tudzynski B. Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One 2014; 9:e103336. [PMID: 25058475 PMCID: PMC4109984 DOI: 10.1371/journal.pone.0103336] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022] Open
Abstract
The fungus F. fujikuroi is well known for its production of gibberellins causing the ‘bakanae’ disease of rice. Besides these plant hormones, it is able to produce other secondary metabolites (SMs), such as pigments and mycotoxins. Genome sequencing revealed altogether 45 potential SM gene clusters, most of which are cryptic and silent. In this study we characterize a new non-ribosomal peptide synthetase (NRPS) gene cluster that is responsible for the production of the cyclic tetrapeptide apicidin F (APF). This new SM has structural similarities to the known histone deacetylase inhibitor apicidin. To gain insight into the biosynthetic pathway, most of the 11 cluster genes were deleted, and the mutants were analyzed by HPLC-DAD and HPLC-HRMS for their ability to produce APF or new derivatives. Structure elucidation was carried out be HPLC-HRMS and NMR analysis. We identified two new derivatives of APF named apicidin J and K. Furthermore, we studied the regulation of APF biosynthesis and showed that the cluster genes are expressed under conditions of high nitrogen and acidic pH in a manner dependent on the nitrogen regulator AreB, and the pH regulator PacC. In addition, over-expression of the atypical pathway-specific transcription factor (TF)-encoding gene APF2 led to elevated expression of the cluster genes under inducing and even repressing conditions and to significantly increased product yields. Bioinformatic analyses allowed the identification of a putative Apf2 DNA-binding (“Api-box”) motif in the promoters of the APF genes. Point mutations in this sequence motif caused a drastic decrease of APF production indicating that this motif is essential for activating the cluster genes. Finally, we provide a model of the APF biosynthetic pathway based on chemical identification of derivatives in the cultures of deletion mutants.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | - Slavica Janevska
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | - Katharina W. von Bargen
- Westfälische Wilhelms-Universität Münster, Institut für Lebensmittelchemie, Münster, Germany
| | - Christian M. K. Sieber
- Helmholtz Zentrum München (GmbH), Institut für Bioinformatik und Systembiologie, Neuherberg, Germany
| | - Henning Harrer
- Westfälische Wilhelms-Universität Münster, Institut für Lebensmittelchemie, Münster, Germany
| | - Hans-Ulrich Humpf
- Westfälische Wilhelms-Universität Münster, Institut für Lebensmittelchemie, Münster, Germany
- * E-mail: (BT); (HUH)
| | - Bettina Tudzynski
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
- * E-mail: (BT); (HUH)
| |
Collapse
|
14
|
Wight WD, Labuda R, Walton JD. Conservation of the genes for HC-toxin biosynthesis in Alternaria jesenskae. BMC Microbiol 2013; 13:165. [PMID: 23865912 PMCID: PMC3729494 DOI: 10.1186/1471-2180-13-165] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
Background HC-toxin, a cyclic tetrapeptide, is a virulence determinant for the plant pathogenic fungus Cochliobolus carbonum. It was recently discovered that another fungus, Alternaria jesenskae, also produces HC-toxin. Results The major genes (collectively known as AjTOX2) involved in the biosynthesis of HC-toxin were identified from A. jesenskae by genomic sequencing. The encoded orthologous proteins share 75-85% amino acid identity, and the genes for HC-toxin biosynthesis are duplicated in both fungi. The genomic organization of the genes in the two fungi show a similar but not identical partial clustering arrangement. A set of representative housekeeping proteins show a similar high level of amino acid identity between C. carbonum and A. jesenskae, which is consistent with the close relatedness of these two genera within the family Pleosporaceae (Dothideomycetes). Conclusions This is the first report that the plant virulence factor HC-toxin is made by an organism other than C. carbonum. The genes may have moved by horizontal transfer between the two species, but it cannot be excluded that they were present in a common ancestor and lost from other species of Alternaria and Cochliobolus.
Collapse
Affiliation(s)
- Wanessa D Wight
- Department of Energy Plant Research Laboratory, Michigan State University, 612 Wilson Road, Room 210, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
15
|
Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJGM. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 2012; 37:67-93. [PMID: 22931103 DOI: 10.1111/j.1574-6976.2012.00349.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/01/2012] [Accepted: 07/19/2012] [Indexed: 01/25/2023] Open
Abstract
Many necrotrophic plant pathogenic fungi belonging to the class of Dothideomycetes produce phytotoxic metabolites and peptides that are usually required for pathogenicity. Phytotoxins that affect a broad range of plant species are known as non-host-specific toxins (non-HSTs), whereas HSTs affect only a particular plant species or more often genotypes of that species. For pathogens producing HSTs, pathogenicity and host specificity are largely defined by the ability to produce the toxin, while plant susceptibility is dependent on the presence of the toxin target. Non-HSTs are not the main determinants of pathogenicity but contribute to virulence of the producing pathogen. Dothideomycetes are remarkable for the production of toxins, particularly HSTs because they are the only fungal species known so far to produce them. The synthesis, regulation, and mechanisms of action of the most important HSTs and non-HSTs will be discussed. Studies on the mode of action of HSTs have highlighted the induction of programed cell death (PCD) as an important mechanism. We discuss HST-induced PCD and the plant hypersensitive response upon recognition of avirulence factors that share common pathways. In this respect, although nucleotide-binding-site-leucine-rich repeat types of resistance proteins mediate resistance against biotrophs, they can also contribute to susceptibility toward necrotrophs.
Collapse
|
16
|
Lang GI, Botstein D. A test of the coordinated expression hypothesis for the origin and maintenance of the GAL cluster in yeast. PLoS One 2011; 6:e25290. [PMID: 21966486 PMCID: PMC3178652 DOI: 10.1371/journal.pone.0025290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022] Open
Abstract
Metabolic gene clusters—functionally related and physically clustered genes—are a common feature of some eukaryotic genomes. Two hypotheses have been advanced to explain the origin and maintenance of metabolic gene clusters: coordinated gene expression and genetic linkage. Here we test the hypothesis that selection for coordinated gene expression underlies the clustering of GAL genes in the yeast genome. We find that, although clustering coordinates the expression of GAL1 and GAL10, disrupting the GAL cluster does not impair fitness, suggesting that other mechanisms, such as genetic linkage, drive the origin and maintenance metabolic gene clusters.
Collapse
Affiliation(s)
- Gregory I. Lang
- Department of Molecular and Cellular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - David Botstein
- Department of Molecular and Cellular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
17
|
Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 2011; 49:329-39. [PMID: 21717315 DOI: 10.1007/s12275-011-1009-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/15/2011] [Indexed: 01/19/2023]
Abstract
Filamentous fungi produce a variety of secondary metabolites of diverse beneficial and detrimental activities to humankind. The genes required for a given secondary metabolite are typically arranged in a gene cluster. There is considerable evidence that secondary metabolite gene regulation is, in part, by transcriptional control through hierarchical levels of transcriptional regulatory elements involved in secondary metabolite cluster regulation. Identification of elements regulating secondary metabolism could potentially provide a means of increasing production of beneficial metabolites, decreasing production of detrimental metabolites, aid in the identification of 'silent' natural products and also contribute to a broader understanding of molecular mechanisms by which secondary metabolites are produced. This review summarizes regulation of secondary metabolism associated with transcriptional regulatory elements from a broad view as well as the tremendous advances in discovery of cryptic or novel secondary metabolites by genomic mining.
Collapse
Affiliation(s)
- Wenbing Yin
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
18
|
Walton JD, Hallen-Adams HE, Luo H. Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers 2011; 94:659-64. [PMID: 20564017 DOI: 10.1002/bip.21416] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Some species of mushrooms in the genus Amanita are extremely poisonous and frequently fatal to mammals including humans and dogs. Their extreme toxicity is due to amatoxins such as alpha- and beta-amanitin. Amanita mushrooms also biosynthesize a chemically related group of toxins, the phallotoxins, such as phalloidin. The amatoxins and phallotoxins (collectively known as the Amanita toxins) are bicyclic octa- and heptapeptides, respectively. Both contain an unusual Trp-Cys crossbridge known as tryptathionine. We have shown that, in Amanita bisporigera, the amatoxins and phallotoxins are synthesized as proproteins on ribosomes and not by nonribosomal peptide synthetases. The proproteins are 34-35 amino acids in length and have no predicted signal peptides. The genes for alpha-amanitin (AMA1) and phallacidin (PHA1) are members of a large family of related genes, characterized by highly conserved amino acid sequences flanking a hypervariable "toxin" region. The toxin regions are flanked by invariant proline (Pro) residues. An enzyme that could cleave the proprotein of phalloidin was purified from the phalloidin-producing lawn mushroom Conocybe apala. The enzyme is a serine protease in the prolyl oligopeptidase (POP) subfamily. The same enzyme cuts at both Pro residues to release the linear hepta- or octapeptide.
Collapse
Affiliation(s)
- Jonathan D Walton
- Department of Energy Plant Research Laboratory, Michigan State University, E. Lansing, MI 48824, USA.
| | | | | |
Collapse
|
19
|
Jin JM, Lee S, Lee J, Baek SR, Kim JC, Yun SH, Park SY, Kang S, Lee YW. Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum. Mol Microbiol 2010; 76:456-66. [PMID: 20233305 DOI: 10.1111/j.1365-2958.2010.07109.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apicidin is a cyclic tetrapeptide produced by certain isolates of Fusarium semitectum and has been shown to inhibit Apicomplexan histone deacetylase. An apicidin-producing strain (KCTC16676) of the filamentous fungus was mutated using an Agrobacterium tumefaciens-mediated transformation, resulting in 24 apicidin-deficient mutants. Three of the mutants had a T-DNA insertion in a gene that encodes a non-ribosomal peptide synthetase (NRPS). Results of sequence, expression, and gene deletion analyses defined an apicidin biosynthetic gene cluster, and the NRPS gene was named as apicidin synthetase gene 1 (APS1). A 63 kb region surrounding APS1 was sequenced and analysis revealed the presence of 19 genes. All of the genes including APS1 were individually deleted to determine their roles in apicidin biosynthesis. Chemical analyses of the mutant strains showed that eight genes are required for apicidin production and were used to propose an apicidin biosynthetic pathway. The apicidin analogues apicidin E, apicidin D(2) and apicidin B were identified from chemical analysis of the mutants. The cluster gene APS2, a putative transcription factor, was shown to regulate expression of the genes in the cluster and overexpression of APS2 increased apicidin production. This study establishes the apicidin biosynthetic pathway and provides new opportunities to improve the production of apicidin and produce new analogues.
Collapse
Affiliation(s)
- Jian-Ming Jin
- Department of Agricultural Biotechnology and Centers for Fungal Pathogenesis and for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
Operons (clusters of co-regulated genes with related functions) are common features of bacterial genomes. More recently, functional gene clustering has been reported in eukaryotes, from yeasts to filamentous fungi, plants, and animals. Gene clusters can consist of paralogous genes that have most likely arisen by gene duplication. However, there are now many examples of eukaryotic gene clusters that contain functionally related but non-homologous genes and that represent functional gene organizations with operon-like features (physical clustering and co-regulation). These include gene clusters for use of different carbon and nitrogen sources in yeasts, for production of antibiotics, toxins, and virulence determinants in filamentous fungi, for production of defense compounds in plants, and for innate and adaptive immunity in animals (the major histocompatibility locus). The aim of this article is to review features of functional gene clusters in prokaryotes and eukaryotes and the significance of clustering for effective function.
Collapse
Affiliation(s)
- Anne E Osbourn
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
22
|
Wight WD, Kim KH, Lawrence CB, Walton JD. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1258-67. [PMID: 19737099 DOI: 10.1094/mpmi-22-10-1258] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Depudecin, an eleven-carbon linear polyketide made by the pathogenic fungus Alternaria brassicicola, is an inhibitor of histone deacetylase (HDAC). A chemically unrelated HDAC inhibitor, HC toxin, was earlier shown to be a major virulence factor in the interaction between Cochliobolus carbonum and its host, maize. In order to test whether depudecin is also a virulence factor for A. brassicicola, we identified the genes for depudecin biosynthesis and created depudecin-minus mutants. The depudecin gene cluster contains six genes (DEP1 to DEP6), which are predicted to encode a polyketide synthase (AbPKS9 or DEP5), a transcription factor (DEP6), two monooxygenases (DEP2 and DEP4), a transporter of the major facilitator superfamily (DEP3), and one protein of unknown function (DEP1). The involvement in depudecin production of DEP2, DEP4, DEP5, and DEP6 was demonstrated by targeted gene disruption. DEP6 is required for expression of DEP1 through DEP5 but not the immediate flanking genes, thus defining a coregulated depudecin biosynthetic cluster. The genes flanking the depudecin gene cluster but not the cluster itself are conserved in the same order in the related fungi Stagonospora nodorum and Pyrenophora tritici-repentis. Depudecin-minus mutants have a small (10%) but statistically significant reduction in virulence on cabbage (Brassica oleracea) but not on Arabidopsis. The role of depudecin in virulence is, therefore, less dramatic than that of HC toxin.
Collapse
Affiliation(s)
- Wanessa D Wight
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
23
|
Shwab EK, Keller NP. Regulation of secondary metabolite production in filamentous ascomycetes. ACTA ACUST UNITED AC 2007; 112:225-30. [PMID: 18280128 DOI: 10.1016/j.mycres.2007.08.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 08/29/2007] [Indexed: 11/18/2022]
Abstract
Fungi are renowned for their ability to produce bioactive small molecules otherwise known as secondary metabolites. These molecules have attracted much attention due to both detrimental (e.g. toxins) and beneficial (e.g. pharmaceuticals) effects on human endeavors. Once the topic only of chemical and biochemical studies, secondary metabolism research has reached a sophisticated level in the realm of genetic regulation. This review covers the latest insights into the processes regulating secondary metabolite production in filamentous fungi.
Collapse
Affiliation(s)
- E Keats Shwab
- Plant Pathology Department, University of Wisconsin-Madison, Russell Laboratories, 1630 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
24
|
Hoffmeister D, Keller NP. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 2007; 24:393-416. [PMID: 17390002 DOI: 10.1039/b603084j] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the literature on the enzymes, genes, and whole gene clusters underlying natural product biosyntheses and their regulation in filamentous fungi. We have included literature references from 1958, yet the majority of citations are between 1995 and the present. A total of 295 references are cited.
Collapse
Affiliation(s)
- Dirk Hoffmeister
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.
| | | |
Collapse
|
25
|
Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B. A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 2006; 43:679-93. [PMID: 16765617 DOI: 10.1016/j.fgb.2006.04.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 04/18/2006] [Accepted: 04/20/2006] [Indexed: 11/23/2022]
Abstract
Lolitrems are a structurally diverse group of indole-diterpene mycotoxins synthesized by Epichloë/Neotyphodium endophytes in association with Pooid grasses. Using suppression subtractive hybridization combined with chromosome walking, two clusters of genes for lolitrem biosynthesis were isolated from Neotyphodium lolii, a mutualistic endophyte of perennial ryegrass. The first cluster contains five genes, ltmP, ltmQ, ltmF, ltmC, and ltmB, four of which appear to be orthologues of functionally characterized genes from Penicillium paxilli. The second cluster contains two genes, ltmE and ltmJ, that appear to be unique to lolitrem biosynthesis. The two clusters are separated by a 16 kb AT-rich sequence that includes two imperfect direct repeats. A previously isolated ltm cluster composed of ltmG, ltmM, and ltmK, is linked to these two new clusters by 35 kb of AT-rich retrotransposon relic sequence. All 10 genes at this complex LTM locus were highly expressed in planta but expression was very low or undetectable in mycelia. ltmM and ltmC were shown to be functional orthologues of P. paxilli paxM and paxC, respectively. This work provides a genetic foundation for elucidating the metabolic grid responsible for the diversity of indole-diterpenes synthesized by N. lolii.
Collapse
Affiliation(s)
- Carolyn A Young
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, Dean R, Farman M. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 2006; 34:4685-701. [PMID: 16963777 PMCID: PMC1635262 DOI: 10.1093/nar/gkl588] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.
Collapse
Affiliation(s)
- Cathryn Rehmeyer
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Weixi Li
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Motoaki Kusaba
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Yun-Sik Kim
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Doug Brown
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Chuck Staben
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Ralph Dean
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Mark Farman
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
- To whom correspondence should be addressed. Tel: 859 257 7445, ext. 80728; Fax: 859 323 1961;
| |
Collapse
|
27
|
Flor-Parra I, Vranes M, Kämper J, Pérez-Martín J. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. THE PLANT CELL 2006; 18:2369-87. [PMID: 16905655 PMCID: PMC1560913 DOI: 10.1105/tpc.106.042754] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/16/2006] [Accepted: 07/17/2006] [Indexed: 05/11/2023]
Abstract
Plant invasion by pathogenic fungi involves regulated growth and highly organized fungal morphological changes. For instance, when the smut fungus Ustilago maydis infects maize (Zea mays), its dikaryotic infective filament is cell cycle arrested, and appressoria are differentiated prior to plant penetration. Once the filament enters the plant, the cell cycle block is released and fungal cells begin proliferation, suggesting a tight interaction between plant invasion and the cell cycle and morphogenesis control systems. We describe a novel factor, Biz1 (b-dependent zinc finger protein), which has two Cys(2)His(2) zinc finger domains and nuclear localization, suggesting a transcriptional regulatory function. The deletion of biz1 shows no detectable phenotypic alterations during axenic growth. However, mutant cells show a severe reduction in appressoria formation and plant penetration, and those hyphae that invade the plant arrest their pathogenic development directly after plant penetration. biz1 is induced via the b-mating-type locus, the key control instance for pathogenic development. The gene is expressed at high levels throughout pathogenic development, which induces a G2 cell cycle arrest that is a direct consequence of the downregulation of the mitotic cyclin Clb1. Our data support a model in which Biz1 is involved in cell cycle arrest preceding plant penetration as well as in the induction of appressoria.
Collapse
Affiliation(s)
- Ignacio Flor-Parra
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Abstract
HC-toxin is a cyclic tetrapeptide of structure cyclo(D-Pro-L-Ala-D-Ala-L-Aeo), where Aeo stands for 2-amino-9,10-epoxi-8-oxodecanoic acid. It is a determinant of specificity and virulence in the interaction between the producing fungus, Cochliobolus carbonum, and its host, maize. HC-toxin qualifies as one of the few microbial secondary metabolites whose ecological function in nature is understood. Reaction to C. carbonum and to HC-toxin is controlled in maize by the Hm1 and Hm2 loci. These loci encode HC-toxin reductase, which detoxifies HC-toxin by reducing the 8-carbonyl group of Aeo. HC-toxin is an inhibitor of histone deacetylases (HDACs) in many organisms, including plants, insects, and mammals, but why inhibition of HDACs during infection by C. carbonum leads to disease is not understood. The genes for HC-toxin biosynthesis (collectively known as the TOX2 locus) are loosely clustered over >500 kb in C. carbonum. All of the known TOX2 genes are present in multiple, functional copies and are absent from natural toxin non-producing isolates. The central enzyme in HC-toxin biosynthesis is a 570-kDa non-ribosomal synthetase encoded by a 15.7-kb open reading frame. Other genes known to be required for HC-toxin encode alpha and beta subunits of fatty acid synthase, which are presumed to contribute to the synthesis of Aeo; a pathway-specific transcription factor; an efflux carrier; a predicted branched-chain amino acid aminotransferase; and an alanine racemase.
Collapse
Affiliation(s)
- Jonathan D Walton
- Department of Energy Plant Research Laboratory, Michigan State University, E. Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Thines E, Aguirre J, Foster AJ, Deising HB. Genetics of phytopathology: Secondary metabolites as virulence determinants of fungal plant pathogens. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/3-540-27998-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
30
|
Keller N, Bok J, Chung D, Perrin RM, Keats Shwab E. LaeA, a global regulator of Aspergillus toxins. Med Mycol 2006; 44:S83-S85. [PMID: 30408938 DOI: 10.1080/13693780600835773] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Several toxins have been implicated in Aspergillus fumigatus pathogenicity. Among these are gliotoxin, fumagillin, fumagatin, and helvolic acid. Recently we have identified a nuclear protein, LaeA, that regulates the production of all of these metabolites. Several criteria support the role of LaeA as a potent A. fumigatus virulence factor. Among these are a decreased ability of the laeA deletion strain (ΔlaeA) to cause fatal infections in the murine model, increased macrophage phagocytosis of ΔlaeA conidia and decreased ability of ΔlaeA to kill polymorphonuclear neutrophils [1]. Here we present our current knowledge of LaeA function and future directions of study of LaeA mechanism.
Collapse
Affiliation(s)
- Nancy Keller
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Jinwoo Bok
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Dawoon Chung
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Robyn M Perrin
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Elliot Keats Shwab
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
31
|
Keller NP, Turner G, Bennett JW. Fungal secondary metabolism — from biochemistry to genomics. Nat Rev Microbiol 2005; 3:937-47. [PMID: 16322742 DOI: 10.1038/nrmicro1286] [Citation(s) in RCA: 1066] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of natural product chemistry concerns a group of compounds known as secondary metabolites. These low-molecular-weight metabolites often have potent physiological activities. Digitalis, morphine and quinine are plant secondary metabolites, whereas penicillin, cephalosporin, ergotrate and the statins are equally well known fungal secondary metabolites. Although chemically diverse, all secondary metabolites are produced by a few common biosynthetic pathways, often in conjunction with morphological development. Recent advances in molecular biology, bioinformatics and comparative genomics have revealed that the genes encoding specific fungal secondary metabolites are clustered and often located near telomeres. In this review, we address some important questions, including which evolutionary pressures led to gene clustering, why closely related species produce different profiles of secondary metabolites, and whether fungal genomics will accelerate the discovery of new pharmacologically active natural products.
Collapse
Affiliation(s)
- Nancy P Keller
- University of Wisconsin-Madison, Department of Plant Pathology, 882 Russell Labs, 1630 Linden Drive, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
32
|
Varga J, Kocsubé S, Tóth B, Mesterházy A. Nonribosomal peptide synthetase genes in the genome of Fusarium graminearum, causative agent of wheat head blight. ACTA BIOLOGICA HUNGARICA 2005; 56:375-88. [PMID: 16196211 DOI: 10.1556/abiol.56.2005.3-4.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fungal nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of numerous metabolites which serve as virulence factors in several plant-pathogen interactions. The aim of our work was to investigate the diversity of these genes in a Fusarium graminearum sequence database using bioinformatic techniques. Our search identified 15 NRPS sequences, among which two were found to be closely related to peptide synthetases of various fungi taking part in ferrichrome biosynthesis. Another peptide synthetase gene was similar to that identified in Aspergillus oryzae which is possibly responsible for the biosynthesis of fusarinine, an extracellular iron-chelating siderophore. To our knowledge, this is the first report on the identification of a putative NRPS gene possibly responsible for the biosynthesis of fusarinine-type siderophores. The other NRPSs were found to be related to peptide synthetases taking part in the biosynthesis of various peptides in other fungi. Transcription factors carrying ankyrin repeats were observed in the vicinity of four of the identified peptide synthetase genes. Additionally, NRPS related genes similar to putative long-chain fatty acid CoA ligases, acyl CoA ligases, ABC transport proteins, a highly conserved putative transmembrane protein of Aspergillus nidulans, and alpha-aminoadipate reductases have also been identified. Further studies are in progress to clarify the role of some of the identified NRPS genes in plant pathogenesis.
Collapse
Affiliation(s)
- J Varga
- Department of Microbiology, Faculty of Sciences, University of Szeged, P.O. Box 533, H-6701 Szeged, Hungary.
| | | | | | | |
Collapse
|
33
|
Abstract
Fungal secondary metabolites are of intense interest to humankind due to their pharmaceutical (antibiotics) and/or toxic (mycotoxins) properties. In the past decade, tremendous progress has been made in understanding the genes that are associated with production of various fungal secondary metabolites. Moreover, the regulatory mechanisms controlling biosynthesis of diverse groups of secondary metabolites have been unveiled. In this review, we present the current understanding of the genetic regulation of secondary metabolism from clustering of biosynthetic genes to global regulators balancing growth, sporulation, and secondary metabolite production in selected fungi with emphasis on regulation of metabolites of agricultural concern. Particularly, the roles of G protein signaling components and developmental regulators in the mycotoxin sterigmatocystin biosynthesis in the model fungus Aspergillus nidulans are discussed in depth.
Collapse
Affiliation(s)
- Jae-Hyuk Yu
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
34
|
Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A. A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci U S A 2004; 101:8233-8. [PMID: 15148404 PMCID: PMC419586 DOI: 10.1073/pnas.0401301101] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of the ability to synthesize specialized metabolites is likely to have been key for survival and diversification of different plant species. Oats (Avena spp.) produce antimicrobial triterpenoids (avenacins) that protect against disease. The oat beta-amyrin synthase gene AsbAS1, which encodes the first committed enzyme in the avenacin biosynthetic pathway, is clearly distinct from other plant beta-amyrin synthases. Here we show that AsbAS1 has arisen by duplication and divergence of a cycloartenol synthase-like gene, and that its properties have been refined since the divergence of oats and wheat. Strikingly, we have also found that AsbAS1 is clustered with other genes required for distinct steps in avenacin biosynthesis in a region of the genome that is not conserved in other cereals. Because the components of this gene cluster are required for at least four clearly distinct enzymatic processes (2,3-oxidosqualene cyclization, beta-amyrin oxidation, glycosylation, and acylation), it is unlikely that the cluster has arisen as a consequence of duplication of a common ancestor. Although clusters of paralogous genes are common in plants (e.g., gene clusters for rRNA and specific disease resistance), reports of clusters of genes that do not share sequence relatedness and whose products contribute to a single selectable function are rare [Gierl, A. & Frey, M. (2001) Planta 213, 493-498]. Taken together, our evidence has important implications for the generation of metabolic diversity in plants.
Collapse
Affiliation(s)
- X Qi
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Viaud M, Brunet-Simon A, Brygoo Y, Pradier JM, Levis C. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol 2004; 50:1451-65. [PMID: 14651630 DOI: 10.1046/j.1365-2958.2003.03798.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcineurin phosphatase and cyclophilin A are cellular components involved in fungal morphogenesis and virulence. Their roles were investigated in the phytopathogenic fungus Botrytis cinerea using gene inactivation, drug inhibition and cDNA macroarrays approaches. First, the BCP1 gene coding for cyclophilin A was identified and inactivated by homologous recombination. The bcp1Delta null mutant obtained was still able to develop infection structures but was altered in symptom development on bean and tomato leaves. Opposite to this, calcineurin inhibition using cyclosporin A (CsA) modified hyphal morphology and prevented infection structure formation. CsA drug pattern signature on macroarrays allowed the identification of 18 calcineurin-dependent (CND) genes among 2839 B. cinerea genes. Among the co-regulated CND genes, three were shown to be organized as a physical cluster that could be involved in secondary metabolism. The signature of BCP1 inactivation on macroarrays allowed the identification of only three BCP1 cyclophilin-dependent (CPD) genes that were different from CND genes. Finally, no CsA drug pattern signature was observed in the bcp1Delta null mutant which provided a molecular target validation of the drug.
Collapse
Affiliation(s)
- Muriel Viaud
- Unité de Phytopathologie et Méthodologies de la Détection, Institut National de la Recherche Agronomique, Route de Saint-Cyr, 78086 Versailles, France.
| | | | | | | | | |
Collapse
|
36
|
Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kürnsteiner H, Kück U. Winged helix transcription factor CPCR1 is involved in regulation of beta-lactam biosynthesis in the fungus Acremonium chrysogenum. EUKARYOTIC CELL 2004; 3:121-34. [PMID: 14871943 PMCID: PMC329499 DOI: 10.1128/ec.3.1.121-134.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 10/20/2003] [Indexed: 11/20/2022]
Abstract
Winged helix transcription factors, including members of the forkhead and the RFX subclasses, are characteristic for the eukaryotic domains in animals and fungi but seem to be missing in plants. In this study, in vitro and in vivo approaches were used to determine the functional role of the RFX transcription factor CPCR1 from the filamentous fungus Acremonium chrysogenum in cephalosporin C biosynthesis. Gel retardation analyses were applied to identify new binding sites of the transcription factor in an intergenic promoter region of cephalosporin C biosynthesis genes. Here, we illustrate that CPCR1 recognizes and binds at least two sequences in the intergenic region between the pcbAB and pcbC genes. The in vivo relevance of the two sequences for gene activation was demonstrated by using pcbC promoter-lacZ fusions in A. chrysogenum. The deletion of both CPCR1 binding sites resulted in an extensive reduction of reporter gene activity in transgenic strains (to 12% of the activity level of the control). Furthermore, Acremonium transformants with multiple copies of the cpcR1 gene and knockout strains support the idea of CPCR1 being a regulator of cephalosporin C biosynthesis gene expression. Significant differences in pcbC gene transcript levels were obtained with the knockout transformants. More-than-twofold increases in the pcbC transcript level at 24 and 36 h of cultivation were followed by a reduction to approximately 80% from 48 to 96 h in the knockout strain. The overall levels of the production of cephalosporin C were identical in transformed and nontransformed strains; however, the knockout strains showed a striking reduction in the level of the biosynthesis of intermediate penicillin N to less than 20% of that of the recipient strain. We were able to show that the complementation of the cpcR1 gene in the knockout strains reverses pcbC transcript and penicillin N amounts to levels comparable to those in the control. These results clearly indicate the involvement of CPCR1 in the regulation of cephalosporin C biosynthesis. However, the complexity of the data points to a well-controlled or even functional redundant network of transcription factors, with CPCR1 being only one player within this process.
Collapse
Affiliation(s)
- Esther K Schmitt
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Elliott CE, Howlett BJ. Approaches for identification of fungal genes essential for plant disease. GENETIC ENGINEERING 2004; 26:85-103. [PMID: 15387294 DOI: 10.1007/978-0-306-48573-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
38
|
|
39
|
Baidyaroy D, Brosch G, Graessle S, Trojer P, Walton JD. Characterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi. EUKARYOTIC CELL 2002; 1:538-47. [PMID: 12456002 PMCID: PMC118000 DOI: 10.1128/ec.1.4.538-547.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HC-toxin, a cyclic peptide made by the filamentous fungus Cochliobolus carbonum, is an inhibitor of histone deacetylase (HDAC) from many organisms. It was shown earlier that the HDAC activity in crude extracts of C. carbonum is relatively insensitive to HC-toxin as well as to the chemically unrelated HDAC inhibitors trichostatin and D85, whereas the HDAC activity of Aspergillus nidulans is sensitive (G. Brosch et al., Biochemistry 40:12855-12863, 2001). Here we report that HC-toxin-resistant HDAC activity was present in other, but not all, plant-pathogenic Cochliobolus species but not in any of the saprophytic species tested. The HDAC activities of the fungi Alternaria brassicicola and Diheterospora chlamydosporia, which also make HDAC inhibitors, were resistant. The HDAC activities of all C. carbonum isolates tested, except one non-toxin-producing isolate, were resistant. In a cross between a sensitive isolate and a resistant isolate, resistance genetically cosegregated with HC-toxin production. When fractionated by anion-exchange chromatography, extracts of resistant and sensitive isolates and species had two peaks of HDAC activity, one that was fully HC-toxin resistant and a second that was larger and sensitive. The first peak was consistently smaller in extracts of sensitive fungi than in resistant fungi, but the difference appeared to be insufficiently large to explain the differential sensitivities of the crude extracts. Differences in mRNA expression levels of the four known HDAC genes of C. carbonum did not account for the observed differences in HDAC activity profiles. When mixed together, resistant extracts protected extracts of sensitive C. carbonum but did not protect other sensitive Cochlibolus species or Neurospora crassa. Production of this extrinsic protection factor was dependent on TOXE, the transcription factor that regulates the HC-toxin biosynthetic genes. The results suggest that C. carbonum has multiple mechanisms of self-protection against HC-toxin.
Collapse
Affiliation(s)
- Dipnath Baidyaroy
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- A E Osbourn
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|